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Abstract

When patients leave the hospital for lower levels of care, they experience a risk of adverse events 

on a daily basis. The advent of value-based purchasing among other major initiatives has led to an 

increasing emphasis on reducing the occurrences of these post-discharge adverse events. This has 

spurred the development of new prediction technologies to identify which patients are at risk for 

an adverse event as well as actions to mitigate those risks. Those actions include pre-discharge and 

post-discharge interventions to reduce risk. However, traditional prediction models have been 

developed to support only post-discharge actions; predicting risk of adverse events at the time of 

discharge only. In this paper we develop an integrated framework of risk prediction and discharge 

optimization that supports both types of interventions: discharge timing and post-discharge 

monitoring. Our method combines a kernel approach for capturing the non-linear relationship 

between length of stay and risk of an adverse event, with a Principle Component Analysis method 

that makes the resulting estimation tractable. We then demonstrate how this prediction model 

could be used to support both types of interventions by developing a simple and easily 

implementable discharge timing optimization.
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1 Introduction

The current state of the art in readmission prediction lies in predicting readmission risk at 

the time of discharge. Most readmission risk prediction models predict only the cumulative 

30 day readmission risk for a discharged patient (e.g., see the logistic regression model 

(Shulan et al. 2013), LACE and LACE+ index (van Walraven et al. 2010, 2012) in Canada, 

Address(es) of author(s) should be given

HHS Public Access
Author manuscript
IISE Trans Healthc Syst Eng. Author manuscript; available in PMC 2020 April 19.

Published in final edited form as:
IISE Trans Healthc Syst Eng. 2019 ; 9(2): 172–185. doi:10.1080/24725579.2019.1584133.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



PARR-30 (Billings et al. 2012) in the UK, and the HOSPITAL score (Donzé et al. 2013) in 

the United States. These models, however, make it difficult to accurately target interventions 

to prevent hospital readmissions given that the readmission could occur any time in the first 

30 days after discharge. More recent risk prediction models have sought to predict the actual 

timing of the readmission within the 30-day window to integrate better with decision support 

frameworks designed for targeted, post-discharge interventions. For example, Helm et al. 

(2016) develops a Cox proportional hazard model to predict the time to readmission and 

integrates it with an optimization to target phone calls that can detect and mitigate 

readmission-causing conditions before the patient becomes so sick that they must be 

readmitted. Grzyb et al. (2017) suggest a multi-task Cox proportional hazard model to learn 

a shared representation across patient diagnoses to produce more accurate predictions of 

patients readmission times. However, the authors group patients by discharge codes, while 

our clustering algorithm developed in Section 2 takes a more general approach by grouping 

patients according to their similarity in the readmission timing. Vinzamuri and Reddy (2013) 

combine correlation based regularizers with Cox regression to handle correlated and 

grouped features which often appear in health care data. Shams et al. (2015) propose a tree-

based classification method to estimate the probability of readmission that can directly 

incorporate a patient’s history of readmission and risk factor changes over time. They 

validate their model using Veterans Health Administration (VA) data from inpatients 

hospitalized for heart failure, acute myocardial infarction, pneumonia, or chronic obstructive 

pulmonary disease. Hao et al. (2015) implements a random forest to predict a patient’s 

hazard rate and time-to-readmission curves using the Maine Health Information Exchange 

(HIE) system via a real time provider portal.

While these models make important strides toward managing the readmission problem via 

post-discharge management, it has been shown that interventions during the hospital stay 

also impact readmission rates. For example, Anderson et al. (2012) found that patients 

discharged early (often evidenced by highly utilized inpatient units) exhibit increased risk of 

readmission, mortality, and other adverse outcomes. In contrast to early discharge, Anderson 

et al. (2011) hypothesizes that there may also be a phenomenon of keeping patients longer 

when occupancies are lower. This demonstrates the importance of discharge decision 

making in addition to post-discharge interventions. Bartel et al. (2014) shows that keeping a 

patient one extra day can reduce mortality risk by nearly 6%. Current techniques that predict 

readmission risk only at the time of discharge, however, are not adequate to support such a 

decision making framework. To target inpatient interventions, hospitals need a dynamic 

prediction model that updates readmission risk over the course of an inpatient stay. The 

medical literature also discovered similar relationship between LOS and patient outcomes; 

see, for example, Kuo and Goodwin (2011), Heggestad (2002). However, most of the 

prediction models focus on predicting the readmission probability; our method also predicts 

the readmission timing, which is important for hospital patient flow management.

In this paper, we first develop a readmission risk prediction model that combines both needs 

for a comprehensive readmission mitigation strategy: (1) the ability to predict post-discharge 

readmission timing, and (2) the ability to dynamically update this prediction as a patient 

progresses through inpatient treatment. Next, we develop a decision support tool by 

integrating the predictive model with the discharge optimization to balance the risks of early 
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discharge with hospital congestion. As a proof of concept, we demonstrate how the 

integrated framework could be used to determine when to discharge a patient based on 

hospital utilization and risk of discharge readmission. Specifically, we make the following 

contributions.

Prediction.

We develop a new model that extends the classical Cox proportional hazard model (COX 

1972) to characterize and cluster trajectories of readmission risk as a function of discharge 

timing (length of stay). Our model dynamically predicts the risk of readmission during the 

patient’s stay in the hospital. This prediction not only provides the readmission risk if the 

patient were to be discharged on the current day, but also the trajectory of risk over potential 

future days of the patient’s hospital stay. This feature allows us to measure the benefit of 

keeping the patient in the hospital shorter or longer. Additionally, it clusters the patients 

based on a mixture model framework to better capture patient heterogeneity, allowing 

different shapes of the risk trajectory for different types of patients. To capture the non-linear 

relationship between patient’s length of stay (LOS) and readmission risk, we use a kernel 

principle component analysis (KPCA) approach to extract non-linear features of key risk 

factors. Using inpatient data from a partner VA hospital, we demonstrate that the prediction 

power of our model outperforms existing methods. Farewell (1982) combines a logistic 

formulation for the probability of occurrence of an event with a parametric failure time 

distribution for the time of occurrence of the event. Kuk and Chen (1992) extend the model 

by using Cox’s proportional hazards regression for the time of occurrence of the event. 

Rosen and Tanner (1999) present a mixture model which combines features of the Cox 

proportional hazards model with the mixtures-of-experts. Eng and Hanlon (2012) describe a 

Cox mixture model to cluster heterogeneity in time-to-event data and apply it to a cancer 

genomic study.

Decision Support.

We build a simple and easily implementable discharge timing optimization framework that 

demonstrates how our dynamic prediction model may be employed in practice to reduce 

inpatient readmissions while considering ward congestion. We use this framework to explore 

the effectiveness of discharge policies through various numerical experiments, and to 

generate structural insights regarding the discharge decision. Chan et al. (2012) consider the 

dynamic, state-dependent discharge decision in the ICU. They suggest developing a 

prediction model on patient outcome as an important area for future work, which is a major 

component in this paper. The discharge optimization we consider also broadly relates to the 

optimal control in service operations; see, for example, George and Harrison (2001) and Ata 

and Shneorson (2006). Chan et al. (2014) leverage a fluid model to determine whether a 

speedup service rate should be used, which is motivated from ICU management setting.

The rest of the paper is organized as follows. In Section 2, we develop the risk prediction 

model. In Section 3, we validate our prediction model using a data set from a partner 

hospital, and compare the performance of the prediction over several existing methods. In 

Section 4, we specify the discharge decision framework based on the prediction model and 

demonstrate numerical results under various parameter setting. Finally, we conclude our 

Alaeddini et al. Page 3

IISE Trans Healthc Syst Eng. Author manuscript; available in PMC 2020 April 19.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



paper in Section 5. The list of variables used in the proposed prediction and optimization 

framework is provided in Table 1.

2 Dynamic prediction of patient discharge risk

In this section, we develop a new model to predict time to readmission that extends the 

classical Cox proportional hazard model (COX 1972). Prior Cox-based readmission 

prediction models intend for LOS to be exogenous and determined at the time of discharge 

based on the physician’s medical judgment. In contrast, our prediction model must be 

equipped with capabilities that can enable us to treat LOS as an endogenous variable, since 

LOS is controlled via the discharge decision in our optimization framework. For example, a 

patient who is newly admitted to the hospital should recover at a different rate than a patient 

that has already stayed for a number of days.

To capture the non-linear relationship between LOS and readmission risk, we extend the 

basic Cox model to include a non-linear feature extraction method based on KPCA 

(Schölkopf et al. 1997). That is, we transform a linear model into a nonlinear one by 

mapping patient risk factors into a higher dimensional space using a kernel function, and 

then use principle component analysis (PCA) to reduce the dimension of the transformed 

space by identifying only the most significant factors, i.e., the “representative” nonlinear 

features (Schölkopf and Smola 2002). Meanwhile, to capture the heterogeneity in the patient 

population, we personalize the Cox representation by formulating a mixture model that 

clusters patients into similar groups, which allows for different patient types to have 

different baseline hazard functions (Eng and Hanlon 2012). We develop an expectation 

maximization (EM) algorithm to simultaneously estimate the mixture probability parameters 

and the coefficients associated with the nonlinear features for each group.

2.1 Kernel principal component analysis (KPCA) for nonlinear feature extraction

KPCA has been frequently used for feature extraction and dimensionality reduction in 

healthcare analysis (Mikalsen et al. 2018, Motai et al. 2017, Yang et al. 2014). In the basic 

Cox model, the regression component is Xiβ = ∑k = 1
D βkXi, k, where Xi = {Xi,1, … , Xi,D} are 

covariates directly from the data set. In our case, these covariates are patient age, gender, 

diagnosis, LOS, etc. The dimension D is usually large and creates computational challenges 

for parameter estimation. In addition, the linear form of Xiβ, may not be rich enough to 

capture the nonlinear relationship between LOS and the cumulative readmission probability. 

To overcome these two issues, we apply the kernel PCA method.

To illustrate, how KPCA solves these issues consider the following. Suppose the original 

data contains n patients and D risk factors for each patient, so the original data space is n × 
D. We map the original risk factor, Xi, from the D dimensional space onto a ñ dimensional 

space spanned by ñ features Φ(Xi). Fortunately, in the KPCA method it is not necessary to 

directly compute Φ in the ñ-dimensional space. Instead, we apply the kernel trick, 

representing the inner product of the Φ’s with a kernel function κ.

Still, this space is too large to compute the parameter estimation, especially for multiple 

iterations of the EM algorithm. Thus, we apply PCA to reduce the dimension of the data to 

Alaeddini et al. Page 4

IISE Trans Healthc Syst Eng. Author manuscript; available in PMC 2020 April 19.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



be K dimensional. PCA does this using the following linear transformation: Zi = AΦ(Xi). In 

PCA, A is chosen to be the transformation that maximizes the trace of the covariance matrix 

of the factors in the smaller K dimensional space. This is the equivalent of finding the K 
largest eigenvectors, (V1, … , VK), of the covariance matrix of Φ(Xi). Since we are not 

working directly with Φ, it has been shown that it is suffcient to directly work on the 

projected feature Zi, which can be represented as Zi = ϕ Xi
TV = ∑ j = 1

m a jiκ Xi, X j  with the 

kernel function κ. The main steps of kernel PCA algorithm can be found at (Schölkopf and 

Smola 2002).

We should note that while KPCA is one of the most common feature extraction methods, 

one may consider other linear or nonlinear feature extraction methods suited for her/his 

specific dataset. In a numerical study not reported here, we have compared the performance 

of Gaussian Kernel PCA with that of polynomial kernel PCA and standard PCA, and found 

Gaussian KPCA is the most competitive feature extraction method for our dataset.

2.2 Mixture model framework to account for heterogeneity in patient population

Using Zi = AΦ(Xi) to represent the KPCA transformation of the risk factors Xi, the time to 

readmission is modeled using a hazard rate function with a risk factor regression component:

h t; Yi = h0(t)e
Ziβ

where h0(t) denotes the baseline hazard function that captures the time component the 

readmission event, and Ziβ = ∑k = 1
K βkZi, k captures the dependence on patient-specific risk 

factors Zi for any given patient i. The risk factors Zi = {Zi,1, … , Zi,K} are K nonlinear 

features extracted from the kernel PCA method that will be specified in the next section. 

Note that h0(t) can follow any distribution or even be unspecified. In this study, we use a 

piecewise constant function to represent baseline hazard model. With the hazard rate 

function, we can calculate the probability density of a readmission event occurring at time t 
for patient i as

f t; Zi = h t; Zi exp −∫
0

t
h u; Zi du

δ
⋅ exp −∫

0

t
h u; Zi du

1 − δ
. (1)

Here, δ= 0 if ti, the observed readmission time for patient i, is censored or 1 if it is not. To 

explain (1), note that if the observed readmission time is not censored, then we use the 

readmission density function, h t; Zi exp −∫ 0
t h u; Zi du ; otherwise, we use the survival 

function (i.e. the probability that the patient has not yet been readmitted by time t), the 

second term of (1).

One drawback of the Cox model, including KPCA Cox, is that it assumes the dataset is 

homogeneous and therefore fits the same baseline hazard function to all patients, i.e. all 

patients have the same shape risk curve. To personalize the risk prediction, it is important to 

allow for different shaped curves to account for patient heterogeneity. To do so, we utilize a 
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mixture proportional hazard framework based on the nonlinear features extracted by the 

KPCA to identify clusters of patients with similar readmission risk trajectories.

Now assume that there are p different clusters of patients; we present a method for 

determining the appropriate number of clusters at the end of this section. For each cluster, 

we assume a separate Cox model with the hazard rate function defined as

h j t; Y i = h0
j(t)e

Ziβ
j

(2)

for cluster j, where the baseline function h0
j(t) can be different for each cluster, and 

β j = β1
j , …, βK

j  are the regression coefficients for the jth cluster. Let πj for j = {1, …, p} be 

the probability that a randomly selected patient belongs to cluster j. The probability density 

of a readmission event occurring at time t for patient i can be represented as

f t; Y i = ∑
j = 1

p
π j f j t; Zi , ∑

j = 1

p
π j = 1, (3)

where fj(t; Zi) is defined for each cluster individually as in Eq. 1, replacing h(·) with hj(·).

We need to estimate Ψ = (π1, … , πp−1, β1, … , βp), the set of mixture model parameters to 

be estimated. To do so, we use Expectation Maximization (EM) to maximize the complete 

data likelihood function (Eng and Hanlon 2012). There are two possible strategies for 

implementing the EM algorithm for estimating the parameters of the proposed mixture 

KPCA Cox model: (1) Use KPCA once to extract nonlinear features from the entire dataset, 

and then implement EM algorithm based on the extracted features. This strategy requires 

one only execution of KPCA algorithm and is computationally more efficient than the 

second strategy (which will be discussed next). However, this strategy may miss the features 

that could (locally) explain the variation in subpopulations, as it extracts the dominant 

features across the entire dataset; (2) Use separate KPCAs to extract nonlinear features from 

each of the clusters identified by the EM algorithm. This strategy requires several executions 

of the KPCA algorithm at each iteration and for each cluster of the mixture model 

characterized by the EM algorithm. Consequently, its computational complexity is 

significantly higher than the first strategy. Meanwhile, it can result it better predictive 

accuracy compared to the first strategy, as it extracts the nonlinear features locally for each 

cluster. In this study, we adopt the first strategy because it provided considerable 

computational advantage and marginal difference (with the second strategy) in terms of 

predictive accuracy. The major steps of the EM algorithm for estimating the parameters of 

the mixture KPCA Cox model is provided in Appendix 5.

Selecting the optimal number of clusters.

The appropriate number of clusters, p can be determined using cross-validation. For this 

purpose the dataset is partitioned into v parts, namely 5. In each iteration of the cross 

validation, n – 2 partitions are considered for training (estimating the parameters), one 

partition is used for validation (optimizing the (hyper) parameters), and one partition is 
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selected for testing (comparing with other methods). Next, the EM algorithm with a pre-

specified number of clusters p = {1, 2, …, 4} is executed v times on the partitioned data to 

account for v possible combinations of partition assignment to train, validation, and test sets. 

These v prediction accuracy are calculated and averaged for each candidate choice of p, and 

the final p is selected to optimize the evaluation criterion. Here, we use the average 

prediction accuracy of the trained algorithm over the validation set at 5, 10, 20 and 30 days 

after discharge (we use the test set for comparison with other methods). Figure 1 shows the 

prediction accuracy with respect to different choice of p = {1, 2, …, 4} using a data set from 

a partner VA hospital, which indicates the optimal choice is p = 3.

3 Model validation and prediction results

Our analysis was performed based on data from a database of 2,443 patients with 3,093 

admission/readmission records from a VA medical center in Michigan during 2011. The 

following ten factors are considered for building the predictive model: (i) Length of stay 
(LOS), a continuous factor ranging from 0 to 30 days; (ii) Gender, a discrete factor with two 

possibilities of “male” and “female”; (iii) Age, a continuous factor ranging from 22 to 97; 

(iv) Health insurance, a discrete factor with two possibilities of “Insured” and “Not insured”; 

(v) Eligibility, a discrete factor with 16 levels; (vi) Employment status, a discrete factor with 

seven levels ranging from “Not employed” to “Active duty”; (vii) Enrollment status, a 

discrete factor with 9 levels ranging from “Unverified” to “Other”; (viii) Source of 
admission, a discrete factor with 3 levels including “Hospital”, “Nursing home care unit 

(NHCU)”, and “Domiciliary”; (ix) Ward, a discrete factor with 17 levels representing the 17 

wards of the VA facility; (x) Principal diagnoses, s a discrete factor with 30 levels 

representing the 30 common diagnoses treated at the VA facility. Table 2 illustrate the 

distribution of data across diffrent risk factors. Considering numerous levels of the discrete 

risk factors, 80 variables are used for encoding the dataset, which signifies the need for an 

appropriate feature extraction method, i.e. KPCA.

3.1 Model validation

Based on the above dataset, we compare the performance of the proposed mixture KPCA 

cox model with a number of predictive models in the literature. We use five-fold cross 

validation for training, validation and testing of the comparing models. The methods used in 

our comparison along with their information are presented in Table 3. Among the comparing 

methods, the proposed mixture KPCA Cox and KPCA Cox are regression models and other 

methods are (binary) classification models. For the regression model we use a threshold 

(optimized based on cross validation) for converting the estimated risk into class 

(readmission vs no readmission) prediction. Meanwhile, For training the classification 

models, censored data are transformed into “not-readmitted” class if censoring time occurs 

after the target date, i.e. 30 day after discharge, or they will be eliminated if the censoring 

time occurs before the target day. Meanwhile, for training the regression models, censored 

data are directly incorporated into the models using the censoring variable. The accuracy of 

readmission prediction 5, 10, 20, and 30 days after the discharge date is used the evaluation 

criteria. The reason for selecting multiple (four) days (instead of one day) for performance 

comparison is that, using multiple days we can better characterize the trajectory of 
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readmission risk development at di erent days after discharge. For predicting readmission at 

different days after discharge, i.e. 5, 10, 20, and 30, the classification models need to be 

trained multiple times for each of the target days. Whereas, regression models only need to 

be trained once for the entire range of target days.

Figure 2 illustrates the accuracy of the comparing methods in predicting the probability of 

readmission at 5,10, 20, and 30 days after discharge based on five fold cross-validation. 

While, some the methods provides considerable performance at specific snap shots, i.e. 

Boosting outperforms other methods for 5 days readmission prediction, the proposed 

method illustrates the overall best and most robust performance across the prediction 

horizon. The considerable performance of the proposed mixture KPCA Cox model can be 

attributed to several factors: (1) Using days from discharge as a longitudinal variable in the 

model (through the proportional hazard function), (2) Utilizing mixture model to account for 

the heterogeneity in the readmission risk of subpopulations, (3) Employing KPCA to extract 

informative (nonlinear) features from the set of existing risk factors, and (4) Effectively 

using the information of the censored data for training the predictive model.

3.2 Prediction Result

In this study we use LOS as the discharge decision in our optimization framework to reduce 

the probability of readmission. Figure 3.a illustrates the Box plot of LOS for readmitted vs 

not-readmitted patients, 30 days after discharge, which shows not-readmitted patients in the 

dataset generally have a longer LOS compared to the readmitted patients. To better 

demonstrate the potential effect of increasing LOS on improving the probability of 

readmission, we use the proposed mixture KPCA Cox method to characterize the cumulative 

probability of readmission as a function of LOS based on a random sample of 1,032 patients 

from the study dataset. To implement the proposed Mixture KPCA Cox method, we use the 

same setting as discussed in Table 3. Figures 3.b–c illustrate the predicted trajectories for 

individual patients as well as the trajectories associated with the 3 clusters of the proposed 

mixture KPCA Cox model.

It may be worth mentioning that our approach can handle an arbitrary number of variables 

changing with time. However, during the inpatient stay, most of the data is static with time 

(e.g. admitting diagnosis, patient demographics, health history etc.). Literature has also 

found that LOS is an important factor in readmissions and is a variable we have access to in 

our dataset, hence we focus primarily on LOS. A further application of our model would be 

to consider data about interventions and events that occur during the patient’s stay, such as 

diagnostic tests ordered, additional surgeries performed, visits to ICU, etc. However, this 

data is not available in our current dataset and is particularly difficult to obtain in general.

4 A discharge optimization framework

In this section, we demonstrate how our prediction model can integrate seamlessly with 

decision support methods for reducing readmissions. Specifically, we consider discharge 

timing and its impact on readmissions as well as congestion in the inpatient unit. As 

discussed in the introduction, early discharge can reduce congestion in an overloaded 

hospital ward, yet it carries higher risk of readmission. In our discussions with hospital 
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managers, we found that the industry need involves two components: information on when 

readmissions will occur (prediction) and what to do with that information (optimization). 

With the prediction model alone, hospitals can begin taking better discharge actions. 

However, the question of how many patients and which patients to discharge on a given day 

requires complex integration of many different system components such as current and 

future predicted risk, current occupancy, future arrivals and future projected discharges. In 

this environment ad-hoc decisions may leave significant room for improvement. Thus, in 

this section we provide an example of such an optimization approach to showcase how our 

prediction model may be easily integrated with a decision support framework.

In our decision support framework, we balance the tradeoff between ward congestion (which 

also carries risks for patients) and readmissions by formulating an easy-to-use, static 

optimization problem. Solving this optimization gives us the optimal length of stay (LOS) 

for different types of patients, which then determines the discharge policy by patient type. A 

high-level map of the optimization algorithm is shown in Figure 4.

Note that this framework is just one example of how our novel prediction model could be 

integrated into decision models to improve hospital operations. The goal is to demonstrate 

the capabilities of our prediction model to support future decision support research in 

readmissions.

4.1 Optimization model for homogeneous patients

In this paper, we focus on a “threshold-type” discharge policy. That is, we discharge a 

patient when his or her 30-day readmission probability falls below a pre-set threshold s, e.g., 

10%. Based on our personal communication with our partner hospital, this type of discharge 

policy is commonly used by physicians. Given a readmission risk trajectory, f(l), that 

predicts patient readmission risk as a function of LOS l, the threshold s maps directly to the 

number of days each patient needs to spend in the hospital. For example, if the desired 

threshold s = 10% corresponds to ls = 5 days, then this patient will be discharged after 

spending 5 days in the system. The goal is to choose the optimal s, or equivalently, the 

optimal ls to strike a balance between system congestion and expected number of 

readmissions.

For the purpose of illustration, we begin with one class of patients in this section, i.e., every 

patient follows the same risk trajectory after being admitted. Mathematically, let Xk
j denote 

the number of patients who already spent j days in the hospital on day k. Then, the pre-

discharge system state can be described as

Xk
0, Xk

1, …, Xk
J ′,

where J is the maximum number of days a patient is allowed to stay in the hospital, e.g., J = 

30. Since no patient spends more than ls days in the system under our discharge policy, the 

number of patients in the system post discharge equals
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Xk = ∑
j = 0

ls − 1

Xk
j . (4)

In steady state, each day the threshold discharge policy will only discharge patients who 

have reached the threshold LOS, ls, on the current day. Hence, the pre-action number of 

patients in system in long-run equals

Xk − = ∑
j = 0

ls
Xk

j . (5)

To capture system congestion, we use the expected post-discharge queue length, defined as

𝔼 Qk = 𝔼 Xk − N +, (6)

where N is the number of inpatient beds available for use, and x+ = max(x, 0) for any real 

number x. Note that our decision framework can be generalized to include other congestion 

measures; see the remark at the end of this section. Assume that the unit cost of congestion 

(i.e. having more patients than beds) is C, and the cost associated with each readmission 

event is R. We want to solve the following optimization problem:

ls* = argminls
R ⋅ s𝔼 Dk + C𝔼 Qk , (7)

where s is the predicted readmission probability corresponding to the decision variable ls 

from the given risk trajectory f(l), and 𝔼 Dk  is the expected number of discharges per day 

under the discharge policy with the readmission probability threshold being s.

To calculate the expected queue length in (6), we need to specify the distributions of Xk. To 

do so, note that for 0 ≤ j < ls, Xk
j equals the number of patients who arrived to the system j 

days before, i.e.,

Xk
j = Ak − j

0 , (8)

where A⋅
0 denotes the new arrivals on a given day. Thus,

Xk = ∑
j = 0

ls − 1

Ak − j
0 . (9)

If we assume patient arrivals follows a Poisson distribution with mean Λ each day, then 

∑ j = 0
ls − 1

Ak − j
0  follows a Poisson distribution with mean lsΛ, and we can calculate the expected 

queue length as
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𝔼 Qk = 𝔼 Poiss lsΛ − N + . (10)

In addition, recall that in long run we discharge all patients whose length of stay is ls on any 

given day. This means that these patients came ls days ago following a Poisson distribution 

with rate Λ. Thus, 𝔼 Dk = Λ is the daily discharge rate.As a result, we can further rewrite 

the optimization problem (7) as

ls* = argminls
R ⋅ sΛ + C ⋅ 𝔼 Poiss lsΛ − N + . (11)

Remark.

Our optimization framework is flexible to account for non-Poisson arrival process and other 

congestion measures besides the post-discharge queue length. For example, we could use the 

pre-action daily queue length

𝔼[Q(k − )] = 𝔼 Poiss ls + 1 Λ − N +
(12)

or even the time-dependent performance using the intra-day system dynamics, i.e.,

X t = Xk + A k, t − D k, t ,

with A(k,t) and D(k,t) denoting the number of arrivals and discharges that occurred between 

time k (midnight of day k) and t.

A numerical demonstration of solving optimization problem (11)—As a 

demonstration, we use the average predicted trajectory for group 2 and group 3 patients, 

respectively, as the readmission risk trajectory f(l) (as a function of LOS l); see the red and 

green curves illustrated in Figure 3c. In the experiments, we set N = 32, Λ = 6.25, R = 20, 

and C = 1. Figure 5 shows the expected queue length 𝔼[Qk] (equals the holding cost since C 

= 1), the expected readmission cost (R · sΛ), and the total cost under discharge policies with 

different ls.

For both Figures 5a and 5b, the minimum cost is achieved at l = 4 days. In other words, if 

every patient follows the same trajectory as the average curve for group 2 or group 3 and 

using objective in Equation (11), the optimal policy (among the threshold type policies we 

consider) is to discharge a patient when her LOS reaches ls = 4 days.

4.2 Optimization model for multi-class model

Assume that there are M classes of patients, which we can obtain by grouping patients with 

similar predicted risk trajectories; see Figure 3c for an example. For each m = 1, … , M 
class, we set a threshold sm, for the readmission probability. Equivalently, we set a LOS 

threshold lm for each class. Then, on each day k, we discharge every m-class patient who has 
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spent lm days in the system. Similar to the single-class model, it is not diffcult to show that 

the total number of patients in the system (post discharge) equals

Xk = ∑
m = 1

M
∑
j = 0

lm − 1

Xk
m, j, (13)

where Xk
m, j denotes the number of class m patients that have spent j days in the system. We 

can also show that Xk follows a Poisson distribution with mean

∑
m = 1

M
lmΛm,

where Λm is the daily arrival rate of class m patients arriving according to a Poisson 

distribution. Thus, the expected post-discharge queue length equals

𝔼[Q(k)] = 𝔼 Poiss ∑
m = 1

M
lmΛm − N

+
, (14)

and we can formulate an optimization problem that is similar to (11), i.e.,

l1*, …, lM* = argminl1, …, lM
R ∑

m = 1

M
smΛm + C𝔼[Q(k)], (15)

where sm is the readmission probability corresponding to lm for class m patients, and 𝔼[Q(k)]
is given in (14).

A numerical demonstration of solving optimization problem (15)—We consider 

three classes of patients as grouped in Figure 3.c. Figure 6 shows the expected queue length 

𝔼[Q(k)], the expected number of re-admission events, and the total cost under threshold 

discharge policies with different lm for each patient class. In the experiments, we set N = 52, 

the total daily arrival rate Λ = 6.25, R = 20, and C = 1. We estimate the daily arrival rate of 

each class from the data and get Λm = 2.28, 2.81, 1.15 for m = 1, 2, 3, respectively. We also 

impose an extra constraint that each patient needs to spend at least 3 days and at most 20 

days in the system to ensure a reasonable readmission probability upon discharge and a 

reasonable cost (from the inpatient cost perspective). Solving the optimization problem gives 

us the optimal LOS l1* = 20, l2* = 7, and l3* = 3 days. In other words, if we have three types of 

patients, each of them following the trajectory as demonstrated in Figure 3c, under the 

objective function in Equation (15), we should keep group 1 patients as long as possible (20 

days), while discharging low risk patients as earlier as possible (3 days). Note that this 

insight is not because group 1 patients have a high (absolute) readmission risk and group 3 

patients have a low (absolute) risk; it is because the marginal benefit for keeping a group 1 

patient is the highest. We explain this rationale in Section 4.3.
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4.3 Insights for the optimized discharge threshold

In this section, we explain the insight behind the optimization problem for the single-class 

model; the multi-class model can be explained similarly (see the end of this section). Under 

the static discharge policy, each patient spends ls days in the hospital. Thus, finding the 

optimal ls is equivalent to finding the optimal offered load, defined as

B = lsΛ .

Plugging B into Equation (11), we get the objective function U(B) as

U(B) = RΛ ⋅ f B
Λ + C ⋅ 𝔼[Poiss(B) − N]+, (16)

where f(l) denotes the risk trajectory function with LOS l = B
Λ . When N and B are 

reasonably large, we can approximate Poiss(B) with a Normal(B, B) random variable (this 

Normal approximation has been shown to work well for other random variables as well). As 

a result, the mean queue length can be approximated by

𝔼 Poiss(B) − N + ≈ 𝔼 Norm(B, B) − N +

= B[ϕ(α) − α(1 − Φ(α))]
= Bϕ(α) − (N − B)(1 − Φ(α)),

where α = N − B
B , and ϕ(·) and Φ(·) denote the density and cumulative distribution function 

for a standard normal random variable. Thus, taking the derivative of U(B) in 16, we get

dU(B)
dB ≈ − RΛβ

Λ ⋅ f ′ B
Λ + C ϕ(α)

2 B
+ Bϕ′(α)α′(B) + (N − B)ϕ(α)α′(B) + (1 − Φ(α)) .

Note that

α′(B) = − N + B
2B B

≈ − 1
B

when B is close to N (which is the case in most hospital units, since ward utilization is 

frequently above 90%), and

ϕ′(α) = − αϕ(α) .

Also, when B is large, ϕ(α)/(2 B) ≈ 0. Thus, we can further simplify the derivative as

dU(B)
dB ≈ − Rβ ⋅ f ′ B

Λ + C αϕ(α) − N − B
B

ϕ(α) + (1 − Φ(α))

= − Rβ ⋅ f ′ B
Λ + C(1 − Φ(α)) .
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Setting the derivative dU(B)
dB = 0, we get the (approximate) optimal B satisfying

Rβ ⋅ f ′ B
Λ = C 1 − Φ α . (17)

On the left-hand side, β ⋅ f ′ B
Λ  is the marginal improvement in discharge risk for one patient 

when increasing ls; on the right-hand side, (1 – Φ(α)) captures the marginal change in 

system congestion as a function of the the discharge threshold ls. To see that latter, note that

1 − Φ(α) = ℙ(Z > α) = ℙ Z > N − B
B

= ℙ B + Z B > N .

Examining the final term above, we see that B + Z B is a Normal random variable with mean 

B and standard deviation B, i.e. the approximate offered load when threshold is ls. Thus, 

ℙ B + Z B > N  is the (approximate) probability of exceeding the hospital ward’s capacity 

(e.g. probability of blocking incoming patients from the emergency department).

Quite intuitively, Equation (17) says that the optimal threshold balances the risk reduction 
achieved by keeping a patient longer versus the subsequent increase in system congestion. In 

the multiple patient class setting, the rationale is similar. That is, the optimal solution again 

seeks to balance the marginal risk reductions for different classes of patients with the 

subsequent increase in system congestion. As a simple heuristic, our model tells us that, 

when choosing a class of patients for early discharge, we would want to choose the one with 

the smallest marginal risk reduction, since all patients contribute to the system congestion 

equally, regardless of the class. This is precisely what we saw in the numerical experiments 

of the previous section. In the next section, we will obtain the optimal discharge policies 

under various system conditions, where the insights can be explained by Equation (17) and 

the rationale behind it.

4.4 A discharge decision support framework

To get clean structural insights, we focus on the single-class setting; experiments in the 

multi-class setting generate similar insights. First, we examine the impact of ward capacity 

on the optimal discharge threshold. Table 4 shows the optimal ls* for different values of N 

using the average risk trajectory for group 3 patients. As we can see from this table, the 

larger the ward capacity N, the larger the threshold ls. This observation can be explained by 

Equation (17). As N increases, if ls* remains unchanged, the blocking probability on the 

right-hand side of (17) decreases. Thus, to reach a new balance in Equation (17), the optimal 

offered load, or equivalently, the optimal ls* needs to increase, which means we keep patients 

longer in the hospital. This insight indicates that larger wards may benefit by keeping 

patients longer, improving quality without significantly impacting overcrowding. 

Conversely, smaller units may wish to take a more aggressive discharge policy to avoid 

excessive congestion.
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Second, we examine the impact of risk trajectory on the optimal discharge threshold. Table 5 

shows the optimal ls* for different values of N, where we use either the average risk 

trajectory for group 2 patients or the average risk trajectory for group 3 patients. 

Surprisingly, although group 2 patients have higher readmission risks than group 3 patients, 

the optimal discharge threshold does not differ much under a given N. To explain this, we 

refer back to Equation (17), that is, the optimal discharge threshold level balances the 

marginal reduction in readmission risk, not the absolute value of the readmission risk, with 

the subsequent increase in system congestion. Thus, our second conclusion is that, the 
marginal change in readmission risk matters the most in optimizing discharge thresholds. If 

future prediction models are developed to increase the prediction accuracy, the focus should 

be on improving the prediction of the marginal change, not the absolute values.

Lastly, we examine the impact of cost parameters on the optimal discharge threshold. 

Keeping the unit holding cost C = 1, Table 6 shows the optimal ls* for different values of N 

under R = 5 and R = 40, where the average risk trajectory for group 3 patients is used (for 

the single patient class). Clearly, the optimal discharge threshold ls* under R = 5 is smaller 

than that under R = 40, given the same capacity N. Thus, when the readmissions are 

relatively cheap, the hospital should focus on reducing ward congestion. For example, 

readmissions for some conditions are penalized by Medicare whereas others are not. Hence, 

wards that serve a large population of penalized conditions would likely want to focus more 

on readmission risk than ward congestion than those that serve mostly non-penalized 

conditions.

Though the observation is intuitive, an important result is that our decision framework 

provides a tool to quantify the tradeoff between system congestion and readmission risk. 

Tables 4 and 6 provide a Pareto analysis for decision makers to select their desired 

performance in terms of ward congestion and readmission risk. By using R and C as tuning 
parameters, our optimization framework provides decision makers with a simple tool to 
directly observe the tradeoff between system-level congestion and individual-level 
readmission risk and choose their desired operating regimes based on their own 
organizational goals.

5 Conclusions

In this paper, we develop a new readmission prediction model that captures the endogenous 

impact of length of stay on readmission risk. Specifically, our new approach enables us to 

predict readmission risk on any day of hospital stay (and beyond the end of the stay as well), 

not just as a function of when the patient was actually discharged. Additional features 

include the ability to predict time to readmission (to enable targeted interventions), a 

clustering method that enables personalization of the shape of the time-to-readmission 

curve, and general non-linear feature extraction for risk factors. To do so, we integrate a 

kernel PCA method for feature extraction with a new implementation of the EM algorithm 

that simultaneously estimates clusters of similar patients as well as risk factor parameters. 

We demonstrate how this new model could be used in a discharge decision framework that 

balances risks of early discharge (conversely benefits of keeping a patient longer) with 
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hospital ward congestion. This type of decision support could not be supported with earlier 

attempts at readmission risk prediction, due to the need to control discharge timing. This 

work paves the way for future efforts in readmission reduction. Future research could 

include a completely personalized prediction model, where each patient has their own 

unique readmission risk trajectory. This would enable more targeted discharge decision 

making. Additionally, future prediction models could include dynamic updates based on new 

information obtained during the hospital stay, such as lab tests, visits to the ICU, blood 

transfusions, etc. Along these lines, major challenges include the amount and availability of 

data. Finally, more work on the decision support framework could include a dynamic 

discharge policy that accounts for the current state of the ward and the patients in it.

Appendix

Algorithm: Mixture Cox KPCA clustering

We define Wi, the membership random variable that indicates which cluster patient i belongs 

to. For patient i, we also have the KPCA transformation of the risk factors Zi = AΦ(Xi), and 

the observed readmission or censoring time, ti. Using this, we can define the complete 

likelihood function as:

L Ψ ; ti , Zi , W i

= ∏
i = 1

n
∏
j = 1

p
π j f j ti; Zi

𝟙 Wi = j

= ∏
i = 1

n
∏
j = 1

p
π j h0

j ti exp Ziβ
j exp −∫

0

ti
h0

j(u)exp Ziβ
j du

δi

exp −∫
0

ti
h0

j(u)exp Ziβ
j du

1 − δi
𝟙 Wi = j

(18)

where, i is the patient index and j is the cluster index. The indicator denotes that if patient i 
belongs to cluster j then we should use the likelihood function based on the model for cluster 

j. Next we discuss our implementation of the EM algorithm to estimate the parameters for 

the model above.

Expectation Maximization Algorithm

E-step: For the lth iteration of the EM algorithm, we take the expectation of the log of the 

complete likelihood function (18). To do so, we first need to calculate the posterior 

distribution of the cluster membership random variable, Wi, given the data and the model 

parameters from last iteration using Bayesian approach:
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T j, i
(l) = P Wi = j ti, Zi; Ψ (l)

=
π j

(l) f j ti; Zi, βp, (l)

∑ j = 1
p π j

(l) f j ti; Zi, βp, (l)

Thus, T j, i
(l)  is the posterior probability of patient i belonging to cluster j at the lth iteration of 

the EM algorithm, which can be interpreted as the similarity of the patient i readmission risk 

trajectory to those of patients in cluster j. We now approximate the expected log-likelihood 

function with respect to the posterior distribution of Wi:

Q(Ψ Ψ (l)) = E logL Ψ ; ti , Zi , Wi

= ∑
i = 1

n
∑

j = 1

p
T j, i

(l) logπ j + δi logh0
j ti + Ziβ

j − ∫0
∞

h0
j ti exp Ziβ

j dt + 1 − δi −∫0
∞

h0
j ti exp Ziβ

j dt .

M-step: This step finds the parameters that maximize Q(Ψ|Ψ(l)). Given that πj and βj all 

appear in separate linear terms in Equation 19, the maximization can be applied separately 

for πj and βj.

• Estimating πj: The estimate of πj has the same form as the maximum likelihood 

estimate (MLE) for the Dirichlet distribution, i.e.,

π j
(n + 1) = argmaxπ j

Q(Ψ Ψ (l))

= argmax ∑
j = 1

p
∑

i = 1

n
T j, i

(l) logπ j =
∑i = 1

n T j, i
(l)

∑i = 1
n ∑ j = 1

p T j, i
(l) .

• Estimating βj: Directly estimating β j, (n + 1) =  argmax 
β jQ(Ψ |Ψ (l)) is difficult 

because we do not specify the form of the baseline hazard h0
j ti . Following the 

literature (Cox (1975), Breslow (1975)), we use the partial likelihood function 

and apply the Breslow approximation to deal with repeated readmission times. 

That is, we estimate βj via
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β j, (n + 1) =  argmax
β jlog ∏

i = 1

n ∏
k ∈ ℑ t(i)

T j, i
(l) exp Ziβ

j

∑
k ∈ ℜ t(i)

T j, k
(l) exp Zkiβ j

ℑ ti

δi

= argmax
β j ∑

i = 1

I
δi ∑

k ∈ ℑ t(i)

log T j, i
(l) + ∑

k ∈ ℑ t(i)

Ziβ
j

− ℑ t(i) log ∑
k ∈ ℜ t(i)

T j, k
(l) exp Zkβ j .

(19)

Here, t(i) is the ith ordered unique readmission time, I is the number of unique 

readmission times, ℑ t(i)  is the set of individuals who were readmitted on ti day 

after discharge, ℜ t(i)  is the set of individuals not belonging to set ℑ t(i) , and δi 

means that only contributions from uncensored readmission times are 

considered. Then, Equation (19) can be maximized using the Newton-Raphson 

algorithm.
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Fig. 1: 
Prediction accuracy of Mixture KPCA COX model for various number of clusters.
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Fig. 2: 
Prediction accuracy of the comparing methods for estimating readmission 5, 10, 20, and 30 

days after discharge.
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Fig. 3: Predicted 30-day cumulative readmission probability against length of stay (LOS).
In Figure 3(a), we compare the LOS for different patients according to the readmission event 

30 days after discharge. In Figure 3(b), each curve represents the predicted readmission 

probability trajectory for each of 1032 randomly selected patients. In Figure 3(c), we group 

the 1032 randomly selected patients into three groups based on the three clusters of the 

proposed mixture KPCA Cox model; the three curves in this plot correspond to the average 

readmission probability of the each group.
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Fig. 4: 
Flow chart of the optimization framework.
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Fig. 5: Threshold discharge policy: expected queue length, the expected re-admissions, and the 
total cost.
We set N = 32, Λ = 6.25, R = 20, and C = 1. For the risk trajectory function s = f(l), we use 

the average one from group 2 and group 3 patients, respectively, in the left and right plots. 

The x-axis denotes the LOS l, while the y-axis denotes the corresponding value of the 

expected queue length, the expected re-admissions, and the total cost for the blue, red, and 

green curve, respectively.
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Fig. 6: Threshold discharge policy with multiple classes: expected queue length, expected 
number of re-admission events, and the total cost.
We set N = 52, Λ = 6.25, R = 20, and C = 1. The “LOS index” on the x-axis denotes an 

index of the combination of l1, l2, l3, so that we can plot the cost against different choices of 

(l1, l2, l3) on a two-dimensional figure. We impose a lower bound of 3 and an upper bound of 

20 for each lm, and the LOS index equals 172·l1 + 17 · l2 + l3. The y-axis denotes the 

corresponding value of the expected queue length, the expected re-admissions, and the total 

cost for the blue, red, and green curve, respectively.
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Table 1:

List of variables used in the proposed integrated framework.

Variable Description

Readmission prediction model

Xi,k kth risk factor (K = 1,…,D) of the ith patient (i = 1,…,n).

Zi KPCA transformation of the risk factors Xi (Zi = {Zi,1, …,Zi,K}).

hj (t; Yi) hazard function of patient i at time t when patient assigned to cluster j.

πi j, ∑ j = 1
p πi j = 1

membership probability of patient i in cluster j.

f(t; Yi) readmission likelihood of patient i at time t.

Discharge optimization model

Xk
j

number of patients who already spent j days in the hospital on day k.

Xk = ∑ j = 0
ls − 1

Xk
j total number of patients (post-discharge) in the hospital on day k.

Xk− pre-discharge total number.

𝔼 Qk = 𝔼 Xk − N + expected queue length.

ls* optimal discharge threshold.

s = s(l) readmission probability (as a function of LOS l).

R and C unit penalty cost for readmission and unit holding cost.
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Table 2:

Distribution of data across different risk factors.

Risk Factor Level Overall %

LOS (Meam, Std) (4.8,4.5)

(Q1,Q2,Q3) (2,3,6)

SEX Female 2,929 94.70%

Male 164 5.30%

Age (Meam,Std) (63.79,13.07)

Health Insurance Insured 2,774 89.69%

Un-insured 319 1031%

Eligibility

10 = SC 50–100% 653 21.11%

20 = Aid & Attendance 1,414 45.72%

21 = Housebound 81 2.62%

24 = POW 368 11.90%

30 = SC 40–49% 81 2.62%

31 = SC 30–39% 98 3.17%

32 = SC 20–29% 69 2.23%

33 = SC 10–19% 132 4.27%

34 = SC less than 10% 160 5 17%

40 = NSC - VA Pension 12 0.39%

50 = NSC 6 0.19%

101 = CHAMPVA 2 0.06%

105 = Allied Veteran 10 0.32%

106 = Humanitarian Emergency 1 0.03%

107 = Sharing Agreement 4 0.13%

109 = Tricare/ CHAMPUS 2 0.06%

Employment Status

Not Employed 1683 54.41%

Retired 866 28.00%

Employed Full Time 323 10.44%

Unknown 56 1.81%

Self Employed 60 1.94%

Employed Part Time 102 3.30%

Active Duty Military 3 0.10%

Enrollment Status

1 = Unverified 19 0.61%

2 = Verified 3040 98.29%

6 = Deceased 6 0.19%

16 = Pending; Means Test required 3 0.10%

17 = Pending, Eligibility is Unverified 1 0.03%

19 = Not Eligible; Refused to pay co-pay 1 0.03%

20 = Not Eligible; Ineligible Date 4 0.13%

22 = Reject; Below Enrollment 2 0.06%

23 = Other 17 0.55%
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Risk Factor Level Overall %

Source of Admission

Hospital 2910 94.08%

NHCU 178 5.75%

DOMICILIARY 5 0.16%

WARD
17 wards at the VA facility Avg. Patients per ward = 189

(Min, Median, Max)=(2,87,818) patients in a ward

Principle Diagnosis 30 Common diagnosis (ICD-9) at the VA facility 296, 292, 428, 295, 715, 303, 491, 291, 427, 486, 682, V57, 311, 
786, 780, 599,162, 304, 250, 309, 414, 185, 996;276;V58, 
560,38,285,584,410
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Table 3:

Comparing methods information.

No. Method Parameter Estimation Notes

1 Support Vector Machine (SVM) a. Gaussian Kernal with = 1.6819

b. Cache limit: 5000

c. Method: Sequential Minimal Optimization (SMO)

2 Logistic Regression a. No interaction terms

3 Boosting a. Learners: Tree

b. Number of ensembles learning

c. cycles: 100

d. Method: AdaBoostM1

4 Classic Cox Proportional Hazard Regression a. Baseline hazard function: Nonparametric

b. Risk factor values at baseline hazard:0

c. Censoring considered

d. No interaction terms

5 Kernel Principle Component Analysis Cox (KPCA Cox) a. Gaussian Kernal with = 1.8147

b. 13 principle components

c. Baseline hazard function: non parametric

d. Risk factor values at baseline hazard: 0

e. Censoring considered

6 Mixture Kernel Principle Component Analysis Cox (M 
KPCA Cox) (Proposed)

a. Gaussian Kernal with = 1.8147

b. 13 principle components

c. P=3 mixture components

d. EM algorithm for optimization

e. Mixture component selection criteria: cross validation

7 Neural Network (NN) a. Hidden layers: 1

b. Network training function: scaled conjugate gradient method

c. Perform function: cross entropy

8 Logistic Regression Mixture Model a. No interaction terms

b. P=3 mixture components

c. EM algorithm for optimization

d. Mixture component selection criteria: cross validation
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Table 4:
Threshold discharge policy: impact of ward capacity N.

We set Λ = 6.25, R = 20, and C = 1. For the risk trajectory, we use the average one from group 3 patients. 

Column 1 denotes the capacity N, column 2 denotes the optimal discharge threshold ls*, column 3–5 denote the 

corresponding average queue length, probability of readmission, and optimal total cost under the optimal 

discharge threshold ls*, respectively.

N ls* 𝔼 Qk s total cost

28 3 0.04 10.94% 13.71

32 4 0.22 10.72% 13.61

36 4 0.04 10.72% 13.44

40 5 0.17 10.46% 13.25

44 5 0.03 10.46% 13.11

48 6 0.13 10.17% 12.85

52 7 0.37 9.85% 12.69

56 7 0.10 9.85% 12.42
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Table 5:
Threshold discharge policy: impact of risk trajectories.

We set Λ = 6.25, C = 1, and R = 20. For the risk trajectory, we use the average trajectory from group 2 or 

group 3 patients. The three columns under “group 2” or “group 3” show the optimal discharge threshold ls*, the 

average queue length 𝔼[Qk], and the probability of readmission s, respectively.

group 2 group 3

N ls* 𝔼 Qk s ls* 𝔼 Qk s

28 4 0.87 76.42% 3 0.04 10.94%

32 4 0.22 76.42% 4 0.22 10.72%

36 5 0.65 75.17% 4 0.04 10.72%

40 6 1.41 73.68% 5 0.17 10.46%

44 7 2.51 72.00% 5 0.03 10.46%

48 7 1.07 72.00% 6 0.13 10.17%

52 8 1.95 70.08% 7 0.37 9.85%

56 9 3.11 67.95% 7 0.10 9.85%
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Table 6:
Threshold discharge policy: impact of cost parameters.

We set Λ = 6.25, C = 1, and R = 5 or 40. For the risk trajectory, we use the average trajectory from group 3 

patients. The three columns under “R = 5” or “R = 40” show the optimal discharge threshold ls*, the average 

queue length 𝔼[Qk], and the probability of readmission s, respectively.

R = 5 R = 40

N ls* 𝔼 Qk s ls* 𝔼 Qk s

28 3 0.04 10.94% 3 0.04 10.94%

32 3 0.00 10.94% 4 0.22 10.72%

36 4 0.04 10.72% 5 0.65 10.46%

40 4 0.00 10.72% 5 0.17 10.46%

44 5 0.03 10.46% 6 0.49 10.17%

48 5 0.00 10.46% 6 0.13 10.17%

52 6 0.03 10.17% 7 0.37 9.85%

56 7 0.10 9.85% 8 0.82 9.51%
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