#### Abstract

#### Background

Diabetes distress is a unique phenomenon with empirically established implications for diabetes end-points. Interventions targeting diabetes distress are indicated and emerging evidence suggests effectiveness, yet preliminary work quantifying and characterising the problem is required.

#### **Objectives**

To identify the presence, potential magnitude (i.e. rate) and determinants of elevated diabetes distress across study populations and isolate candidate populations with the greatest need.

#### **Methods**

Medline, Psychinfo and Embase were searched for studies ( $n \ge 50$ ) assessing diabetes distress using the Problem Areas in Diabetes scale or Diabetes Distress Scale, in adult populations with diagnosed Type 1 or 2 diabetes. Random effects meta-analysis and meta-regression estimated the average rate of elevated diabetes distress and prognostic contribution of age, gender, HbA1c and health care context.

# Results

Of 16,627 citations identified, adequate data were available for 58 studies. On average 22% (95% CIs 19% to 26%, P<0.0001) of participants reported elevated diabetes distress. Only female gender ( $\beta$ =-2.6, 95% CIs -4.17 to -0.97, P=0.002) and secondary care ( $\beta$ =-0.66, 95% CIs -1.18 to -0.14, P=0.01) were independently prognostic of a higher rate of elevated distress, albeit younger age ( $\beta$ =-0.03, 95% CIs -0.05 to -0.01, P=0.003) was significant in univariate analyses.

# **Conclusions**

On average a quarter of people with diabetes have a level of diabetes distress likely to impact outcomes. Secondary care practitioners should be particularly vigilant of younger women

with diabetes. These findings are limited by unexplained heterogeneity between studies, reliance on unrepresentative study samples and issues associated with measuring diabetes distress.

Word count: 3,712 (abstract 244)

# Keywords

Diabetes; Diabetes distress; Prevalence; Systematic review; Meta-analysis; Meta-regression

#### Introduction

Diabetes Distress (DD) is characterized by a range of different negative emotional reactions, for example worry, fear, anger and feeling overwhelmed etc., to adverse aspects of living with and managing diabetes [1]. DD is independently associated with HbA1c [2-7]. Fluctuations in each are related over time reflecting the ongoing negative experience of DD and its implications for outcomes and vice versa [4, 5]. Adults who experience intervention related improvements in DD also evidence clinically relevant improvements in HbA1c [8-10], and a 10 point change in Problem Areas in Diabetes (PAID) scale scores is associated with a change of .2% in HbA1c [6, 9]. DD also impacts certain self-management behaviors (SMBs) [2, 3, 5, 11, 12].

Individuals with elevated, or 'clinically relevant', DD additionally participate less in educational and self-management interventions comprising no psychological component [8] and exhibit less improvement in HbA1c [10]. Conversely where interventions target DD those with elevated DD, but not depression, engage to a greater degree and evidence improvement in SMBs [13]. Ameliorating DD is therefore a priority and interventions must move towards targeting elevated DD to improve well-being, SMBs and clinical end-points [13, 14]. Such endeavours must begin at the ground level with systematic consideration of the presence, magnitude and determinants of elevated DD, serving to identify the potential size of the problem and isolate candidate populations with the greatest need for intervention.

There is emerging evidence of the rate of elevated DD in study samples. In UK primary care, 21% of adults report elevated DD [15]. In the Netherlands, 4% and 19% of primary and secondary care patients, respectively, experience elevated DD [16]. In Australia, elevated DD affects 28%, 22% and 17% of adults with Type I and Type 2 diabetes, using and not using

insulin, respectively [17]. The USA community point prevalence of elevated DD is 18%, which increases to 48% over an 18 months period [18]. The prevalence and determinants of depression in diabetes has been reviewed extensively [19, 20]. Equivalent evidence on DD has thus far not received the same attention. A question therefore remains; what is the average rate of elevated DD in research populations and what individual and contextual characteristics determine this rate?

# Objectives

To identify the average rate and determinants of elevated DD across study populations of adults with diabetes.

#### Method

A systematic review was undertaken according to the MOOSE (Meta-analysis Of Observational Studies in Epidemiology) Group guidance [21].

# Identification of studies

Medline, Psychinfo and Embase were searched without language restrictions (1995 to 2013). In an initial scoping search we found all of the relevant evidence in psychology or medically led, rather than nursing led, studies hence it made sense to search these databases. The objective of the review was to bring DD to the attention of diabetes nurses and influence nursing practice around identifying and managing DD which we believe to be core diabetes nursing practice.

Included were studies assessing DD using the PAID scale [22] or Diabetes Distress Scale (DDS) [23] in any adult ( $\geq$ 18 years of age) population with diagnosed Type 1 or 2 diabetes.

Studies using anything other than the full versions of the widely adopted PAID or DDS were excluded to encourage homogeneity in outcome assessment.. We included a heterogeneous range of study populations as the objective of the review was to derive a preliminary indication of the average size of the problem and explore this clinical and methodological heterogeneity as potential sources of anticipated variation in rates of elevated DD. A broad, two pronged search strategy (available from the authors) captured terms historically used to describe the experience of DD, and the above measures, and terms that identify the types of studies known to include measures of DD as indicated by the initial scoping search; a) *'diabetes distress'* text words (all known variants and terms describing measures of DD), and b) index terms and text words relating to 'diabetes' AND, for example, *'distress', 'mood, 'emotion', 'depression', 'quality of life', 'education intervention', 'self-management* intervention' *and 'psychological intervention'*. The strategy was also informed by search strategies employed in systematic reviews of depression in diabetes as DD often features in such studies.

# Selection of studies

Two reviewers independently assessed citations and full papers for eligibility. Inter-rater reliability was good (kappa=.88). Identified conference abstracts and study protocols were included and the full papers were requested from authors once initially and then again prior to drafting the final paper.

#### Data extraction

Data were extracted by one investigator and quality checked by a second, with discrepancies resolved by discussion and consensus. No investigator extracted data from their own study. Data were extracted on population and setting, sample size, study design, measure of DD, and

the rate of elevated DD. Where studies were reported in more than one publication data were extracted from the paper reporting the rate of elevated DD. Where necessary demographic data were extracted from another publication on the same study (where n was equivalent). Baseline data were included for prospective studies. Rate data were requested from authors once where this was not reported in the paper(s).

#### Quality assessment

A number of tools are available for assessing the risk of bias in randomised controlled trials (RCTs), but assessment of observational study designs is controversial. Unlike aspects of RCT design, such as randomisation and allocation concealment, there is little evidence that criteria against which observational studies are appraised are related to risk of bias [21]. Consistent with the conclusion of authors of similar reviews, quality assessment was therefore not meaningful and not undertaken [19]. The synthesis was, however, informed by a more robust estimate of quality; studies were inverse-variance weighted to ensure that larger, and more precise, estimates were given more weight.

#### **Publication bias**

Risk of publication bias was determined by visual inspection of funnel symmetry in the plot of each studies estimate against its standard error (SE) and statistical test (Egger's test).

# Specification of outcome

'Rate data' constituted the number, and proportion, of participants completing the PAID scale or DDS that scored  $\geq$ 40 or  $\geq$ 3 respectively. In the absence of a gold standard criterion for identifying clinically relevant DD other means of establishing this have been proposed. A PAID score  $\geq$ 40 is one standard deviation (SD) above the mean for clinic patients and

research populations [24, 25] and has discriminant validity [25]. A DDS score  $\geq$ 3 exhibits maximal associations with diabetes outcomes (i.e. SMBs and HbA1c) [11]. These thresholds are typically employed in clinical and research settings [26, 27].

#### Data synthesis

Meta-analysis was used to estimate the average proportion of elevated DD (and 95% confidence intervals, CIs) across studies and pre-defined sources of heterogeneity in the estimate were explored using meta-regression. These analyses were undertaken using Metafor (R). Inspection of the data suggested normal distributions thus parametric analyses were appropriate. Rate data were combined, and covariates explored, in random/mixed effects models as statistical heterogeneity beyond that which can be explained by sampling error/chance (and the included covariates) is anticipated amongst observational studies [21]. This accounts for such heterogeneity and derives more conservative estimates of precision and significance. Data were pooled irrespective of diabetes type because preliminary analysis, including only exclusively Type 1 or Type 2 samples, suggested this was not prognostic ( $\beta$ =-0.27, 95% CIs-0.80 to 0.25, P=0.31).

# Exploration of heterogeneity

Statistical heterogeneity was quantified by visual inspection of forest plots and statistical test  $(Q, \tau^2 \text{ and } I^2)$ .  $\tau^2$  provides an estimate of the total variance between studies (i.e. it's square root reflects the standard deviation of the individual study estimates about the average). I<sup>2</sup> represents the percentage of this variance that is above that which would be expected as a result of sampling error; 25%, 50% and 75% indicate low, medium and high levels of heterogeneity respectively [28].

#### *Covariates*

Covariates were age, gender (% male), HbA1c and health care context (i.e. community/primary care versus secondary care). Covariates were limited to study-level variables consistently reported across studies and with a substantive evidence base suggesting an association with DD. Multicollinearity was assessed with Pearson's correlations, independent t tests and chi square tests (in SPSS). Covariates were explored in separate models then forced simultaneously into a multivariate model to explore the independent influence of each.

#### Sensitivity analyses

Rate data were pooled irrespective of outcome measure because the PAID and DDS were largely developed by the same investigators and there are few discernible differences in their theoretical underpinnings, development work, and broad item content. Nonetheless the metaanalysis was repeated excluding studies that utilized the DDS to observe the resiliency of the pooled estimate to the outcome measure employed. The multivariate meta-regression was also repeated with multiple imputation of missing values to observe the resiliency of the conclusions to listwise deletion of studies with missing data on one or more variables (n=14 studies; 24%). The imputation process consisted of four stages: extraction of the incomplete data-set; imputation of the missing data set; analysis of the results from each data-set; and pooling of these results. An assumption was made that data were missing at random. Imputation was undertaken using MICE (R), with 24 iterations [29] using predictive mean matching for numerical variables and logistic regression for 2-level factors [30, 31]. The resulting pooled data-set was passed to Metafor for subsequent analysis [32]. The complete code for this is available upon request. Pooled QE and QM chi-square statistics were estimated in SAS [33].

# Results

#### Identification and selection of studies

The search identified 16,627 unique citations and 149 unique studies, that used the full PAID or DDS and with a sample  $\geq$ 50, were included. Figure 1 illustrates the study flow. Rate data were available in 15 papers and were requested from 101 authors 41 (41%) of whom provided this. In some instances anonymised patient-level data were provided with an unexplained discrepancy between the number of participants reported in the paper and those included in the dataset. Authors were contacted once to resolve this. Failing this studies were included if the discrepancy was  $\leq$ 10% (and demographic data were estimated from the dataset provided where possible). Three studies were excluded owing to a >10% unresolved discrepancy. Rate data were available for another four studies acquired during contact with authors, or whilst cross-checking included studies with PAID and DDS authors, or identified since the search was completed. The final number of included studies was 58 (one study reported on two distinct samples; s44 and s45), representing 17,667 participants. DD data were available for 16,659 of these participants. Table 1 comprises the reference list of included studies.

#### **Figure 1 Flowchart of included studies**

# Table 1 Reference list of included studies

#### **Publication bias**

Funnel plot symmetry and a non-significant Egger's test suggested publication bias was unlikely (P=0.41).

#### Characteristics of included studies

The characteristics of the included studies are summarised in Table 2. Studies were undertaken in 14 different countries, predominantly the USA (n=14), the UK (n=11) and the Netherlands (n=11), and samples were largely derived in community settings (n=15) and hospital diabetes clinics (n=35). Thirty were intervention studies, two thirds of which were RCTs, whilst the remaining studies were observational (and all data were baseline except for one RCT; s19). Average participant characteristics were male 49% and mean age was 54.5 yrs. Where ethnicity was reported samples were predominantly Caucasian (n=11) or African American/Black (n=6). Type 2 and Type 1 diabetes were the sole populations in 33 and 11 studies respectively, whilst the remainder of the samples were mixed. Of the mixed and Type 2 samples reporting this, on average 76% and 35% of participants were treated with insulin or other injectables respectively. Most studies used the PAID (n=51). One of these studies employed both the PAID and DDS (s27). To ensure that this study was not too heavily weighted in the meta-analysis only the PAID data were included to promote homogeneity in outcome. Hba1c (n=9), depression (n=7), DD (n=3), and physical co-morbidity (n=1) inclusion criteria were employed in 18 studies (one study employed both HbA1c and DD and another both DD and depression). Mean HbA1c was 7.8% (61.7mmol/mol) and was  $\geq$ 7.5% (58.5 mmol/mol) in 36 studies (n=51). Levels of DD as measured via the PAID and DDS were 28.3 (n=43; range 10.2-51.0) and 2.3 (n=5; range 1.9-2.5) respectively.

# **Table 2 Characteristics of included studies**

#### Meta-analysis

The average proportion of elevated DD was 0.22 (95% CIs 0.19 to 0.26, p<.001). This was associated with a significant amount of heterogeneity (Q(df=57) = 1456.7, p<0.001;  $\tau^2$ =0.51),

almost all of which reflected real differences between the studies rather than sampling error  $(I^2=96.1\%)$ . The forest plot is illustrated in Figure 2.

# Figure 2 Forest plot illustrating the rate of elevated diabetes distress across all study populations

#### Meta-regression

Age was associated with all of the other variables; gender (r=.3, P=0.03), HbA1c (r=-0.5, P<0.001) and health care context (t(46.18)=-3.7, P=0.001) whilst none of the other variables were related (P>0.05). The results from the meta-regression analyses are presented in Table 3. In the univariate analyses gender, age and health care context were significantly prognostic (P<0.05), whilst HbA1c was not (P>0.05). The multivariate model was significant (QM(df=4) = 21.6, p=<0.001) but only 10% of the heterogeneity in study estimates was accounted for. Only gender and health care context emerged as significantly prognostic (P<0.05). Significant heterogeneity remained (QE(df=39) = 924.5, P<0.001;  $\tau^2$ =.49), almost all of which reflected real differences between the studies (I<sup>2</sup>=95.8%).

# Table 3 Participant characteristics as predictors of the rate of elevated diabetes distress

#### Sensitivity analysis

The observed estimate was not apparently influenced by variation in the measures of DD employed; the proportion of elevated DD based on samples utilizing the PAID was 0.23 (95% CIs 0.19 to 0.26, P<0.001) and this was still associated with substantial heterogeneity  $(Q(df=50) = 1207.8, P<0.001, \tau^2=0.51; P=95.9\%)$ . Imputation of missing data largely generated the same conclusions (QM(df=4) = 4.64, p=<0.001; QE(df=53) = 24.3, P<0.001); gender ( $\beta$ =-1.34, 95% CIs -2.49 to -0.20, P=0.02) remained within conventional significance

levels in the multivariate meta-regression but health care context was reduced to marginal significance ( $\beta$ =-0.35, 95% CIs -0.73 to 0.02, P=0.07). Age ( $\beta$ =-0.01, 95% CIs -0.03 to 0.01, P=0.31) and HbA1c ( $\beta$ =0.04, 95% CIs -0.24 to 0.31, P=0.79) were again not significantly prognostic.

# Conclusions

#### Summary of findings

We identified a substantial number of studies that included a measure of DD suggesting it to be a universally relevant phenomenon. On average one in every four people with diabetes has a level of DD likely to impact clinical outcomes. This estimate was apparently relatively precise. The estimated prevalence of diabetes amongst adults in England in 2015 was 2,913,538 [34]; translating to almost 650,000 people with diabetes who may be experiencing elevated DD at any one time. In the univariate analysis there were multiple significant predictors of elevated DD; younger age, female gender and secondary rather than primary care, but in a multivariate model only gender emerged as significant in both the complete case and multiple imputation analyses suggesting that gender may be the strongest and most consistent determinant. A 1% increase in the proportion of females in study samples was associated with at least a 1.3% higher rate of elevated DD. health care context was reduced to marginal significance in the imputation analysis yet this is still a potentially important effect; p values reflect the strength of evidence against the null hypothesis and those falling slightly outside the arbitrary convention of P<0.05 may still be of importance [35]. The rate of elevated DD does not appear to be sensitive to diabetes type or the measure of DD employed.

The observed estimate was associated with significant heterogeneity, though, with rates ranging from 3-54% and only 10% of this variance was explained by the covariates tested.

There are likely other unexplored variables that would explain the rates of elevated DD observed. The average estimate should therefore be interpreted with caution and considered an initial indication of the potential rate of elevated DD in any particular population.

#### Our findings in relation to wider evidence

The potential rate of elevated DD observed is equivalent to depression in diabetes [20, 36]. Elevated DD has been reported to be more prevalent in secondary than primary care [16] and levels of DD are consistently higher for women [12, 37-41]. The latter is also consistent with systematic reviews of depression and anxiety in diabetes [20, 42]. This association may be explained by increased mood reporting, albeit this has been contested [43], or other unmeasured third variables; elevated rates of DD in women are at least partially underpinned by a known greater propensity for diabetes morbidity in women [44, 45]. Younger age [12, 46, 47] has previously demonstrated an independent association with DD but this was not confirmed. Whilst gender, and to a far lesser extent health care context, emerged as the 'strongest' predictors of elevated DD, however, health care practitioners should consider that younger age was prognostic in the univariate analyses. Clinically it is dangerous to conclude that these variables explain everything and ignore other such determinants. This is especially important given that multicollinearity between age and the other predictor variables and that this resulted in limited the statistical power for detecting individual effects. The previously demonstrated association between DD and HbA1c [4, 5, 39] was additionally not confirmed. This relationship is modest [23, 48], somewhat variable [49, 50], and influenced by study characteristics such as the measure of DD used; DD exhibits a stronger association with HbA1c when measured via the DDS rather than the PAID (which the majority of the included studies employed) [51]. Equivalent rates of elevated DD by diabetes type, when measured via the PAID, have similarly been observed in primary studies [51].

#### Strengths and limitations

Despite the now vast DD evidence base this is the first systematic attempt to identify the presence, potential magnitude, and determinants of elevated DD and isolate candidate populations with the greatest need for intervention. We employed a comprehensive search to ensure capture of papers not indexed in terms of DD, endeavoured to eliminate bias at each stage of the review process, and made a concerted effort to obtain outcome data. Owing to the large number of studies with highly variable results we do not anticipate that additional studies would alter the conclusions. We recently updated our search and reviewed studies undertaken in samples with Type 1 diabetes and again observed that 20–30% of participants experience elevated DD [52]. Recent studies in mixed and Type 2 samples also fall within the observed range [51, 53, 54].

This review is not withstanding limitations, though. Firstly the observed estimate may be influenced by sampling bias. Only three databases were searched [21], rate data could not be obtained for over half of the studies identified, studies rarely employed sampling strategies to derive a representative sample, and demographic and DD data were occasionally reported for participants completing the study or included in analysis; in 31 (57%) studies the number of participants for whom rate data were available was less than those included in the study and for whom demographic data were reported (mean difference in n was 37 (SD 47.6), range 1-155). People with elevated DD are hard to reach, and perhaps less likely to participate in research and more likely to 'drop out' when they do. There was additionally a bias to the western world and non-ethnic minorities, and non-English language papers were not translated. The findings cannot therefore be extended to other cultures and ethnic minorities.

Secondly, there are issues associated with the measurement of DD. The thresholds taken to indicate elevated DD are not diagnostic. Whilst the sensitivity analysis suggested equivalence in the rate of DD indicated by the PAID and DDS thresholds employed, these thresholds were derived via different assumptions and whether they actually equate to 'clinically meaningful' DD is to some extent unknown, especially for the PAID. There is also a lack of standardisation in the scoring of the PAID. This is scored on a 5-point Likert scale from 1-5 or 0-4 yielding scores that range from 0-80 or 20-100 respectively, and it is recommended that the 0-80 scores are standardised to a 0-100 scale. These distinct scoring systems result in different estimates of the rate of elevated DD. Evidence of variation in approach was observed but the impact could not be explored owing to poor reporting of the scoring system used. In addition, DD arises from multiple sources and a moderate total score may result should a respondent endorse one aspect of DD but not another hence underestimating the clinical impact of DD for this person. Exploration of the distinct sources of DD would likely result in higher rates of elevated DD.

#### Implications for clinical practice

Health care practitioners should work on the assumption that a quarter of their patients may be experiencing a level of DD that requires attention. For some people DD is transient arising at certain points in the diabetes illness trajectory and subsiding again [55]. Screening for elevated DD as part of routine practice is indicated, especially when milestones such as progressing to insulin treatment and issues relating to glycemic control, acute episodes/inpatient admissions, and the development of complications, are encountered. Importantly secondary care practitioners should be particularly vigilant of younger, female patients. Validated screening tools exist for this purpose. Clinicians should explore the source(s) of even moderate DD. The DDS sub-scales lend themselves particularly well to this task. Screening is only appropriate, though, when clear care pathways for DD exist [56] and at present this is infrequently the case. The research evidence, and detection and management of DD in clinical practice, is in its infancy; few intervention studies have specifically targeted DD [57]. The emerging evidence base is encouraging though; we previously identified interventions, and intervention components, that may be associated with improvement in DD [52, 57].

#### **Recommendations for further research**

Epidemiological studies establishing the population level prevalence, and predictors, of elevated DD are required. Such endeavours should extend beyond the western world to other cultures and ethnic minorities known to be particularly afflicted with diabetes, for instance South East Asians, and should adopt consistency in the use of thresholds and scoring systems for the PAID. Given the transient nature of DD estimates of 'point prevalence' underestimate the magnitude of the problem [18], and prospective studies are required to further explore the 'lifetime prevalence' of DD. Finally intervention development endeavours specifically targeting elevated DD for female, and perhaps younger patients, with more complex diabetes should now be considered.

#### References

1. Dennick KJ, Sturt J, Speight J. What is diabetes distress and how can we measure it? A narrative review.

2. Aikens JE. Prospective associations between emotional distress and poor outcomes in type 2 diabetes. Diabetes Care 2012; 35(12): 2472-78

3. Fisher L, Glasgow RE, Strycker LA. The relationship between diabetes distress and clinical depression with glycemic control among patients with type 2 diabetes. Diabetes Care 2010; 33(5): 1034-36

4. Fisher L, Mullan JT, Arean P, Glasgow RE, Hessler D, Masharani U. Diabetes distress but not clinical depression or depressive symptoms is associated with glycemic control in both cross-sectional and longitudinal analyses. Diabetes Care 2010; 33(1): 23-28

5. Hessler D, Fisher L, Glasgow RE, Strycker LA, Dickinson LM, Arean PA, et al. Reductions in regimen distress are associated with improved management and glycemic control over time. Diabetes Care 2014; 37(3): 617-24

6. Strandberg RB, Graue M, Wentzel-Larsen T, Peyrot M, Rokne B. Relationships of diabetes-specific emotional distress, depression, anxiety, and overall well-being with HbA1c in adult persons with type 1 diabetes. J Psychosom Res 2014; 77(3): 174-79

7. Strandberg RB, Graue M, Wentzel-Larsen T, Peyrot M, Thordarson HB, Rokne B. Longitudinal relationship between diabetes-specific emotional distress and follow-up HbA1c concentration in adults with Type 1 diabetes. Diabet Med 2015; 33: 1304-10

8. Fonda SJ, McMahon GT, Gomes HE, Hickson S, Conlin PR. Changes in diabetes distress related to participation in an internet-based diabetes care management program and glycemic control. J Diabetes Sci Technol 2009; 3(1): 117-24

9. Zagarins SE, Allen NA, Garb JL, Welch G. Improvement in glycemic control following a diabetes education intervention is associated with change in diabetes distress but not change in depressive symptoms. J Behav Med 2012; 35(3): 299-304

10. Weinger K, Jacobson AM. Psychosocial and quality of life correlates of glycemic control during intensive treatment of type 1 diabetes. Patient Educ Couns 2001; 42(2): 123-31

11. Fisher L, Hessler DM, Polonsky WH, Mullan J. When is diabetes distress clinically meaningful?: establishing cut points for the Diabetes Distress Scale. Diabetes Care 2012;
35(2): 259-64

12. Joensen LE, Tapager I, Willaing I. Diabetes distress in Type 1 diabetes--a new measurement fit for purpose. Diabet Med 2013; 30(9): 1132-39

13. Sturt J, Mccarthy K, Dennick K, Narasimha M, Sankar S, Kumar S. What charaterises diabetes distress and it's resolution? A documentary analysis. IDN 2015; 0: 1-7

14. Gonzalez JS, Fisher L, Polonsky WH. Depression in diabetes: have we been missing something important? Diabetes Care 2011; 34(1): 236-39

15. Sturt JA, Whitlock S, Fox C, Hearnshaw H, Farmer AJ, Wakelin M, et al. Effects of
the Diabetes Manual 1:1 structured education in primary care. Diabet Med 2008; 25(6): 72231

16. Stoop C, Nefs G, Pop V, Wijnands-van Gent C, Tack CJ, Geelhoed-Duijvestijn P, et al. Diabetes-specific emotional distress in people with Type 2 diabetes: a comparison between primary and secondary care. Diabet Med 2014; 31(10): 1252-59

Speight J, Browne JL, Holmes-Truscott E, Hendrieckx C, Pouwer F, on behalf of the
Diabetes MILES – Australia reference group (2011). Diabetes MILES – Australia 2011
Survey Report. Canberra: Diabetes Australia 2011

18. Fisher L, Skaff M, Mullan J, Arean P, Glasgow R, Masharani U. A longitudinal study of affective and anxiety disorders, depressive affect and diabetes distress in adults with Type 2 diabetes. Diabet Med 2008; 25(9): 1096-101

 Ali S, Stone MA, Peters JL, Davies MJ, Khunti K. The prevalence of co-morbid depression in adults with Type 2 diabetes: a systematic review and meta-analysis. Diabet Med 2006; 23(11): 1165-73 20. Anderson RJ, Freedland KE, Clouse RE, Lustman PJ. The prevalence of comorbid depression in adults with diabetes: a meta-analysis. Diabetes Care 2001; 24(6): 1069-78

21. Stroup DF, Berlin JA, Morton SC, Olkin I, Williamson GD, Rennie D, et al. Metaanalysis of observational studies in epidemiology: a proposal for reporting. Meta-analysis Of Observational Studies in Epidemiology (MOOSE) group. JAMA 2000; 283(15): 2008-12

22. Polonsky WH, Anderson BJ, Lohrer PA, Welch G, Jacobson AM, Aponte JE, et al. Assessment of diabetes-related distress. Diabetes Care 1995; 18(6): 754-60

23. Polonsky W, Fisher L, Earles J, Dudl RJ, Lees J, Mullan J, et al. Assessing
psychosocial distress in diabetes: development of the diabetes distress scale. Diabetes Care
2005; 28(3): 626-31

24. Welch GW, Jacobson AM, Polonsky WH. The Problem Areas in Diabetes Scale. An evaluation of its clinical utility. Diabetes Care 1997; 20(5): 760-66

25. Snoek FJ, Pouwer F, Welch GW, Polonsky WH. Diabetes-related emotional distress in Dutch and U.S. diabetic patients: cross-cultural validity of the problem areas in diabetes scale. Diabetes Care 2000; 23(9): 1305-9

26. Schmitt A, Reimer A, Kulzer B, Haak T, Gahr A, Hermanns N. Negative association between depression and diabetes control only when accompanied by diabetes-specific distress. J Behav Med 2015; 38(3): 556-64

27. Pouwer F, Beekman AT, Lubach C, Snoek FJ. Nurses' recognition and registration of depression, anxiety and diabetes-specific emotional problems in outpatients with diabetes mellitus. Patient Educ Couns 2006; 60(2): 235-40

28. Higgins JP, Thompson SG, Deeks JJ, Altman DG. Measuring inconsistency in metaanalyses. BMJ 2003; 327(7414): 557-60

29. Allison P. 2012. Why You Probably Need More Imputations Than You Think. http://statisticalhorizons.com/more-imputations [March 2016] 30. van Buuren S, Groothuis-Oudshoorn K, Robitzsch A, Vink G, Doove L, Jolani S. Mice: Multivariate imputation by chained equations (version 2.25). https://cran.rproject.org/web/packages/mice/index.html

31. van Buuren S, Groothuis-Oudshoorn K. mice: Multivariate Imputation by Chained Equations in R. J Stat Softw 2011; 45(3): 1-67

32. Viechtbauer W. Metafor: Meta-analysis package for R (version 1.9-8). https://cran.rproject.org/web/packages/metafor/index.html

33. Ratitch B, Lipkovich I, O'Kelly M. Combining Analysis Results from MultiplyImputed Categorical Data. In: PharmaSUG, 2013, Chicago, United States of America, p. 1-19

34. Diabetes UK. Diabetes: Facts and stats. London: Diabetes UK 2015

35. Whitley E, Ball J. Statistics review 3: hypothesis testing and P values. Crit Care 2002;6(3): 222-5

Gavard JA, Lustman PJ, Clouse RE. Prevalence of depression in adults with diabetes.An epidemiological evaluation. Diabetes Care 1993; 16(8): 1167-78

37. Brierley S, Johnson B, Young V, Eiser C, Heller S. The importance of measuring diabetes distress in young people with Type 1 diabetes. In: Diabetes UK Professional Conference, 2012, Glasgow, United Kingdom, p. 159

38. Fisher L, Mullan JT, Skaff MM, Glasgow RE, Arean P, Hessler D. Predicting diabetes
distress in patients with Type 2 diabetes: a longitudinal study. Diabet Med 2009; 26(6): 62227

39. Graue M, Haugstvedt A, Wentzel-Larsen T, Iversen MM, Karlsen B, Rokne B. Diabetes-related emotional distress in adults: Reliability and validity of the Norwegian versions of the Problem Areas in Diabetes Scale (PAID) and the Diabetes Distress Scale (DDS). Int J Nurs Stud 2012; 49(2): 174-82

40. Luyckx K, Rassart J, Weets I. Illness self-concept in Type 1 diabetes: A crosssectional view on clinical, demographic, and psychosocial correlates. Psychol Health Med 2015; 20(1): 77-86

41. Zoffmann V, Vistisen D, Due-Christensen M. A cross-sectional study of glycaemic control, complications and psychosocial functioning among 18- to 35-year-old adults with type 1 diabetes. Diabet Med 2014; 31(4): 493-99

42. Grigsby AB, Anderson RJ, Freedland KE, Clouse RE, Lustman PJ. Prevalence of anxiety in adults with diabetes: a systematic review. J Psychosom Res 2002; 53(6): 1053-60
43. Kessler RC. Epidemiology of women and depression. J Affect Disord 2003; 74(1): 5-

13

44. Gregg EW, Gu Q, Cheng YJ, Narayan KM, Cowie CC. Mortality trends in men and women with diabetes, 1971 to 2000. Ann Intern Med 2007; 147(3): 149-55

45. Franzini L, Ardigo D, Cavalot F, Miccoli R, Rivellese AA, Trovati M, et al. Women show worse control of type 2 diabetes and cardiovascular disease risk factors than men: results from the MIND.IT Study Group of the Italian Society of Diabetology. Nutr Metab Cardiovasc Dis 2013; 23(3): 235-41

46. Hessler D, Fisher L, Mullan J, Glasgow RE, Masharani U. Patient age: a neglected factor when considering disease management in adults with type 2 diabetes. Patient Educ Couns 2011; 85(2): 154-59

47. Lerman-Garber I, Barron-Uribe C, Calzada-Leon R, Mercado-Atri M, Vidal-Tamayo R, Quintana S, et al. Emotional dysfunction associated with diabetes in Mexican adolescents and young adults with type-1 diabetes. Salud Publica Mex 2003; 45(1): 13-18

48. Delahanty LM, Grant RW, Wittenberg E, Bosch JL, Wexler DJ, Cagliero E, et al. Association of diabetes-related emotional distress with diabetes treatment in primary care patients with Type 2 diabetes. Diabet Med 2007; 24(1): 48-54

49. Sheils E, Knott J, Cavan D, Shaban C. Fear of hypoglycaemia: Is there an association with glycaemic control, hypoglycaemic symptoms and diabetes emotional distress in people with Type 1 diabetes? In: Diabetes UK Professional Conference, 2012, Glasgow, United Kingdom, p. 157

50. Ali Z, Patel NH. Glycaemic control, emotional attitudes and quality of life in patients living with Type 1 diabetes. In: Diabetes UK Professional Conference, 2013, Manchester, United Kingdom, p. 104

51. Schmitt A, Reimer A, Kulzer B, Haak T, Ehrmann D, Hermanns N. How to assess diabetes distress: comparison of the Problem Areas in Diabetes Scale (PAID) and the Diabetes Distress Scale (DDS). Diabet Med 2015: doi: 10.1111/dme.12887

52. Sturt J, Dennick K, Due-Christensen M, McCarthy K. The detection and management of Diabetes Distress in people with Type 1 Diabetes. Curr Diab Rep 2015; 15(11): 101

53. Islam MR, Islam MS, Karim MR, Alam UK, Yesmin K. Predictors of diabetes distress in patients with type 2 diabetes mellitus. Int J Res Med Sci 2014; 2(2): 631-38

54. Pandit AU, Bailey SC, Curtis LM, Seligman HK, Davis TC, Parker RM, et al. Disease-related distress, self-care and clinical outcomes among low-income patients with diabetes. J Epidemiol Community Health 2014; 68(6): 557-64

55. Lipscombe C, Burns RJ, Schmitz N. Exploring trajectories of diabetes distress in adults with type 2 diabetes; a latent class growth modeling approach. J Affect Disord 2015;
188: 160-66

56. The Diabetes Times Website. 2015. Ninjabetic – It's not just a questionnaire.... http://diabetestimes.co.uk/ninjabetic-its-not-just-a-

questionnaire/#sthash.3mK7vTFq.7vg1HrpW.dpbs [February 2016]

57. Sturt J, Dennick K, Hessler D, Fisher L, Hunter B, Oliver J. Are experimental interventions to reduce diabetes distress effective? IDN 2015; 0: 1-16

Figure 1 Flowchart of included studies



Table 1 Reference list of included studies

| o1  | Shihayama      | Shihayama T. Kabayashi K. Takana A. Kadawaki T. Kazuma K                  |
|-----|----------------|---------------------------------------------------------------------------|
| 51  | Silibayailla   | Sindayania 1, Kodayasin K, Takano A, Kadowaki 1, Kazunia K.               |
|     | 2007           | Effectiveness of mestyle counseling by certified expert nurse of          |
|     |                | Japan for non-insulin-treated diabetic outpatients: a 1-year              |
|     |                | randomized controlled trial. Diabetes Res Clin Pract 2007; 76(2):         |
|     |                | 265-68                                                                    |
| s2  | Rosenbek       | Rosenbek Minet LK, Wagner L, Lonvig EM, Hjelmborg J,                      |
|     | Minet 2011     | Henriksen JE. The effect of motivational interviewing on glycaemic        |
|     |                | control and perceived competence of diabetes self-management in           |
|     |                | patients with type 1 and type 2 diabetes mellitus after attending a       |
|     |                | group education programme: a randomised controlled trial.                 |
|     |                | Diabetologia 2011; 54(7): 1620-29                                         |
| s3  | Rygg 2012      | Rygg LO, Rise MB, Gronning K, Steinsbekk A. Efficacy of ongoing           |
|     |                | group based diabetes self-management education for patients with          |
|     |                | type 2 diabetes mellitus. A randomised controlled trial. Patient Educ     |
|     |                | Couns 2012; 86(1): 98-105                                                 |
| s4  | Tang 2008      | Tang TS, Brown MB, Funnell MM, Anderson RM. Social support,               |
|     |                | quality of life, and self-care behaviors amongAfrican Americans           |
|     |                | with type 2 diabetes. Diabetes Educ 2008; 34(2): 266-76                   |
| s5  | Sigurdardottir | Sigurdardottir AK, Benediktsson R, Jonsdottir H. Instruments to           |
|     | 2009           | tailor care of people with type 2 diabetes. J Adv Nurs 2009; 65(10):      |
|     |                | 2118-30                                                                   |
| s6  | Snoek 2011     | Snoek FJ, Kersch NY, Eldrup E, Harman-Boehm I, Hermanns N,                |
|     |                | Kokoszka A. et al. Monitoring of Individual Needs in Diabetes             |
|     |                | (MIND): baseline data from the Cross-National Diabetes Attitudes.         |
|     |                | Wishes, and Needs (DAWN) MIND study. Diabetes Care 2011:                  |
|     |                | 34(3): 601-3                                                              |
| s7  | Byrne 2012     | Byrne M. Newell J. Coffey N. MC OH. Cooke D. Dinneen SF.                  |
|     |                | Predictors of quality of life gains among people with type 1 diabetes     |
|     |                | participating in the Dose Adjustment for Normal Eating (DAFNE)            |
|     |                | structured education programme. Diabetes Res Clin Pract 2012:             |
|     |                | 98(2)· 243-48                                                             |
| \$8 | Chawla 2010    | Chawla A Saha C Marrero DG A novel application of the Problem             |
| 50  | Chuwia 2010    | Areas in Diabetes (PAID) instrument to improve glycemic control           |
|     |                | and patient satisfaction. Diabetes Educ 2010: 36(2): 337-44               |
| s9  | Due-           | Due-Christensen M. Zoffmann V. Hommel F. Lau M. Can sharing               |
| 37  | Christensen    | experiences in groups reduce the burden of living with diabetes           |
|     | 2012           | regardless of glucaemic control? Diabet Med 2012: 20(2): 251-56           |
| s10 | Engel 2011     | Engel L. Cummins P. Impact of dose adjustment for normal eating in        |
| 510 | Eliger 2011    | $\Delta$ ustralia (OzDAENE) on subjective wellbeing, coping resources and |
|     |                | nagative affects in adults with type 1 diabates: a prospective            |
|     |                | comparison study. Diabetes Pas Clin Pract 2011: 01(3): 271-70             |
| c11 | Fisher 2011    | Fisher I Polonsky W Parkin CG Jalsovsky 7 Ametutz I Wagner                |
| 511 |                | PS. The impact of blood glucose monitoring on depression and              |
|     |                | distrass in insulin paive patients with type 2 disbates. Curr Mad Dec     |
|     |                | Opin 2011: 27(Suppl. 2): 20.46                                            |
| a10 | Hoinnich       | Upin 2011, 27(Suppl. 3). 39-40                                            |
| 812 |                | nemiticity E, Candel IVIJ, Schaper NC, de vries NK. Effect evaluation     |
|     | 2010           | of a informational interviewing based counselling strategy in diabetes    |
| 1   | 1              | care. Diabetes Kes Unit Pract $2010$ ; $90(3)$ : $2/0-78$                 |

| s13 | Hermanns<br>2009              | Hermanns N, Kulzer B, Gulde C, Eberle H, Pradler E, Patzelt-Bath<br>A, et al. Short-term effects on patient satisfaction of continuous<br>glucose monitoring with the GlucoDay with real-time and<br>retrospective access to glucose values: a crossover study. Diabetes                                                         |
|-----|-------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|     |                               | Technol Ther 2009; 11(5): 275-81                                                                                                                                                                                                                                                                                                 |
| s14 | Hermanns<br>2012              | Hermanns N, Kulzer B, Maier B, Mahr M, Haak T. The effect of an education programme (MEDIAS 2 ICT) involving intensive insulin treatment for people with type 2 diabetes. Patient Educ Couns 2012; 86(2): 226-32                                                                                                                 |
| s15 | Hopkins<br>2012               | Hopkins D, Lawrence I, Mansell P, Thompson G, Amiel S,<br>Campbell M, et al. Improved biomedical and psychological<br>outcomes 1 year after structured education in flexible insulin therapy<br>for people with type 1 diabetes: the U.K. DAFNE experience.<br>Diabetes Care 2012; 35(8): 1638-42                                |
| s16 | Keen 2012                     | Keen AJ, Duncan E, McKillop-Smith A, Evans ND, Gold AE. Dose<br>Adjustment for Normal Eating (DAFNE) in routine clinical practice:<br>who benefits? Diabet Med 2012; 29(5): 670-76                                                                                                                                               |
| s17 | Keers 2005                    | Keers JC, Groen H, Sluiter WJ, Bouma J, Links TP. Cost and<br>benefits of a multidisciplinary intensive diabetes education<br>programme. J Eval Clin Pract 2005; 11(3): 293-303                                                                                                                                                  |
| s18 | Sturt 2008                    | Sturt JA, Whitlock S, Fox C, Hearnshaw H, Farmer AJ, Wakelin M,<br>et al. Effects of the Diabetes Manual 1:1 structured education in<br>primary care. Diabet Med 2008; 25(6): 722-31                                                                                                                                             |
| s19 | Khunti 2012                   | Khunti K, Gray LJ, Skinner T, Carey ME, Realf K, Dallosso H, et al.<br>Effectiveness of a diabetes education and self management<br>programme (DESMOND) for people with newly diagnosed type 2<br>diabetes mellitus: three year follow-up of a cluster randomised<br>controlled trial in primary care. BMJ 2012; 344:            |
| s20 | van Bastelaar<br>2010         | van Bastelaar KM, Pouwer F, Geelhoed-Duijvestijn PH, Tack CJ,<br>Bazelmans E, Beekman AT, et al. Diabetes-specific emotional<br>distress mediates the association between depressive symptoms and<br>glycaemic control in Type 1 and Type 2 diabetes. Diabet Med 2010;<br>27(7): 798-803                                         |
| s21 | van Bastelaar<br>2012         | van Bastelaar KM, Pouwer F, Cuijpers P, Riper H, Twisk JW, Snoek<br>FJ. Is a severe clinical profile an effect modifier in a Web-based<br>depression treatment for adults with type 1 or type 2 diabetes?<br>Secondary analyses from a randomized controlled trial. J Med<br>Internet Res 2012; 14(1): e2                        |
| s22 | Fisher 2013                   | Fisher L, Hessler D, Glasgow RE, Arean PA, Masharani U, Naranjo D, et al. REDEEM: a pragmatic trial to reduce diabetes distress.<br>Diabetes Care 2013; 36(9): 2551-58                                                                                                                                                           |
| s23 | Malanda<br>2015               | Malanda UL, Bot SD, Kostense PJ, Snoek FJ, Dekker JM, Nijpels G.<br>Effects of self-monitoring of glucose on distress and self-efficacy in<br>people with non-insulin-treated Type 2 diabetes: a randomized<br>controlled trial. Diabet Med 2016; 3(4): 537-46                                                                   |
| s24 | Pibernik-<br>Okanovic<br>2015 | Pibernik-Okanovic M, Hermanns N, Ajdukovic D, Kos J, Prasek M,<br>Sekerija M, et al. Does treatment of subsyndromal depression<br>improve depression-related and diabetes-related outcomes? A<br>randomised controlled comparison of psychoeducation, physical<br>exercise and enhanced treatment as usual. Trials 2015; 16: 305 |

| s25  | Elliott 2012  | Elliott J, Heller SR, Hopkinson HE, Mansell P. Does duration of         |
|------|---------------|-------------------------------------------------------------------------|
|      |               | type 1 diabetes affect the outcomes of structured education? In: 48th   |
|      |               | Annual Meeting of the European Association for the Study of             |
|      |               | Diabetes (EASD) 2012, Berlin, Germany, p. 225                           |
| s26  | Archer 2012   | Archer A, Cooper T, Marks S, Ackroyd K, Wan M, Bullock B, et al.        |
|      |               | Reflection: A benchmark for future audits of counselling services for   |
|      |               | people with diabetes In: Diabetes UK Professional Conference 2012,      |
|      |               | Glasgow, United Kingdon, p. 158                                         |
| s27  | Hermanns      | Hermanns N, Schmitt A, Gahr A, Herder C, Nowotny B, Roden M,            |
|      | 2015          | et al. The effect of a Diabetes-Specific Cognitive Behavioral           |
|      |               | Treatment Program (DIAMOS) for patients with diabetes and               |
|      |               | subclinical depression: results of a randomized controlled trial.       |
|      |               | Diabetes Care 2015; 38(4): 551-60                                       |
| s28  | Lindsay 2011  | Lindsay G, Inverarity K, McDowell JR. Quality of life in people         |
|      |               | with type 2 diabetes in relation to deprivation, gender, and age in a   |
|      |               | new community-based model of care. Nurs Res Pract 2011; 2011:           |
| 20   | V D'III       |                                                                         |
| s29  | Van Dijk de   | van Dijk-de Vries A, van Bokhoven MA, Winkens B, Terluin B,             |
|      | vries 2015    | Knottnerus JA, van der Weijden 1, et al. Lessons learnt from a          |
|      |               | Management Support (SMS) delivered by practice purses in routine        |
|      |               | diabetes care BMI Open 2015: 5(6): e007014                              |
| s30  | Stoop 2014    | Stoop CH, Nefs G, Pop VI, Wijnands-van Gent CI, Tack CI                 |
| 350  | Stoop 2014    | Geelboed-Duijvestiin PH, et al. Diabetes-specific emotional distress    |
|      |               | in people with Type 2 diabetes: a comparison between primary and        |
|      |               | secondary care. Diabet Med 2014: 31(10): 1252-59                        |
| s31  | Karlsen 2012  | Karlsen B. Oftedal B. Bru E. The relationship between clinical          |
| ~~ - |               | indicators, coping styles, perceived support and diabetes-related       |
|      |               | distress among adults with type 2 diabetes. J Adv Nurs 2012; 68(2):     |
|      |               | 391-401                                                                 |
| s32  | Miller 2008   | Miller ST, Elasy TA. Psychometric evaluation of the Problem Areas       |
|      |               | in Diabetes (PAID) survey in Southern, rural African American           |
|      |               | women with Type 2 diabetes. BMC public health 2008; 8: 70               |
| s33  | Fisher 2008   | Fisher L, Skaff MM, Mullan JT, Arean P, Glasgow R, Masharani U.         |
|      |               | A longitudinal study of affective and anxiety disorders, depressive     |
|      |               | affect and diabetes distress in adults with Type 2 diabetes. Diabet     |
|      |               | Med 2008; 25(9): 1096-101                                               |
| s34  | Lehmann       | Lehmann V, Makine C, Karsidag C, Kadioglu P, Karsidag K,                |
|      | 2011          | Pouwer F. Validation of the turkish version of the centre for           |
|      |               | epidemiologic studies depression scale (ces-d) in patients with type 2  |
| -25  | Elecar 2012   | diabetes mellitus. BMC Med Res Methodol 2011; 11: 109                   |
| \$33 | Fleer 2013    | Fleer J, Tovole KA, Keers JC, Links TP, Sanderman R, Coyne JC, et       |
|      |               | diabetes outpatient clinic. Diabet Med 2013: 30(1): 88.94               |
| \$36 | Fritschi 2012 | Fritschi C. Ouinn I. Hacker FD. Penckofer SM. Wang F. Foreman           |
| 350  | 1 mscm 2012   | M et al Fatigue in women with type 2 diabetes Diabetes Educ             |
|      |               | 2012: 38(5): 662-72                                                     |
| s37  | Kokoszka      | Kokoszka A. Pouwer F. Jodko A. Radzio R. Mucko P. Bienkowska            |
| 50.  | 2009          | J. et al. Serious diabetes-specific emotional problems in patients with |
|      |               | type 2 diabetes who have different levels of comorbid depression: A     |

|      |              | Polish study from the European Depression in Diabetes (EDID)                                 |
|------|--------------|----------------------------------------------------------------------------------------------|
|      |              | Research Consortium. Eur Psychiatry 2009; 24(7): 425-30                                      |
| s38  | Nichols 2000 | Nichols GA, Hillier TA, Javor K, Brown JB. Predictors of glycemic                            |
|      |              | control in insulin-using adults with type 2 diabetes. Diabetes Care                          |
| 20   | **           | 2000; 23(3): 273-7                                                                           |
| s39  | Hermanns     | Hermanns N, Kulzer B, Krichbaum M, Kubiak T, Haak T. How to                                  |
|      | 2006         | screen for depression and emotional problems in patients with                                |
|      |              | diabetes: comparison of screening characteristics of depression                              |
|      |              | problems and standard clinical assessment. Diabetologia 2006:                                |
|      |              | 49(3): 469-77                                                                                |
| s40  | Hermanns     | Hermanns N, Mahr M, Kulzer B, Skovlund SE, Haak T. Barriers                                  |
|      | 2010         | towards insulin therapy in type 2 diabetic patients: results of an                           |
|      |              | observational longitudinal study. Health Qual Life Out 2010; 8: 113                          |
| s41  | Nozaki 2009  | Nozaki T, Morita C, Matsubayashi S, Ishido K, Yokoyama H, Kawai                              |
|      |              | K, et al. Relation between psychosocial variables and the glycemic                           |
|      |              | control of patients with type 2 diabetes: A cross-sectional and                              |
|      |              | prospective study. Biopsychosoc Med 2009; 3: 4                                               |
| s42  | Wagner 2010  | Wagner JA, Tennen H, Osborn CY. Lifetime depression and diabetes                             |
|      |              | self-management in women with Type 2 diabetes: a case-control                                |
| c/3  | Dudo         | Study. Diabet Med 2010; 27(0): 715-7                                                         |
| 845  | Sobczak      | The assessment of factors determining fatigue in subjects with long                          |
|      | 2012         | history of type 1 diabetes. In: 48th Annual Meeting of the European                          |
|      | 2012         | Association for the Study of Diabetes (EASD) 2012. Berlin.                                   |
|      |              | Germany, p. 971                                                                              |
| s44  | Ikeda 2014   | Ikeda K, Fujimoto S, Morling B, Ayano-Takahara S, Carroll AE,                                |
|      | JAPAN        | Harashima S, et al. Social orientation and diabetes-related distress in                      |
|      | sample       | Japanese and American patients with type 2 diabetes. PloS one 2014;                          |
|      | <u></u>      | 9(10): e109323                                                                               |
| s45  | Ikeda 2014   | Ikeda K, Fujimoto S, Morling B, Ayano-Takahara S, Carroll AE,                                |
|      | USA sample   | Harashima S, et al. Social orientation and diabetes-related distress in                      |
|      |              | Japanese and American patients with type 2 diabetes. Plos one 2014;<br>$0(10) \cdot a100323$ |
| s46  | Joensen 2013 | Joensen LE, Almdal TP, Willaing L Type 1 diabetes and living                                 |
| 510  |              | without a partner: psychological and social aspects, self-management                         |
|      |              | behaviour, and glycaemic control. Diabetes Res Clin Pract 2013;                              |
|      |              | 101(3): 278-85                                                                               |
| s47  | Sheils 2012  | Sheils E, Knott J, Cavan D, Shaban C. Fear of hypoglycaemia: Is                              |
|      |              | there an association with glycaemic control, hypoglycaemic                                   |
|      |              | symptoms and diabetes emotional distress in people with Type 1                               |
|      |              | diabetes? In: Diabetes UK Professional Conference, 2012, Glasgow,                            |
| 40   |              | United Kingdom, p. 157                                                                       |
| s48  | Crosby-      | Crosby-Nwaobi KK, Sivaprasad S, Amiel S, Forbes A. The                                       |
|      | INWAODI 2013 | Diabates Care 2013: 36(10): 2177.86                                                          |
| s/10 | Baek 2014    | Back RN Tanenhaum MI Gonzalez IS Diabetes hurden and                                         |
| 347  | Dack 2014    | diabetes distress: The huffering effect of social support Ann Rehav                          |
|      |              | Med 2014; 48(2): 145-55                                                                      |

| s50 | Aikens 2012    | Aikens JE. Prospective associations between emotional distress and poor outcomes in type 2 diabetes. Diabetes Care 2012; 35(12): 2472-78 |
|-----|----------------|------------------------------------------------------------------------------------------------------------------------------------------|
| s51 | Keers 2004     | Keers JC, Links TP, Bouma J, Gans RO, ter Maaten JC,                                                                                     |
|     |                | Wolffenbuttel BH, et al. Do diabetologists recognise self-                                                                               |
|     |                | management problems in their patients? Diabetes Res Clin Pract                                                                           |
|     |                | 2004; 66(2): 157-61                                                                                                                      |
| s52 | Bot 2010       | Bot M, Pouwer F, Ormel J, Slaets JP, de Jonge P. Predictors of                                                                           |
|     |                | incident major depression in diabetic outpatients with subthreshold                                                                      |
|     |                | depression. Diabet Med 2010; 27(11): 1295-301                                                                                            |
| s53 | Pouwer 2006    | Pouwer F, Beekman AT, Lubach C, Snoek FJ. Nurses' recognition                                                                            |
|     |                | and registration of depression, anxiety and diabetes-specific                                                                            |
|     |                | emotional problems in outpatients with diabetes mellitus. Patient                                                                        |
|     |                | Educ Couns 2006; 60(2): 235-40                                                                                                           |
| s54 | Sigurdardottir | Sigurdardottir AK, Benediktsson R. Reliability and validity of the                                                                       |
|     | 2008           | Icelandic version of the Problem Area in Diabetes (PAID) Scale. Int                                                                      |
|     |                | J Nurs Stud 2008; 45(4): 526-33                                                                                                          |
| s55 | Aikens 2014    | Aikens JE, Zivin K, Trivedi R, Piette JD. Diabetes self-management                                                                       |
|     |                | support using mHealth and enhanced informal caregiving. J Diabetes                                                                       |
|     |                | Complications 2014; 28(2): 171-76                                                                                                        |
| s56 | Lange 2013     | Lange K, Matthaei S, Lueg A, Lutze B, Roelver KM, on behalf of                                                                           |
|     |                | the Diabetesakademie Niedersachsen e. V. VNDN                                                                                            |
|     |                | Versorgungsforschung. Life chances ("Lebenschancen") of young                                                                            |
|     |                | adults with onset of type 1 diabetes during childhood.                                                                                   |
|     |                | Pediatr Diabetes 2013; 14(Suppl. 18): 35                                                                                                 |
| s57 | Hearnshaw      | Hearnshaw H, Wright K, Dale J, Sturt J, Vermeire E, van Royen P.                                                                         |
|     | 2007           | Development and validation of the Diabetes Obstacles Questionnaire                                                                       |
|     |                | (DOQ) to assess obstacles in living with Type 2 diabetes. Diabet                                                                         |
|     |                | Med 2007; 24(8): 878-82                                                                                                                  |
| s58 | Grant 2005     | Grant RW, Cagliero E, Chueh HC, Meigs JB. Internet Use Among                                                                             |
|     |                | Primary Care Patients with Type 2 Diabetes. J Gen Intern Med 2005;                                                                       |
|     |                | 20(5): 470-73                                                                                                                            |

# Table 2 Characteristics of included studies

| Author<br>COUNTRY                                                                                          | Initial sample size                             | Health care<br>context (study<br>design)        | Diabetes type | DD inclusion<br>criteria? | Depression<br>inclusion criteria? | High HbA1c<br>inclusion criteria? | Physical co-<br>morbidity<br>inclusion criteria? | DD (mean (SD)  | HbA1c (% mean<br>(SD) (mmol/mol) | Age (mean (SD) | Gender ( N/%<br>male) | Predominant<br>ethnicity | N/% Insulin/other<br>injectables | Rate of DD (DD<br>cases/available DD<br>data) |
|------------------------------------------------------------------------------------------------------------|-------------------------------------------------|-------------------------------------------------|---------------|---------------------------|-----------------------------------|-----------------------------------|--------------------------------------------------|----------------|----------------------------------|----------------|-----------------------|--------------------------|----------------------------------|-----------------------------------------------|
| s1<br>Shibayama 2007ª<br>JAPAN                                                                             | 134                                             | Diabetes<br>clinic<br>(I/RCT)                   | T2            | N                         | N                                 | Y                                 | N                                                | 36.5<br>(NR)   | 7.4<br>(.75)<br>(57.4)           | 61.5<br>(7.5)  | 87/134<br>(64.9%)     | NR                       | None                             | 55/131<br>(42.0%)                             |
| s2<br>Rosenbek Minet<br>2011<br>DENMARK                                                                    | 349                                             | Diabetes<br>clinic<br>(I/RCT)                   | T1/2          | Ν                         | Ν                                 | Ν                                 | Ν                                                | 19.8<br>(17.0) | 7.0<br>(1.2)<br>(53)             | 56.4<br>(12.1) | 176/349<br>(50%)      | NR                       | 134/349<br>(38%)                 | 41/349<br>(11.7%)                             |
| s3<br>Rygg 2012<br>NORWAY                                                                                  | 146                                             | Primary care<br>(I/RCT)                         | T2            | Ν                         | Ν                                 | Ν                                 | Ν                                                | 20.2<br>(16.4) | 7.0<br>(1.4)<br>(53)             | 66<br>(NR)     | 80/146<br>(55%)       | All<br>Caucasian         | 26/146<br>(18%)                  | 17/146<br>(11.6%)                             |
| s4<br>Tang 2008ª<br>USA                                                                                    | 89                                              | Community<br>(I/non-RCT)                        | T2            | Ν                         | Ν                                 | Ν                                 | Ν                                                | 32.4<br>(16)   | NR                               | 60.0<br>(10.5) | 29/89<br>(33%)        | All African<br>American  | NR                               | 12/82<br>(14.6%)                              |
| s5<br>Sigurdardottir<br>2009 <sup>a</sup><br>ICELAND                                                       | 58<br>(demographics<br>for no.<br>analysed; 53) | Diabetes<br>clinic &<br>primary care<br>(I/RCT) | T2            | Ν                         | N                                 | Y                                 | Ν                                                | 20.2<br>(15.0) | 8.0<br>(.93)<br>(63.9)           | 60.5<br>(10.5) | 36/53<br>(68%)        | NR                       | 16/53<br>(30%)                   | 13/52<br>(25.0%)                              |
| s6<br>Snoek 2011<br>CROATIA,<br>DENMARK,<br>GERMANY,<br>IRELAND,<br>ISRAEL,<br>NETHERLANDS,<br>POLAND & UK | 1567                                            | Diabetes<br>clinic (I/non-<br>RCT)              | T1/2          | Y                         | Y                                 | Ν                                 | Ν                                                | 23.1<br>(18.8) | 7.9<br>(1.4)<br>(62.8)           | 54.2<br>(14.8) | 814/1567<br>(52%)     | NR                       | NR                               | 297/1567<br>(18.9%)                           |

| Author<br>COUNTRY                                | Initial sample size                                                                                            | Health care<br>context (study<br>design) | Diabetes type | DD inclusion<br>criteria? | Depression<br>inclusion criteria? | High HbA1c<br>inclusion criteria? | Physical co-<br>morbidity<br>inclusion criteria? | DD (mean (SD)       | HbA1c (% mean<br>(SD) (mmol/mol) | Age (mean (SD) | Gender ( N/%<br>male) | Predominant<br>ethnicity     | N/% Insulin/other<br>injectables | Rate of DD (DD<br>cases/available DD<br>data) |
|--------------------------------------------------|----------------------------------------------------------------------------------------------------------------|------------------------------------------|---------------|---------------------------|-----------------------------------|-----------------------------------|--------------------------------------------------|---------------------|----------------------------------|----------------|-----------------------|------------------------------|----------------------------------|-----------------------------------------------|
| s7<br>Byrne 2012ª<br>UK                          | 437                                                                                                            | Diabetes<br>clinic<br>(I/RCT)            | T1            | N                         | N                                 | Y                                 | N                                                | 29.9<br>(19.0)      | NR                               | 40.8<br>(11.7) | 202/437<br>(46%)      | NR                           | All                              | 129/423<br>(30.5%)                            |
| s8<br>Chawla 2010ª<br>USA                        | 62<br>(demographics<br>for 61<br>included in<br>analysis)                                                      | Primary care<br>(I/non-RCT)              | T1/2          | Ν                         | N                                 | N                                 | Ν                                                | 16.0<br>(13.2)      | 7.7<br>(1.5)<br>(60.7)           | 60.8<br>(NR)   | 30/61<br>(49%)        | All<br>Caucasian             | NR                               | 4/61<br>(6.6%)                                |
| s9<br>Due-Christensen<br>2012<br>DENMARK         | 54                                                                                                             | Diabetes<br>clinic (I/non-<br>RCT)       | T1            | N                         | N                                 | N                                 | Ν                                                | 37.4<br>(16.1<br>6) | 8.2<br>(1.3)<br>(66.1)           | 43.8<br>(10.5) | 11/54<br>(20%)        | NR                           | All                              | 29/54<br>(53.7%)                              |
| s10<br>Engel 2011 <sup>b</sup><br>AUSTRALIA      | 648<br>(MDI&CSII<br>groups at<br>baseline –<br>demographics<br>for n<br>providing data<br>on that<br>variable) | Diabetes<br>clinic (I/non-<br>RCT)       | Τ1            | Ν                         | Ν                                 | Ν                                 | Ν                                                | 29.6<br>(21.2)      | 7.6<br>(1.2)<br>(59.6)           | 48.8<br>(14.7) | 265/636<br>(42%)      | NR<br>(Australian<br>(81.5%) | All                              | 172/594<br>(28.9%)                            |
| s11<br>Fisher 2011<br>USA                        | 483                                                                                                            | Primary care<br>(I/RCT)                  | T2            | Ν                         | Ν                                 | Y                                 | Ν                                                | 2.33<br>(0.94)      | 8.9<br>(1.2)<br>(73.8)           | 55.8<br>(10.7) | 257/483<br>(53%)      | Caucasian<br>(63.1%)         | NR                               | 123/483<br>(26.2%)                            |
| s12<br>Heinrich 2010 <sup>a</sup><br>NETHERLANDS | 584<br>(demographics<br>for 537<br>completing<br>baseline                                                      | Primary care<br>(I/RCT)                  | T2            | Ν                         | Ν                                 | Ν                                 | Ν                                                | 16.9<br>(13.6)      | 6.5<br>(.80)<br>(47.5)           | 59<br>(5.3)    | 269/584<br>(46%)      | NR                           | NR                               | 37/533<br>(7.0%)                              |

| Author<br>COUNTRY                             | Initial sample size                                                         | Health care<br>context (study<br>design) | Diabetes type | DD inclusion<br>criteria? | Depression<br>inclusion criteria? | High HbA1c<br>inclusion criteria? | Physical co-<br>morbidity<br>inclusion criteria? | DD (mean (SD)  | HbA1c (% mean<br>(SD) (mmol/mol) | Age (mean (SD) | Gender ( N/%<br>male) | Predominant<br>ethnicity | N/% Insulin/other<br>injectables | Rate of DD (DD<br>cases/available DD<br>data) |
|-----------------------------------------------|-----------------------------------------------------------------------------|------------------------------------------|---------------|---------------------------|-----------------------------------|-----------------------------------|--------------------------------------------------|----------------|----------------------------------|----------------|-----------------------|--------------------------|----------------------------------|-----------------------------------------------|
| s13<br>Hermanns 2009 <sup>a</sup>             | questionnaire/<br>570 providing<br>clinical data)<br>50                     | Diabetes<br>clinic                       | T1            | N                         | N                                 | N                                 | N                                                | 30.7<br>(18.8) | 8.1<br>(1.5)                     | 41.7<br>(12.3) | 26/50<br>(52%)        | NR                       | All                              | 14/49<br>(28.0%)                              |
| s14<br>Hermanns 2012<br>GERMANY               | 186<br>(demographics<br>for 167<br>included in per<br>protocol<br>analysis) | (I/RCT)<br>Diabetes<br>clinic<br>(I/RCT) | T2            | Ν                         | Ν                                 | Ν                                 | Ν                                                | 50.0<br>(9.7)  | (63.0)<br>8.3<br>(1.3)<br>(67.2) | 63.5<br>(7.9)  | 92/167<br>(55%)       | NR                       | All                              | 31/167<br>(18.6%)                             |
| s15<br>Hopkins 2012 <sup>b</sup><br>UK        | 639 (with at<br>least some pre<br>AND post<br>data)                         | Diabetes<br>clinic (I/non-<br>RCT)       | T1            | Ν                         | Ν                                 | Ν                                 | Ν                                                | 25.2<br>(17.4) | 8.7<br>(1.6)<br>(71.6)           | 38.8<br>(12.8) | NR                    | NR                       | All                              | 103/484<br>(21.2%)                            |
| s16<br>Keen 2012<br>UK                        | 124<br>(completing<br>DAFNE<br>course with<br>pre AND post<br>data)         | Diabetes<br>clinic (I/non-<br>RCT)       | T1            | N                         | N                                 | Y                                 | Ν                                                | NR             | 8.6<br>(1.4)<br>(70.5)           | 42.5<br>(11.1) | 51/124<br>(41%)       | NR                       | All                              | 21/124<br>(16.9%)                             |
| s17<br>Keers 2005 <sup>a</sup><br>NETHERLANDS | 69 (with at<br>least some pre<br>AND post<br>data)                          | Diabetes<br>clinic (I/non-<br>RCT)       | T1/2          | Y                         | Ν                                 | Y                                 | Ν                                                | 38.0<br>(22.0) | 8.5<br>(1.3)<br>(69.4)           | 44.0<br>(13.0) | 34/69<br>(49.3%)      | NR                       | NR                               | 27/56<br>(48.0%)                              |
| s18<br>Sturt 2008 <sup>b</sup><br>UK          | 245                                                                         | Primary care<br>(I/RCT)                  | T2            | Ν                         | Ν                                 | Y                                 | Ν                                                | 18.7<br>(15.6) | 8.8<br>(1.5)<br>(72.7)           | 62.0<br>(NR)   | 148/245<br>(60%)      | Caucasian<br>(79.2%)     | NR                               | 26/216<br>(12.0%)                             |

| Author<br>COUNTRY                                         | Initial sample size                                                                                    | Health care<br>context (study<br>design)     | Diabetes type | DD inclusion<br>criteria? | Depression<br>inclusion criteria? | High HbA1c<br>inclusion criteria? | Physical co-<br>morbidity<br>inclusion criteria? | DD (mean (SD)  | HbA1c (% mean<br>(SD) (mmol/mol) | Age (mean (SD) | Gender ( N/%<br>male) | <b>Predominant</b><br>ethnicity | N/% Insulin/other<br>injectables | Rate of DD (DD<br>cases/available DD<br>data) |
|-----------------------------------------------------------|--------------------------------------------------------------------------------------------------------|----------------------------------------------|---------------|---------------------------|-----------------------------------|-----------------------------------|--------------------------------------------------|----------------|----------------------------------|----------------|-----------------------|---------------------------------|----------------------------------|-----------------------------------------------|
| s19<br>Khunti 2012 <sup>b</sup><br>UK                     | 824<br>(demographics<br>for 604<br>providing<br>clinical data &<br>536<br>completing<br>questionnaires | Primary care<br>(I/RCT)                      | T2            | N                         | Ν                                 | N                                 | N                                                | NR             | 8.0<br>(2.1)<br>(63.9)           | 60.1<br>(11.8) | 271/604<br>(55%)      | Caucasian<br>(97.1%)            | 17/604<br>(28%)                  | 35/461<br>(7.6%)                              |
| s20<br>van Bastelaar 2010<br>NETHERLANDS                  | 1012<br>(demographics<br>for 627 with<br>complete data)                                                | Diabetes<br>clinic<br>(I/RCT)                | T1/2          | Ν                         | Y                                 | Ν                                 | Ν                                                | 20.0<br>(18.0) | 7.8<br>(1.3)<br>(61.7)           | 53.0<br>(15.0) | 313/627<br>(50%)      | NR ('Native<br>Dutch'<br>(90%)  | 571/627<br>(91%)                 | 93/627<br>(15.0%)                             |
| s21<br>van Bastelaar 2012<br>NETHERLANDS<br>& BELGIUM     | 255                                                                                                    | Community<br>(I/RCT)                         | T1/2          | Ν                         | Y                                 | Ν                                 | Ν                                                | 40.0<br>(19.0) | 7.4<br>(1.3)<br>(57.4)           | 50.0<br>(12.0) | 100/255<br>(39%)      | Caucasian<br>(89%)              | 183/255<br>(72%)                 | 127/255<br>(49.8%)                            |
| s22<br>Fisher 2013<br>USA                                 | 392 (with pre<br>AND post<br>data)                                                                     | Diabetes<br>clinic &<br>community<br>(I/RCT) | T2            | Y                         | Ν                                 | Ν                                 | Ν                                                | 2.4<br>(0.9)   | 7.4<br>(1.61)<br>(57.4)          | 56.1<br>(9.6)  | 181/392<br>(46%)      | Caucasian<br>(40.1%)            | 70/392<br>(18%)                  | 95/392<br>(24.2%)                             |
| s23<br>Malanda 2015ª<br>NETHERLANDS                       | 181                                                                                                    | Diabetes<br>clinic<br>(I/RCT)                | T2            | Ν                         | Ν                                 | Y                                 | Ν                                                | 10.2<br>(7.2)  | 7.6<br>(0.8)<br>(59.6)           | 61.5<br>(7.8)  | 120/181<br>(66%)      | NR                              | None                             | 7/173<br>(4.0%)                               |
| s24<br>Pibernik-<br>Okanovic 2015 <sup>a</sup><br>CROATIA | 209                                                                                                    | Diabetes<br>clinic<br>(I/RCT)                | T2            | Ν                         | Y                                 | Ν                                 | Ν                                                | 39.8<br>(19.9) | 7.3<br>(1.1)<br>(56.3)           | 58.1<br>(5.8)  | 96/209<br>(46%)       | NR                              | 93/209<br>(44%)                  | 101/208<br>(48.5%)                            |
| s25<br>Elliott 2012 <sup>b</sup><br>UK                    | 479                                                                                                    | Diabetes<br>clinic (I/non-<br>RCT)           | T1            | Ν                         | Ν                                 | Ν                                 | Ν                                                | 29.1<br>(20.2) | 8.7<br>(1.5)<br>(71.6)           | 41.2<br>(13.9) | 230/479<br>(48%)      | NR                              | All                              | 112/357<br>(31.0%)                            |

| Author<br>COUNTRY                                             | Initial sample size                                                           | Health care<br>context (study<br>design) | Diabetes type | DD inclusion<br>criteria? | Depression<br>inclusion criteria? | High HbA1c<br>inclusion criteria? | Physical co-<br>morbidity<br>inclusion criteria? | DD (mean (SD)  | HbA1c (% mean<br>(SD) (mmol/mol) | Age (mean (SD) | Gender ( N/%<br>male) | Predominant<br>ethnicity             | N/% Insulin/other<br>injectables | Rate of DD (DD<br>cases/available DD<br>data) |
|---------------------------------------------------------------|-------------------------------------------------------------------------------|------------------------------------------|---------------|---------------------------|-----------------------------------|-----------------------------------|--------------------------------------------------|----------------|----------------------------------|----------------|-----------------------|--------------------------------------|----------------------------------|-----------------------------------------------|
| s26<br>Archer 2012<br>UK                                      | 99                                                                            | Diabetes<br>clinic (I/non-               | T1/2          | NR                        | NR                                | NR                                | NR                                               | 37.4<br>(18.6) | NR                               | 44.3<br>(13.2) | 63/96<br>(64%)        | NR                                   | 73/99<br>(74%)                   | 46/99<br>(46.5%)                              |
| s27<br>Hermanns 2015 <sup>a</sup><br>GERMANY                  | 214                                                                           | Diabetes<br>clinic<br>(I/RCT)            | T1/2          | N                         | Y                                 | N                                 | Ν                                                | 38.6<br>(18.3) | 8.9<br>(1.8)<br>(73.8)           | 43.3<br>(14.3) | 93/214<br>(44%)       | NR                                   | NR                               | 104/208<br>(50.0%)                            |
| s28<br>Lindsay 2011ª<br>UK                                    | 136                                                                           | Diabetes<br>registry<br>(I/non-RCT)      | T2            | Ν                         | Ν                                 | Ν                                 | Ν                                                | 13.0<br>(NR)   | NR                               | 65.4<br>(12.0) | 81/136<br>(59%)       | NR (Asian<br>6%)                     | NR                               | 18/131<br>(13.7%)                             |
| s29<br>Van Dijk de Vries<br>2015 <sup>a</sup><br>NETHERI ANDS | 264                                                                           | Diabetes<br>clinic<br>(I/RCT)            | T2            | Ν                         | Ν                                 | Ν                                 | Ν                                                | 29.3<br>(18.3) | 6.9<br>(NR)<br>(52.3)            | 64.6<br>(9.5)  | 142/264<br>(54%)      | NR (Non-<br>Western<br>.8%)          | 60/264<br>(23%)                  | 64/257<br>(24.9%)                             |
| s30<br>Stoop 2014<br>NETHERLANDS                              | 774                                                                           | Primary care<br>(I/RCT)                  | T2            | Ν                         | Ν                                 | Ν                                 | Ν                                                | 3.0<br>(NR)    | 6.6<br>(NR)<br>(48.6)            | 68.0<br>(NR)   | 439/774<br>(57%)      | NR (Ethnic<br>Minority<br>Groups 1%) | 123/757<br>(16%)                 | 29/774<br>(3.7%)                              |
| s31<br>Karlsen 2012<br>NORWAY                                 | 425<br>(demographics<br>for 378<br>completing<br>questionnaire<br>adequately) | Primary care<br>&<br>community<br>(CS)   | T2            | Ν                         | Ν                                 | Ν                                 | Ν                                                | 26.0<br>(18.0) | 7.1<br>(1.1)<br>(54.1)           | 58.1<br>(8.7)  | 205/378<br>(54%)      | NR                                   | 108/378<br>(29%)                 | 84/378<br>(22.2%)                             |
| s32<br>Miller 2008<br>USA                                     | 160<br>(demographics<br>for 131 that<br>'completed the<br>study')             | Community<br>(CS)                        | T2            | Ν                         | Ν                                 | Ν                                 | Ν                                                | 34.6<br>(23)   | 9.0<br>(2.4)<br>(74.9)           | 39.4<br>(8.2)  | All<br>female         | All African<br>American              | 47/131<br>(37%)                  | 52/131<br>(40.0%)                             |
| s33<br>Fisher 2008<br>USA                                     | 506                                                                           | Diabetes<br>clinic (L)                   | T2            | Ν                         | Ν                                 | Ν                                 | Ν                                                | NR             | NR                               | 57.8<br>(9.9)  | 218/506<br>(43%)      | Caucasian<br>(36.7%)                 | 76/506<br>(15%)                  | 91/506<br>(18.0%)                             |

| Author<br>COUNTRY                       | Initial sample size                                              | Health care<br>context (study<br>design) | Diabetes type | DD inclusion<br>criteria? | Depression<br>inclusion criteria? | High HbA1c<br>inclusion criteria? | Physical co-<br>morbidity<br>inclusion criteria? | DD (mean (SD)  | HbA1c (% mean<br>(SD) (mmol/mol) | Age (mean (SD) | Gender ( N/%<br>male) | Predominant<br>ethnicity | N/% Insulin/other<br>injectables | Rate of DD (DD<br>cases/available DD<br>data) |
|-----------------------------------------|------------------------------------------------------------------|------------------------------------------|---------------|---------------------------|-----------------------------------|-----------------------------------|--------------------------------------------------|----------------|----------------------------------|----------------|-----------------------|--------------------------|----------------------------------|-----------------------------------------------|
| s34<br>Lehmann 2011<br>TURKEY           | 154 (most<br>demographics<br>for 151<br>included on<br>analysis) | Diabetes<br>clinic (CS)                  | T2            | N                         | N                                 | N                                 | N                                                | 26.8<br>(18.7) | 6.7<br>(1.0)<br>(49.7)           | 56.0<br>(10.0) | 69/151<br>(46%)       | NR                       | None                             | 40/151<br>(26.5%)                             |
| s35<br>Fleer 2013ª<br>NETHERLANDS       | 347                                                              | Diabetes<br>clinic (L)                   | T1/2          | Ν                         | Ν                                 | Ν                                 | Ν                                                | NR             | 7.8<br>(1.4)<br>(61.7)           | 50.4<br>(13.2) | 181/347<br>(52.2%)    | NR                       | 313/347<br>(91%)                 | 34/346<br>(9.8%)                              |
| s36<br>Fritschi 2012<br>USA             | 83                                                               | Diabetes<br>clinic (CS)                  | T2            | Ν                         | N                                 | N                                 | N                                                | 2.5<br>(1.0)   | 7.4<br>(1.9)<br>(57.4)           | 53.0<br>(6.5)  | All<br>female         | Black<br>(42.2%)         | 12/83<br>(14%)                   | 27/83<br>(32.5%)                              |
| s37<br>Kokoszka 2009<br>POLAND          | 101                                                              | Diabetes<br>clinic (CS)                  | T2            | Ν                         | N                                 | N                                 | N                                                | 27.5<br>(18.4) | 8.1<br>(1.8)<br>(65.0)           | 63.2<br>(10.7) | 51/101<br>(50%)       | NR                       | 67/101<br>(66%)                  | 25/101<br>(24.8%)                             |
| s38<br>Nichols 2000 <sup>b</sup><br>USA | 1178                                                             | Diabetes<br>registry (CS)                | T2            | Ν                         | Ν                                 | Ν                                 | N                                                | NR             | 7.9<br>(1.4)<br>(62.8)           | 65.6<br>(NR)   | NR                    | NR                       | All                              | 477/1033<br>(46.2%)                           |
| s39<br>Hermanns 2006<br>GERMANY         | 376                                                              | Diabetes<br>clinic (CS)                  | T1/2          | Ν                         | Ν                                 | Ν                                 | N                                                | 30.6<br>(18.1) | 8.5<br>(1.6)<br>(69.4)           | 52.2<br>(14.3) | 228/376<br>(61%)      | NR                       | 286/376<br>(76%)                 | 116/376<br>(30.9%)                            |
| s40<br>Hermanns 2010<br>GERMANY         | 130                                                              | Diabetes<br>clinic (L)                   | T2            | Ν                         | Ν                                 | Y                                 | Ν                                                | 30.0<br>(16.7) | 8.7<br>(1.6)<br>(71.6)           | 55.8<br>(8.8)  | 85/130<br>(65%)       | NR                       | 57/130<br>(44%)                  | 39/130<br>(30.0%)                             |
| s41<br>Nozaki 2009<br>JAPAN             | 304                                                              | Diabetes<br>clinic (L)                   | T2            | N                         | N                                 | N                                 | N                                                | 33.0<br>(21.0) | 7.3<br>(1.2)<br>(56.3)           | 61.9<br>(11.0) | 170/304<br>(56%)      | NR                       | NR                               | 107/304<br>(35.2%)                            |
| s42<br>Wagner 2010ª<br>USA              | 153                                                              | Primary care<br>&<br>community<br>(L)    | T2            | Ν                         | Y                                 | N                                 | Ν                                                | 51.0<br>(24.1) | 6.7<br>(1.2)<br>(49.7)           | 60.1<br>(9.7)  | All<br>female         | NR                       | 26/153<br>(17%)                  | 75/140<br>(53.6%)                             |

| Author<br>COUNTRY                                  | Initial sample size                                                  | Health care<br>context (study<br>design)          | Diabetes type | DD inclusion<br>criteria? | Depression<br>inclusion criteria? | High HbA1c<br>inclusion criteria? | Physical co-<br>morbidity<br>inclusion criteria? | DD (mean (SD)  | HbA1c (% mean<br>(SD) (mmol/mol) | Age (mean (SD) | Gender ( N/%<br>male)  | Predominant<br>ethnicity                   | N/% Insulin/other<br>injectables | Rate of DD (DD<br>cases/available DD<br>data) |
|----------------------------------------------------|----------------------------------------------------------------------|---------------------------------------------------|---------------|---------------------------|-----------------------------------|-----------------------------------|--------------------------------------------------|----------------|----------------------------------|----------------|------------------------|--------------------------------------------|----------------------------------|-----------------------------------------------|
| s43<br>Duda-Sobczak<br>2012 <sup>b</sup><br>POLAND | 213                                                                  | NR (CS)                                           | T1            | NR                        | NR                                | NR                                | NR                                               | NR             | 8.2<br>(1.4)<br>(66.1)           | 26.6<br>(6.0)  | 97/213<br>(46%)        | NR                                         | All                              | 43/165<br>(26.1%)                             |
| s44<br>Ikeda 2014 <sup>a</sup><br>JAPAN            | 152<br>(demographics<br>reported for<br>149 included<br>in analysis) | Diabetes<br>clinic (CS)                           | T2            | Ν                         | Ν                                 | Ν                                 | Ν                                                | 29.8<br>(18.7) | 7.6<br>(1.2)<br>(59.6)           | 60.6<br>(8.6)  | 91/149<br>(61%)        | All Japanese                               | 46/149<br>(31%)                  | 52/152<br>(34.2%)                             |
| s45<br>Ikeda 2014ª<br>USA                          | 64<br>(demographics<br>reported for 50<br>included in<br>analysis)   | NR (CS)                                           | T2            | Ν                         | Ν                                 | N                                 | Ν                                                | 24.9<br>(23.1) | 7.6<br>(1.6)<br>(59.6)           | 60.0<br>(10.1) | 25/50<br>(50%)         | NR (All<br>Euro-<br>Americans)             | 23/50<br>(46%)                   | 14/51<br>(27.5%)                              |
| s46<br>Joensen 2013 <sup>b</sup><br>DENMARK        | 2419                                                                 | Diabetes<br>clinic (CS)                           | T1            | Ν                         | N                                 | N                                 | Ν                                                | 1.9<br>(NR)    | 8.1<br>(NR)<br>(65)              | 51.6<br>(NR)   | 1258/<br>2419<br>(52%) | NR                                         | All                              | 225/2295<br>(9.8%)                            |
| s47<br>Sheils 2012<br>UK                           | 124<br>(demographics<br>for 108 with<br>complete<br>PAID data)       | Diabetes<br>clinic (CS)                           | T1            | Ν                         | N                                 | N                                 | Ν                                                | 20.7<br>(17.5) | 8.8<br>(1.5)<br>(72.7)           | 44<br>(12.9)   | 49/108<br>(45%)        | NR                                         | All                              | 18/108<br>(16.6%)                             |
| s48<br>Crosby-Nwaobi<br>2013ª<br>UK                | 380                                                                  | Primary care<br>(CS)                              | T2            | Ν                         | Ν                                 | Ν                                 | Y                                                | NR             | 8.3<br>(1.9)<br>(67.2)           | 64.8<br>(10.8) | 214/380<br>(56%)       | Black<br>(50.4%)                           | 193/380<br>(51%)                 | 10/374<br>(2.7%)                              |
| s49<br>Baek 2014<br>USA                            | 119                                                                  | Diabetes<br>clinic,<br>primary care<br>& previous | T2            | Ν                         | N                                 | N                                 | Ν                                                | 2.3<br>(1.2)   | 7.9<br>(1.9)<br>(62.8)           | 56.3<br>(9.7)  | 43/119<br>(36%)        | Black or<br>African<br>American<br>(61.4%) | 49/119<br>(41%)                  | 33/119<br>(27.7%)                             |

| Author<br>COUNTRY                              | Initial sample size                                                | Health care<br>context (study<br>design)                                        | Diabetes type | DD inclusion<br>criteria? | Depression<br>inclusion criteria? | High HbA1c<br>inclusion criteria? | Physical co-<br>morbidity<br>inclusion criteria? | DD (mean (SD)  | HbA1c (% mean<br>(SD) (mmol/mol) | Age (mean (SD) | Gender ( N/%<br>male) | <b>Predominant</b><br>ethnicity | N/% Insulin/other<br>injectables | Rate of DD (DD<br>cases/available DD<br>data) |
|------------------------------------------------|--------------------------------------------------------------------|---------------------------------------------------------------------------------|---------------|---------------------------|-----------------------------------|-----------------------------------|--------------------------------------------------|----------------|----------------------------------|----------------|-----------------------|---------------------------------|----------------------------------|-----------------------------------------------|
| s50<br>Aikens 2012 <sup>b</sup><br>USA         | 287<br>(demographics<br>for 253<br>providing<br>baseline data)     | research<br>study (CS)<br>Diabetes<br>registry (L)                              | T2            | N                         | N                                 | N                                 | Ν                                                | 22.1<br>(19.0) | 7.6<br>(1.6)<br>(59.6)           | 57.3<br>(8.3)  | 127/253<br>(50%)      | African<br>American<br>(55%)    | 101/253<br>(40%)                 | 53/253<br>(21.0%)                             |
| s51<br>Keers 2004<br>NETHERLANDS               | 315                                                                | Diabetes<br>clinic &<br>patients<br>attending<br>education<br>programme<br>(CS) | T1/2          | NR                        | NR                                | NR                                | Ν                                                | 30.0<br>(19.8) | 8.1<br>(1.2)<br>(65.0)           | 46.4<br>(13.1) | 147/315<br>(46.7%)    | NR                              | NR                               | 98/315<br>(31.1%)                             |
| s52<br>Bot 2010 <sup>b</sup><br>NETHERLANDS    | 114                                                                | Diabetes<br>clinic (L)                                                          | T1/2          | Ν                         | Y                                 | Ν                                 | Ν                                                | 29.4<br>(10.9) | 7.5<br>(1.1)<br>(58.5)           | 65.3<br>(8.2)  | 62/114<br>(54%)       | NR                              | NR                               | 22/75<br>(29.3%)                              |
| s53<br>Pouwer 2006 <sup>b</sup><br>NETHERLANDS | 112                                                                | Diabetes<br>clinic/<br>previous<br>research<br>study (CS)                       | T1/2          | Ν                         | Ν                                 | Ν                                 | Ν                                                | 44.0<br>(22.0) | 7.8<br>(1.2)<br>(61.7)           | 52.0<br>(18.0) | 61/112<br>(54%)       | NR                              | 104/112<br>(93%)                 | 22/89<br>(24.7%)                              |
| s54<br>Sigurdardottir<br>2008ª<br>ICELAND      | 92<br>(demographics<br>for 90<br>completing<br>questionnaires<br>) | Diabetes<br>clinic (CS)                                                         | T1/2          | Ν                         | Ν                                 | Ν                                 | Ν                                                | 27.9<br>(18.1) | 7.7<br>(1.41)<br>(60.7)          | 38.1<br>(11.1) | 48/90<br>(53%)        | NR                              | All                              | 19/85<br>(22.4%)                              |
| s55<br>Aikens 2014ª<br>USA                     | 303                                                                | Diabetes<br>clinic (L)                                                          | T2            | Ν                         | Ν                                 | Ν                                 | Ν                                                | 16.4<br>(16.4) | NR                               | 66.6<br>(9.8)  | 294/303<br>(97%)      | Caucasian<br>(92.9%)            | NR                               | 24/300<br>(8.0%)                              |

| Author<br>COUNTRY                     | Initial sample size                                                                      | Health care<br>context (study<br>design) | Diabetes type | DD inclusion<br>criteria? | Depression<br>inclusion criteria? | High HbA1c<br>inclusion criteria? | Physical co-<br>morbidity<br>inclusion criteria? | DD (mean (SD)  | HbA1c (% mean<br>(SD) (mmol/mol) | Age (mean (SD) | Gender ( N/%<br>male) | Predominant<br>ethnicity | N/% Insulin/other<br>injectables | Rate of DD (DD<br>cases/available DD<br>data) |
|---------------------------------------|------------------------------------------------------------------------------------------|------------------------------------------|---------------|---------------------------|-----------------------------------|-----------------------------------|--------------------------------------------------|----------------|----------------------------------|----------------|-----------------------|--------------------------|----------------------------------|-----------------------------------------------|
| s56<br>Lange 2013                     | 306                                                                                      | Diabetes<br>clinic (CS)                  | T1            | Ν                         | N                                 | N                                 | Ν                                                | 26.8<br>(20.0) | 8.3<br>(1.6)                     | 24.1<br>(3.5)  | 162/306<br>(53%)      | NR                       | All                              | 77/306<br>(25.0%)                             |
| GERMANY                               |                                                                                          |                                          |               |                           |                                   |                                   |                                                  | (20.0)         | (67.2)                           | (5.5)          | (5570)                |                          |                                  | (20.070)                                      |
| s57                                   | 180                                                                                      | Primary care                             | T2            | Ν                         | Ν                                 | Ν                                 | Ν                                                | NR             | NR                               | 62.2           | 89/176                | Caucasian                | NR                               | 24/136                                        |
| Hearnshaw 2007 <sup>b</sup><br>UK     | (demographics<br>for 176<br>completing<br>questionnaires<br>)                            | (CS)                                     |               |                           |                                   |                                   |                                                  |                |                                  | (10.4)         | (51%)                 | (91%)                    |                                  | (17.6%)                                       |
| s58<br>Grant 2005 <sup>b</sup><br>USA | 909 (Type 2<br>sample) -<br>demographics<br>for 896<br>classifiable re:<br>internet use) | Primary care<br>(CS)                     | Τ2            | N                         | Ν                                 | Ν                                 | Ν                                                | NR             | 7.4<br>(1.4)<br>(57.4)           | 66.2<br>(12.4) | 461/896<br>(51.5%)    | Caucasian<br>(82.7%)     | NR                               | 126/815<br>(15.5%)                            |

NR: not reported; NA: not applicable; N: no; Y: yes I/RCT: randomised controlled trial; L: longitudinal observation study; CS: cross-sectional study <sup>a</sup>Difference between the number of participants for which elevated DD rate data was provided and those included in the study/for whom demographic data were reported; <sup>b</sup>Substantial difference between the number of participants for which elevated DD rate data was provided and those included in the study/for whom demographic data were reported.

# Figure 2 Forest plot illustrating the rate of elevated diabetes distress across all study populations

| Study                                  | Events     | Total    |                      | :                                     | Proportion | 95%-Cl       | W(fixed)     | W(random) |
|----------------------------------------|------------|----------|----------------------|---------------------------------------|------------|--------------|--------------|-----------|
| Shibayama 2007                         | 55         | 131      |                      |                                       | 0.42       | [0.33; 0.51] | 1.1%         | 1.8%      |
| Rosenbek Minet 2011                    | 41         | 349      |                      |                                       | 0.12       | [0.09; 0.16] | 1.3%         | 1.8%      |
| Rygg 2012                              | 17         | 146      |                      |                                       | 0.12       | [0.07; 0.18] | 0.5%         | 1.6%      |
| Tang 2008                              | 12         | 82       |                      |                                       | 0.15       | [0.08; 0.24] | 0.4%         | 1.6%      |
| Sigurdardottir 2009                    | 13         | 52       | _                    | 1<br>1                                | 0.25       | [0.14; 0.39] | 0.3%         | 1.6%      |
| Shoek 2011                             | 297        | 1567     |                      |                                       | 0.19       | [0.17; 0.21] | 8.4%         | 1.8%      |
| Chawla 2010                            | 129        | 423      |                      |                                       | 0.30       | [0.26; 0.35] | 3.1%<br>0.1% | 1.8%      |
| Due-Christensen 2012                   | 29         | 54       |                      | · · · · · · · · · · · · · · · · · · · | - 0.54     | [0.02, 0.10] | 0.1%         | 1.2 %     |
| Engel 2011                             | 172        | 594      |                      |                                       | 0.29       | [0.25: 0.33] | 4.3%         | 1.8%      |
| Fisher 2011                            | 123        | 483      |                      | <b>—</b>                              | 0.25       | [0.22; 0.30] | 3.2%         | 1.8%      |
| Heinrich 2010                          | 37         | 533      | -#                   |                                       | 0.07       | [0.05; 0.09] | 1.2%         | 1.8%      |
| Hermanns 2009                          | 14         | 49       |                      | *                                     | 0.29       | [0.17; 0.43] | 0.4%         | 1.6%      |
| Hermanns 2012                          | 31         | 167      |                      |                                       | 0.19       | [0.13; 0.25] | 0.9%         | 1.7%      |
| Hopkins 2012                           | 103        | 484      |                      | 1                                     | 0.21       | [0.18; 0.25] | 2.8%         | 1.8%      |
| Keen 2012                              | 21         | 124      |                      |                                       | 0.17       | [0.11; 0.25] | 0.6%         | 1.7%      |
| Reers 2005                             | 27         | 216      |                      | · · · · · · · · · · · · · · · · · · · | 0.48       | [0.35; 0.62] | 0.5%         | 1.6%      |
| Khunti 2012                            | 20         | 461      | +                    |                                       | 0.12       | [0.08, 0.17] | 0.0%         | 1.7%      |
| van Bastelaar 2010                     | 93         | 627      | -                    | 1                                     | 0.15       | [0.12; 0.18] | 2.8%         | 1.8%      |
| van Bastelaar 2011                     | 127        | 255      |                      |                                       | 0.50       | [0.44: 0.56] | 2.2%         | 1.8%      |
| Fisher 2013                            | 95         | 392      | -                    |                                       | 0.24       | [0.20; 0.29] | 2.5%         | 1.8%      |
| Malanda 2015                           | 7          | 173      | <b>-</b>             | 1                                     | 0.04       | [0.02; 0.08] | 0.2%         | 1.4%      |
| Pibernik-Okanovic 2015                 | 101        | 208      |                      |                                       | 0.49       | [0.42; 0.56] | 1.8%         | 1.8%      |
| Elliott 2014                           | 112        | 357      |                      |                                       | 0.31       | [0.27; 0.36] | 2.7%         | 1.8%      |
| Archer 2014                            | 46         | 99       |                      |                                       | 0.46       | [0.36; 0.57] | 0.9%         | 1.7%      |
| Hermanns 2015                          | 104        | 208      |                      |                                       | 0.50       | [0.43; 0.57] | 1.8%         | 1.8%      |
| Lindsay 2011<br>Van Diik da Vrias 2015 | 18         | 131      |                      |                                       | 0.14       | [0.08; 0.21] | 0.5%         | 1.7%      |
| Stoop 2014                             | 29         | 774      | +                    | 1                                     | 0.25       | [0.20, 0.31] | 1.7%         | 1.0%      |
| Karlsen 2012                           | 84         | 378      |                      | 1<br>1                                | 0.22       | [0.18: 0.27] | 2.3%         | 1.8%      |
| Miller 2008                            | 52         | 131      |                      |                                       | 0.40       | [0.31; 0.49] | 1.1%         | 1.8%      |
| Fisher 2008                            | 91         | 506      |                      |                                       | 0.18       | [0.15; 0.22] | 2.6%         | 1.8%      |
| Lehman 2011                            | 40         | 151      | -                    | 1                                     | 0.26       | [0.20; 0.34] | 1.0%         | 1.7%      |
| Fleer 2013                             | 34         | 346      |                      |                                       | 0.10       | [0.07; 0.13] | 1.1%         | 1.8%      |
| Fritschi 2012                          | 27         | 83       |                      |                                       | 0.33       | [0.23; 0.44] | 0.6%         | 1.7%      |
| Kokoszka 2009                          | 25         | 101      |                      |                                       | 0.25       | [0.17; 0.34] | 0.7%         | 1.7%      |
| NICHOIS 2000                           | 447        | 1033     |                      |                                       | 0.43       | [0.40; 0.46] | 8.9%         | 1.8%      |
| Hermanns 2000                          | 39         | 130      |                      |                                       | 0.31       | [0.20, 0.30] | 2.0%         | 1.0%      |
| Nozaki 2009                            | 107        | 304      |                      | _ <u>.</u>                            | 0.35       | [0.30: 0.41] | 2.4%         | 1.8%      |
| Wagner 2010                            | 75         | 140      |                      |                                       | 0.54       | [0.45; 0.62] | 1.2%         | 1.8%      |
| Duda-Sobczak 2012                      | 43         | 165      | _                    | <u> </u>                              | 0.26       | [0.20; 0.33] | 1.1%         | 1.8%      |
| Ikeda 2014 JAPAN sample                | 52         | 152      |                      |                                       | 0.34       | [0.27; 0.42] | 1.2%         | 1.8%      |
| Ikeda 2014 USA sample                  | 14         | 51       |                      | · · · · · · · · · · · · · · · · · · · | 0.27       | [0.16; 0.42] | 0.4%         | 1.6%      |
| Joensen 2013                           | 237        | 2259     | +-                   | 1                                     | 0.10       | [0.09; 0.12] | 7.4%         | 1.8%      |
| Sheils 2012<br>Creeby Niveshi 2012     | 18         | 108      |                      |                                       | 0.17       | [0.10; 0.25] | 0.5%         | 1.6%      |
| Crosby-INWa0DI 2013                    | 10         | 3/4      | +                    |                                       | 0.03       | [0.01; 0.05] | 0.3%         | 1.6%      |
| Aikons 2012                            | 53<br>53   | 253      |                      |                                       | 0.20       | [0.20, 0.37] | 0.0%         | 1.7%      |
| Keers 2004                             | 98         | 315      |                      |                                       | 0.31       | [0.26: 0.37] | 2.4%         | 1.8%      |
| Bot 2010                               | 22         | 75       | _                    |                                       | 0.29       | [0.19; 0.41] | 0.5%         | 1.7%      |
| Pouwer 2006                            | 22         | 89       |                      |                                       | 0.25       | [0.16; 0.35] | 0.6%         | 1.7%      |
| Sigurdardottir 2008                    | 19         | 85       |                      | 1<br>1                                | 0.22       | [0.14; 0.33] | 0.5%         | 1.6%      |
| Aikens 2014                            | 26         | 300      |                      |                                       | 0.09       | [0.06; 0.12] | 0.8%         | 1.7%      |
| Lange 2013                             | 77         | 306      | -                    | ) <del></del>                         | 0.25       | [0.20; 0.30] | 2.0%         | 1.8%      |
| Hearnshaw 2007                         | 24         | 136      |                      |                                       | 0.18       | [0.12; 0.25] | 0.7%         | 1.7%      |
| Grafit 2005                            | 126        | 815      | -                    |                                       | 0.15       | [0.13; 0.18] | 3.1%         | 1.8%      |
| Fixed effect model                     |            | 18794    |                      | •                                     | 0.24       | [0.23: 0.25] | 100%         |           |
| Random effects model                   |            |          | <                    | >                                     | 0.22       | [0.19; 0.26] |              | 100%      |
| Heterogeneity: I-squared=96.1          | %, tau-squ | ared=0.5 | 5087, <u>p</u> <0.00 | 01                                    |            | ,            |              |           |
|                                        |            |          |                      |                                       |            |              |              |           |

0.1 0.2 0.3 0.4 0.5 0.6

|                     | R <sup>2</sup> (%) | ß     | SEß  | 95% CIs        | P value   |
|---------------------|--------------------|-------|------|----------------|-----------|
| Model 1             | < 0.01             |       |      |                |           |
| Age                 |                    | -0.03 | 0.01 | -0.05 to -0.01 | 0.003**   |
| Model 2             | 12.48              |       |      |                |           |
| Gender              |                    | -2.05 | 0.59 | -3.21 to -0.89 | <0.001*** |
| Model 3             | < 0.1              |       |      |                |           |
| HbA1c               |                    | 0.19  | 0.16 | -0.13 to 0.52  | 0.24      |
| Model 4             | < 0.01             |       |      |                |           |
| Health care context |                    | -0.51 | 0.23 | -0.96 -0.07    | 0.02*     |
| Model 5             | 9.79               |       |      |                |           |
| Age                 |                    | -0.01 | 0.02 | -0.04 to 0.02  | 0.56      |
| Gender              |                    | -2.57 | 0.82 | -4.17 to -0.97 | 0.002**   |
| HbA1c               |                    | 0.07  | 0.19 | -0.31 to 0.45  | 0.72      |
| Health care context |                    | -0.66 | 0.27 | -1.18 to -0.14 | 0.01*     |

Table 3 Participant characteristics as predictors of the rate of elevated diabetes distress

\*P<0.05; \*\*P<0.01; \*\*\*P<0.001