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Abstract

We prove the existence of scattering solutions for multidimensional mag-
netic Schrödinger equation such that the scattered field belongs to the weighted
Lebesgue space L2

−δ(Rn) (n ≥ 2) with some δ > 1
2 . As a consequence of this we

provide the mathematical foundation of the direct Born approximation for the
magnetic Schrödinger operator. Connection to the inverse Born approximation
is discussed with numerical examples illustrating the applicability of the method.
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1 Introduction

We develop a time harmonic scattering theory for the magnetic Schrödinger operator,
analogous to the well-known theory for the Schrödinger operator. For this purpose we
consider a Lippmann-Schwinger equation and prove that it is a Fredholm equation on
the weighted Lebesgue space L2

δ . We then establish the asymptotic behavior of the
scattering operator and its Born, or linear, approximation and an explicit formula for
the first nonlinear term in the Born series.

The direct Born approximation is known as the most applicable approximate
method in the numerous practical problems. It is also known that the inverse scatter-
ing Born approximation is well-defined and perfectly works (as a mathematical tool)
in the case of linear and nonlinear Schrödinger operators and for all types of scattering
data: full scattering, backscattering, fixed angle scattering and fixed energy scatter-
ing. For some scattering data it is possible to get the uniqueness and reconstruction

1E-mail address: vserov@cc.oulu.fi
2E-mail address: markus.harju@oulu.fi, corresponding author

1



procedure while for some data we are able to reconstruct singularities and jumps of
unknowns even when there is no uniqueness. We mention here the results of Päivärinta
and Somersalo [1], Nachman [2], [3], Sun and Uhlmann [4], Isakov and Sylvester [5],
Päivärinta, Serov and Somersalo [6], Päivärinta and Serov [7], [8], [9], Ola, Päivärinta
and Serov [10], Ruiz [11], Ruiz and Vargas [12], Päivärinta and Serov [13], Reyes [14],
Serov [15], Serov and Harju [16], [17], Serov and Sandhu [18], Lechleiter [19], Reyes
and Ruiz [20]. The main point of all these results is the precise calculation of the first
(quadratic) nonlinear term in the Born series.

For the magnetic Schrödinger operator the direct scattering problem (i.e., existence
of the scattering solutions) as well as the inverse scattering Born approximation are
much less familiar. We are only aware of [21, 22, 23]. Indeed, in [21] the authors
assumed that magnetic and electric potentials with derivatives up to orders 4 and
5, respectively, decay exponentially. They were able to prove that the scattering
amplitude at fixed energy determine uniquely the electric potential. In [22] the authors
relaxed these assumptions to one derivative of magnetic potential and just electric
potential decaying exponentially while proving the same main result. The inverse
backscattering problem for magnetic Schrödinger was considered in [23] in the two-
dimensional case under the assumptions that the magnetic potential, its gradient and
electric potential have some polynomial decay at infinity.

In this work we continue to study the inverse backscattering problem in the mul-
tidimensional case. The big interest to this problem is connected to the fact that the
knowledge of the scattering amplitude with backscattering data allows us to obtain
essential information about the unknowns. The main goal of the present work is to
justify the direct and inverse Born approximation for the magnetic Schrödinger oper-
ator. What is more, we will give the first (to the best of our knowledge) numerical
examples illustrating this in two dimensions using backscattering data.

We consider the magnetic Schrödinger operator

H = −(∇+ i ~W (x))2 + V (x)·, x ∈ Rn,

in dimensions n ≥ 2 where the coefficients ~W (x) and V (x) are assumed to be real-
valued. We assume generally that

~W ∈ W 1
p,σ(Rn), V ∈ Lpσ(Rn), (1)

where

σ > max

(
1;n

(
1− 2

p

))
, p > n. (2)

Here Lpσ(Rn) denotes usual weighted Lebesgue space defined by finiteness of the norm

‖f‖Lpσ(Rn) :=

(∫
Rn

(1 + |x|)pσ|f(x)|pdx
)1/p

.
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The Sobolev spaceW 1
p,σ(Rn) is understood so that f belongs toW 1

p,σ(Rn) if and only if f

and ∇f belong to Lpσ(Rn). It is the same (up to equivalent norms) that (1+|x|2)σ/2f ∈
W 1
p (Rn). For the case p = 2 instead of the symbol W 1

2,σ(Rn) we use the symbol H1
σ(Rn).

It is known, see [24], that under these conditions for the coefficients of the magnetic
Schrödinger operator the following G̊arding’s inequality holds:

(Hu, u)L2(Rn) ≥ ν‖∇u‖2
L2(Rn) − C‖u‖2

L2(Rn),

where 0 < ν < 1 and C > 0. This inequality allows us to define symmetric operator
H by the method of quadratic forms. Then H has a self-adjoint Friedrichs extension
with the domain (in general)

D(H) = {f ∈ W 1
2 (Rn) : Hf ∈ L2(Rn)}.

In our particular case it is possible to prove that actually

D(H) = W 2
2 (Rn), (3)

see Appendix.
In the scattering theory the main role are played by the special solutions (scattering

solutions) of the equation
Hu(x) = k2u(x)

which are of the form
u(x) = u0(x) + usc(x),

where u0(x) = eik(x,θ) is incident plane wave with direction θ ∈ Sn−1 and the scattered
wave usc(x) satisfies the Sommerfeld radiation condition at the infinity, i.e.

lim
r→+∞

r
n−1
2

(
∂usc(x)

∂r
− ikusc(x)

)
= 0, r = |x|.

In this case the total field u satisfies the so-called Lippmann-Schwinger equation

u(x) = u0(x) +

∫
Rn
G+
k (|x− y|)

(
2i∇( ~W (y)u(y))− q(y)u(y)

)
dy, (4)

where q := i∇ ~W + | ~W |2 +V and G+
k is the kernel of integral operator (−∆−k2− i0)−1.

Since ~W ∈ W 1
p (Rn) ⊂ L∞(Rn), p > n then

q ∈ Lpσ(Rn)

with the same p and σ as in (2)
In Section 2, we show that, for every incident wave u0(x), there exists a unique

scattering solution to the equation Hu = k2u such that the scattered field usc belongs
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to the weighted Lebesgue space L2
−δ(Rn) with some δ > 1

2
. We do this by showing

that the Lippmann-Schwinger integral equation (4) is Fredholm on this Hilbert space.
In Section 3, (in order to define the scattering amplitude) we prove the asymptotic

usc � c
eikr

r
n−1
2

A(k, θ′, θ)

as r = |x| → ∞, where θ′ = x
|x| . The function A(k, θ′, θ) here is the scattering ampli-

tude, the kernel of the relative scattering operator (also called the far field operator),
which summarizes all the data that can be obtained from scattering experiments.

The dependence of the scattering operator on the potentials V and ~W is not linear.
The Born, or single scattering approximation, provides insight into the full non-linear
problem, and is often a good enough approximation to provide meaningful results in
many applied inverse problems. In Section 3, we compute the Born approximation of
the scattering operator for the magnetic Schrödinger operator. Even more, we go one
step further and compute the second term in the Born series. In Section 4 we discuss
connection to inverse Born approximation and give numerical examples of it in Section
5.

2 Existence of the scattering solutions

Using the representation u = u0 + usc we rewrite the integral equation (4) only for
scattered field usc as

usc(x) = ũ0(x) +

∫
Rn
G+
k (|x− y|)

(
2i∇( ~W (y)usc(y))− q(y)usc(y)

)
dy, (5)

where ũ0 is equal to

ũ0(x) =

∫
Rn
G+
k (|x− y|)

(
2i∇( ~W (y)u0(y))− q(y)u0(y)

)
dy.

We use the following results of Agmon [25, Remark 2, Appendix A]: for any g ∈
H2
−δ(Rn) it is true that

1

|k|
‖g‖H2

−δ(Rn) + ‖g‖H1
−δ(Rn) + |k|‖g‖L2

−δ(Rn) ≤ c‖(∆ + k2)g‖L2
δ(Rn), |k| ≥ 1,

where δ > 1
2

and Hs
−δ(Rn), s = 0, 1, 2, denotes the weighted Sobolev spaces. As a

consequence we have uniformly in |k| ≥ 1 the crucial estimates

‖(−∆− k2 − i0)−1f‖L2
−δ(Rn) ≤

β

|k|
‖f‖L2

δ(Rn),
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‖(−∆− k2 − i0)−1f‖H1
−δ(Rn) ≤ β‖f‖L2

δ(Rn). (6)

The constant β will be used below precisely.
The operator (−∆− k2 − i0)−1 is the integral operator of convolution type. Then

using duality we can conclude that uniformly in |k| ≥ 1 it maps continuously H−1
δ (Rn)

to L2
−δ(Rn) with the same norm estimate β as above, i.e.

‖(−∆− k2 − i0)−1f‖L2
−δ(Rn) ≤ β‖f‖H−1

δ (Rn), (7)

where H−1
δ (Rn) denotes the dual of the Sobolev space H1

−δ(Rn).
We rewrite (5) as the operator equation

usc = ũ0 + Lk(usc), ũ0 = Lk(u0),

where the integral operator Lk is defined as

Lkf(x) :=

∫
Rn
G+
k (|x− y|)

(
2i∇( ~W (y)f(y))− q(y)f(y)

)
dy. (8)

The mapping properties and asymptotic expansion of the operator Lk are studied
in the following lemmas which have also independent interest.

Lemma 2.1. Let us assume that conditions (1) and (2) are fulfilled. Then ũ0 ∈
L2
−σ/2(Rn) and the integral operator Lk maps L2

−σ/2(Rn) into itself, where σ is the

same as in (2). Moreover, uniformly in |k| ≥ 1 the following estimates hold

‖ũ0‖L2
−σ/2(Rn) ≤ β

(
2‖ ~W‖L2

σ/2
(Rn) + ‖q‖L2

σ/2
(Rn)

)
(9)

and
‖Lkf‖L2

−σ/2(Rn) ≤ β
(

2‖ ~W‖L∞σ (Rn) + Cp‖q‖Lpσ(Rn)

)
‖f‖L2

−σ/2(Rn), (10)

where the constant Cp is equal to

Cp =

(
1

(2
√
π)n

Γ(p−n
2

)

Γ(p
2
)

) 1
p

.

Proof. Conditions (2) for p and σ imply that σ
2
> 1

2
and

Lpσ(Rn) ⊂ L2
σ/2(Rn).

It is therefore true that under the conditions (1) and (2) the functions V , ~W , ∇ ~W
and | ~W |2 belong to L2

σ/2(Rn). Since u0 is bounded then using Agmon’s result (6) we
obtain

‖ũ0‖L2
−σ/2(Rn) ≤

β

|k|

(
2|k|‖ ~W‖L2

σ/2
(Rn) + ‖q‖L2

σ/2
(Rn)

)
.
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Hence, the estimate (9) is proved. Next, applying (7) we obtain for any f ∈ L2
−σ/2(Rn)

that

‖Lkf‖L2
−σ/2(Rn) ≤ β

(
2‖∇( ~Wf)‖H−1

σ/2
(Rn) + ‖qf‖H−1

σ/2
(Rn)

)
≤ β

(
2‖ ~Wf‖L2

σ/2
(Rn) + ‖qf‖H−1

σ/2
(Rn)

)
≤ β

(
2‖ ~W‖L∞σ (Rn)‖f‖L2

−σ/2(Rn) + ‖qf‖H−1
σ/2

(Rn)

)
since the conditions (1) and (2) guarantee that ~W belongs to L∞σ (Rn). In order to
estimate the second term ‖qf‖H−1

σ/2
(Rn) we proceed as follows. First, we rewrite and

estimate this norm (using Hölder’s and Hausdorff-Young inequalities) as

‖qf‖H−1
σ/2

(Rn) = ‖q̃f̃‖H−1(Rn) = ‖F (q̃f̃)‖L2
−1(Rn) ≤ C0‖F (q̃f̃)‖

L
2p
p−2 (Rn)

≤ C0(2π)−n/p‖q̃f̃‖
L

2p
p+2 (Rn)

≤ C0(2π)−n/p‖q̃‖Lp(Rn)‖f̃‖L2(Rn), p > n,

where F is the Fourier transform, q̃(x) = (1 + |x|2)σ/2q(x), f̃(x) = (1 + |x|2)−σ/4f(x)
and the constant C0 is equal to

C0 =

(∫
Rn

1

(1 + |x|2)p/2
dx

)1/p

=

(√
π
n

Γ(n
2
)

∫ ∞
0

r
n−2
2 (1 + r)−p/2dr

)1/p

.

Combining this constant C0 with the latter inequality we obtain the value for the
constant Cp from lemma and the inequality (10). Thus, lemma is proved.

Corollary 2.1. The integral operator Lk for fixed k > 0 maps L∞(Rn) into itself with

the norm estimate depending on the norms ‖ ~W‖Lpσ(Rn) and ‖q‖Lpσ(Rn).

Lemma 2.2. Under the same assumptions as in Lemma 2.1, for any fixed k > 0 and
for any f ∈ C∞0 (Rn) the following asymptotical representation holds:

Lkf(x) = C
eik|x|k

n−3
2

|x|n−1
2

∫
Rn

e−ik(θ′,y)
(

2kθ′ ~W (y)f(y) + q(y)f(y)
)

dy

+O

(
1

|x|n+1
2

)
, |x| → ∞, (11)

where θ′ = x
|x| and constant C > 0 depends only on n.

Proof. Since f ∈ C∞0 (Rn) then integration by parts in (8) leads to

Lkf(x) = −2i

∫
Rn
∇yG

+
k (|x− y|) ~W (y)f(y)dy −

∫
Rn
G+
k (|x− y|)q(y)f(y)dy.
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In view of this version of (8) one must study the behavior for |x| → ∞ of the functions
G+
k and ∇G+

k , i.e.

i

4

(
k

2π|x− y|

)n−2
2

H
(1)
n−2
2

(k|x− y|), k
x− y
|x− y|

i

4

(
k

2π|x− y|

)n−2
2

H
(1)
n
2

(k|x− y|),

respectively, where H
(1)
ν denotes the Hankel function of first kind and of order ν. Since

k > 0 is fixed and y is bounded then k|x− y| → ∞ as |x| → ∞. Thus we may use the

behavior of the Hankel functions H
(1)
ν for large argument (see, for example, [26]), i.e.

H
(1)
n−2
2

(z) = cn
eiz

√
z

+O

(
1

z3/2

)
, H

(1)
n
2

(z) = −icn
eiz

√
z

+O

(
1

z3/2

)
,

where z → +∞ and the constant cn (which is the same for both asymptotic) is equal
to (see, for example, [26])

cn =

√
2

π
e−iπ

4
(n−1), n = 2, 3, ...

Hence, we obtain

G+
k (|x− y|) =

icn

4(2π)
n−2
2

eik|x−y|k
n−3
2

|x− y|n−1
2

+O

(
1

|x|n+1
2

)
, |x| → +∞

and (using x−y
|x−y| = x

|x| +O( 1
|x|)) we have also

∇yG
+
k (|x− y|) =

cn

4(2π)
n−2
2

θ′k
eik|x−y|k

n−3
2

|x− y|n−1
2

+O

(
1

|x|n+1
2

)
, |x| → +∞

with θ′ = x
|x| . In addition to these asymptotics, for bounded y and |x| → +∞ we have

|x− y|−
n−1
2 = |x|−

n−1
2 +O(|x|−

n+1
2 ), eik|x−y| = eik|x|e−i(θ′,y) +O(|x|−1),

and therefore

Lkf(x) = c̃n
eik|x|k

n−3
2

|x|n−1
2

∫
Rn

e−ik(θ′,y)
(

2kθ′ ~W (y)f(y) + q(y)f(y)
)

dy +O

(
1

|x|n+1
2

)
,

where c̃n = − icn

4(2π)
n−2
2

. Thus, lemma is proved.

These lemmas allow us to achieve the main goal of this section in the form of the
first main result of this work. Let us denote by α and γ the following norms:

α := 2‖ ~W‖L∞σ (Rn) + Cp‖q‖Lpσ(Rn), γ := 2‖ ~W‖L2
σ/2

(Rn) + ‖q‖L2
σ/2

(Rn). (12)
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Theorem 2.1. Assume that the conditions (1) and (2) for the coefficients of H are
satisfied and assume that αβ < 1. Then for any |k| ≥ 1 the integral equation (5) has
a unique solution usc from the space L2

−σ/2(Rn). Moreover, uniformly in |k| ≥ 1 the
following estimate holds

‖usc‖L2
−σ/2(Rn) ≤

βγ

1− βα
. (13)

Proof. Lemma 2.1 and the conditions of this theorem say that the integral operator
Lk maps in L2

−σ/2(Rn) with the norm estimate

‖Lk‖L2
−σ/2(Rn)→L2

−σ/2(Rn) ≤ βα < 1. (14)

In particular,
‖Lk‖H1/2

−σ/2(Rn)→L2
−σ/2(Rn)

≤ βα.

Since ũ0 also belongs to L2
−σ/2(Rn) (see Lemma 2.1) with the norm estimate βγ then

the integral equation has a unique solution usc that can be obtained by the iterations
as

usc = (I − Lk)−1(ũ0) =
∞∑
j=0

Ljk(ũ0).

The norm estimate follows now from Lemma 2.1 and the latter representation. It
proves the theorem.

Corollary 2.2. Under the conditions of Theorem 2.1, usc(x, k, θ) belongs to L∞(Rn)
in x for any fixed k > 0 and uniformly in θ ∈ Sn−1.

3 Scattering amplitude and direct backscattering

Born approximation

In this section we will consider the direct backscattering Born approximation for the
magnetic Schrödinger operator H with conditions (1)-(2) but with σ > n−n/p there.
The motivation for this problem is connected to the fact that the knowledge of the
scattering amplitude with the backscattering data gives essential information about
the unknown functions V and ~W .

Theorem 2.1, Lemma 2.2 (see representation (11)) and Corollary 2.1 yield the
following asymptotical representation (we may integrate by parts in (5) with these
new conditions (1)-(2) for the coefficients of H since u is bounded for fixed k > 0) for
the scattering solutions u(x, k, θ) with fixed k > 0 as |x| → +∞:

u(x, k, θ) = eik(x,θ) + C
eik|x|k

n−3
2

|x|n−1
2

A(k, θ′, θ) + o

(
1

|x|n−1
2

)
, (15)
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where the function A is called the scattering amplitude and defined by

A(k, θ′, θ) =

∫
Rn

e−ik(θ′,y)
(

2kθ′ ~W (y)u(y) + q(y)u(y)
)

dy. (16)

Here (as above) q = i∇ ~W + | ~W |2 + V , the constant C > 0 depends only on n and the
latter equality is understood in the sense of tempered distributions.

Substituting u = u0 + usc into (16) gives that

A(k, θ′, θ) =

∫
Rn

e−ik(θ′,y)
(

2kθ′ ~W (y)u0(y) + q(y)u0(y)
)

dy

+

∫
Rn

e−ik(θ′,y)
(

2kθ′ ~W (y)usc(y) + q(y)usc(y)
)

dy =: AB(k, θ′, θ) +R(k, θ′, θ). (17)

The function AB is called the direct Born approximation. It can be easily checked that
AB is actually equal to

AB(k, θ′, θ) = 2kθ′F ( ~W )(k(θ − θ′)) + F (q)(k(θ − θ′))
= k(θ + θ′)F ( ~W )(k(θ − θ′)) + F (| ~W |2 + V )(k(θ − θ′)), (18)

where F denotes the n−dimensional Fourier transform

F (f)(ξ) =

∫
Rn
f(x)ei(x,ξ)dx.

Next we establish a connection between the direct Born approximation and the
coefficients of the magnetic Schrödinger operator. In the future, this might give insight
into the inverse scattering problem with full scattering data.

Proposition 3.1. Let ξ 6= 0 be an arbitrary vector from Rn and let ξ̂⊥ be the unit
vector that is orthogonal to ξ. Let also k > 0 be such that ξ2 ≤ 4k2. Let us choose θ
and θ′ as follows:

θ =
ξ

2k
+
ξ̂⊥
2k

√
4k2 − ξ2, θ′ = − ξ

2k
+
ξ̂⊥
2k

√
4k2 − ξ2.

Then θ, θ′ ∈ Sn−1, ξ = k(θ − θ′), and

F (| ~W |2 + V )(ξ) =
1

2
(AB(k, θ′, θ) + AB(k,−θ,−θ′))√

4k2 − ξ2(ξ̂⊥, F ( ~W )(ξ))Rn =
1

2
(AB(k, θ′, θ)− AB(k,−θ,−θ′)) .

(19)

Proof. Follows straightforwardly from (18).
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Our next main interest (with respect to inverse problems) concerns to the par-
ticular case θ′ = −θ. This case leads to the so-called direct backscattering Born
approximation, i.e.

Ab
B(k,−θ, θ) = F (| ~W |2 + V )(2kθ). (20)

Formulae (17)-(20) show that in the frame of the backscattering Born approxima-
tion

A(k,−θ, θ) ≈ F (| ~W |2 + V )(2kθ).

But we want to write precisely more terms in the Born series. This is presented in the
following theorems which constitute the second main result of this work.

Theorem 3.1. The backscattering amplitude A(k,−θ, θ) admits the following repre-
sentation

A(k,−θ, θ) = F (| ~W |2 + V )(2kθ) + 2kθh1(kθ) + h0(kθ), (21)

where the functions h1(η), h0(η) both belong to L∞(Rn) with the norm estimates

‖h1‖L∞(Rn), ‖h0‖L∞(Rn) ≤
βγ2

1− βα
. (22)

Proof. The formula (17) shows that

R(k,−θ, θ) = −2kθ

∫
Rn

eik(θ,y) ~W (y)usc(y, k, θ)dy +

∫
Rn

eik(θ,y)q(y)usc(y, k, θ)dy.

Since

usc(x, k, θ) =
∞∑
j=1

Ljk(u0), u0(x, k, θ) = eik(θ,x)

then the representation (21) follows from the latter formulas. The estimates (22) can

be easily obtained from (10) and (13) by using the Hölder’s inequality since ~W, q
belong to L2

σ/2(Rn) and usc belongs to L2
−σ/2(Rn). Thus, theorem is proved.

Concerning the latter terms in the Born series (21) we have the following result.

Theorem 3.2. The sum of the functions 2kθh1 and h0 admits the following represen-
tation:

2kθh1(kθ) + h0(kθ) = − 1

(2π)n

∫
Rn

F (q)(kθ + η)F (q)(kθ − η)

η2 − k2 − i0
dη

+
4k

(2π)n

∫
Rn

θF ( ~W )(kθ + η)ηF ( ~W )(kθ − η)

η2 − k2 − i0
dη + hrest(kθ), (23)

where q denotes the complex conjugate of q, and where the function hrest has the fol-
lowing estimate for |k| ≥ 1

‖hrest‖L∞(Rn) ≤ 3
β2αγ2

1− βα
. (24)
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Proof. The formulas (17) and (21) imply that the R(k,−θ, θ) = 2kθh1 +h0 = R1 +R2,
where

R1 = −2kθ

∫
Rn

eik(θ,y) ~W (y)Lku0(y, k, θ)dy +

∫
Rn

eik(θ,y)q(y)Lku0(y, k, θ)dy,

R2 = −2kθ

∫
Rn

eik(θ,y) ~W (y)
∞∑
j=1

Ljkũ0(y, k, θ)dy +

∫
Rn

eik(θ,y)q(y)
∞∑
j=1

Ljkũ0(y, k, θ)dy

with Lku0 equal to (see (8))

Lku0(y, k, θ) = −2kθ

∫
Rn

eik(θ,z) ~W (z)G+
k (|y − z|)dz −

∫
Rn

eik(θ,z)q(z)G+
k (|y − z|)dz.

Using integration by parts, R2 can be written as

R2 = i

∫
Rn

eik(θ,y)∇ · ~W (y)
∞∑
j=1

Ljkũ0(y, k, θ)dy + 2i

∫
Rn

eik(θ,y) ~W (y) · ∇

(
∞∑
j=1

Ljkũ0(y, k, θ)

)
dy

−
∫
Rn

eik(θ,y)(| ~W |2 + V )(y)
∞∑
j=1

Ljkũ0(y, k, θ)dy.

Then we can easily obtain the representation

R1 = 4k2

∫
Rn

∫
Rn

eik(θ,y+z)G+
k (|y − z|)θ ~W (y)θ ~W (z)dydz

+ 2k

∫
Rn

∫
Rn

eik(θ,y+z)G+
k (|y − z|)θ ~W (y)(q(z)− q(z))dydz

−
∫
Rn

∫
Rn

eik(θ,y+z)G+
k (|y − z|)q(y)q(z)dydz =: I1 + I2 + I3 (25)

in the sense of tempered distributions. Let us consider I1. Using the facts F (G+
k )(η) =

1
η2−k2−i0

and F (φ · ψ) = (2π)−nF (φ) ∗ F (ψ) we have

I1 = 4k2

∫
Rn
θ ~W (z)eik(θ,2z)

∫
Rn

eik(θ,u)G+
k (|u|)θ ~W (u+ z)dudz

=
4k2

(2π)n

∫
Rn
θ ~W (z)eik(θ,2z)

∫
Rn

e−i(η,z) θF ( ~W )(η)

η2 − 2k(θ, η)− i0
dηdz

=
4k2

(2π)n

∫
Rn

θF ( ~W )(η)

η2 − 2k(θ, η)− i0

∫
Rn
θ ~W (z)ei(2kθ−η,z)dzdη

=
4k2

(2π)n

∫
Rn

θF ( ~W )(η)θF ( ~W )(2kθ − η)

η2 − 2k(θ, η)− i0
dη

=
4k2

(2π)n

∫
Rn

θF ( ~W )(kθ + η)θF ( ~W )(kθ − η)

η2 − k2 − i0
dη.

11



Proceeding similarly for I2 and I3 yields

I2 = − 4ik

(2π)n

∫
Rn

θF ( ~W )(kθ + η)F (∇ ~W )(kθ − η)

η2 − k2 − i0
dη,

I3 = − 1

(2π)n

∫
Rn

F (q)(kθ + η)F (q)(kθ − η)

η2 − k2 − i0
dη. (26)

Since I2 is actually equal to

I2 = − 4ik

(2π)n

∫
Rn

θF ( ~W )(kθ + η)(−ikθ + iη)F ( ~W )(kθ − η)

η2 − k2 − i0
dη

= −I1 +
4k

(2π)n

∫
Rn

θF ( ~W )(kθ + η)ηF ( ~W )(kθ − η)

η2 − k2 − i0
dη

then the main part in the representation (23) is proved. It remains now to estimate
hrest (or R2). Indeed (see, (12)-(14)),

|R2| ≤
∫
Rn
|∇ · ~W (y)|

∣∣∣∣∣
∞∑
j=1

Ljkũ0(y, k, θ)

∣∣∣∣∣ dy + 2

∫
Rn
| ~W (y)|

∣∣∣∣∣∇
∞∑
j=1

Ljkũ0(y, k, θ)

∣∣∣∣∣ dy
+

∫
Rn

(| ~W |2 + |V |)(y)

∣∣∣∣∣
∞∑
j=1

Ljkũ0(y, k, θ)

∣∣∣∣∣ dy
≤ ‖q‖L2

σ/2
(Rn)‖

∞∑
j=1

Ljkũ0‖L2
−σ/2(Rn) + 2‖ ~W‖H1

σ/2
(Rn)‖∇

∞∑
j=1

Ljkũ0‖H−1
−σ/2(Rn)

≤
(
‖q‖L2

σ/2
(Rn) + 2‖ ~W‖H1

σ/2
(Rn)

) β2αγ

1− βα
≤ 3

β2αγ2

1− βα
.

The latter inequality together with (24)-(26) show that Theorem 3.2 is completely
proved.

Summarizing our considerations (see (20)-(26)) we may conclude that neglect-
ing hrest the following direct backscattering Born approximation for the magnetic
Schrödinger operator holds

A(k,−θ, θ) ≈ Ã(k,−θ, θ) := F (| ~W |2 + V )(2kθ)

− 1

(2π)n

∫
Rn

F (q)(kθ + η)F (q)(kθ − η)

η2 − k2 − i0
dη+

4k

(2π)n

∫
Rn

θF ( ~W )(kθ + η)ηF ( ~W )(kθ − η)

η2 − k2 − i0
dη,

(27)

ub(x, k, θ) = eik(x,θ) + C
eik|x|k

n−3
2

|x|n−1
2

Ã(k,−θ, θ). (28)

12



These formulas give very good approximation for the backscattering amplitude A and
for the scattering solutions u uniformly in θ ∈ Sn−1. It is important that for this
approximation we need to have only the magnetic potential ~W and electric potential
V , but we do not need to have the exact solution u(x, k, θ) of the differential equation
Hu(x) = k2u(x).

4 Inverse Born approximation

The direct approximation (28) can be used for the inverse backscattering Born ap-
proximation as well. Theorems 3.1 and 3.2 give us the key to define the inverse
backscattering Born approximation as

qb
B(x) :=

1

(2π)n

∫ ∞
0

kn−1dk

∫
Sn−1

e−ik(θ,x)A

(
k

2
,−θ, θ

)
dθ. (29)

Due to this definition and formula (20) (see also (28)) we conclude that

qb
B(x) = (| ~W |2 + V )(x) + qquad(x) + qrest(x),

where the quadratic form qquad can easily be calculated precisely from (27) as

qquad(x) = − 1

(2π)n
F−1
ξ→x

(∫
Rn

F (q)(ξ − η)F (q)(η)

η2 − (ξ, η)− i0
dη

)
+

1

(2π)n
F−1
ξ→x

(∫
Rn

ξF ( ~W )(η)(2η − ξ)F ( ~W )(ξ − η)

η2 − (ξ, η)− i0
dη

)
. (30)

This equality must be understood in the sense of tempered distributions. The precise
form (30) of the quadratic term qquad allows us to estimate its smoothness in the two
dimensional case. Indeed, we have the following result from [23, Theorem 2.2].

Proposition 4.1 (n = 2). Let us assume that conditions (1) and (2) are fulfilled. Let

us also assume that F (q), F ( ~W ) ∈ Ls(R2) for some 1 < s < 2. Then qquad belongs to
the space

1. H t(R2), t < 4/s− 2 for 4/3 < s < 2;

2. H1(R2) for s = 4/3;

3. C(R2) ∩ L∞(R2) for 1 < s < 4/3.

The latter proposition means that the term qquad is smoother than the original

potential V (note that ~W is continuous and bounded). It means that we can recover
the main singularities of V (such as jumps over smooth curves) using the inverse Born
backscattering approximation.

13



Remark 4.1. If we assume that V ∈ Hα(Rn) and ~W ∈ Hα+1(Rn) with compact
supports and with

n− 1

2
< α <

n

2
, n = 2, 3

then qquad ∈ C(Rn) ∩ L∞(Rn). This further simplifies the recovery of singularities
of V . More precisely, using the inverse Born backscattering approximation we can
reconstruct all jumps and singularities of V .

5 Numerical examples

In this section we study numerically in two dimensions how well qb
B approximates

| ~W |2 +V . To this end, we employ the following scheme proposed in [27, 28]. For given

V, ~W we compute an approximation to the scattered field usc as

usc(x) ≈
J∑
j=1

uj, uj = Lkuj−1,

(see the proof of Theorem 3.1) by performing numerical integration over the supports

of ~W, V , see [27, 28] for details.
Then (synthetic) backscattering data is obtained from the approximation

A(k,−θ, θ) ≈ 4
√
πkR

−1− i
e−ikRusc(−Rθ, k, θ)

after putting x = Rθ′ = −Rθ in (15). We use J = 2, R = 105 in our examples and we
add 1% of Gaussian noise to scattering data.

In order to compute qb
B we invert (29) to read∫
R2

eik(x,θ)qb
B(x)dx = A(k/2,−θ, θ). (31)

We represent qb
B in the discrete form

qb
B(x) =

N∑
j=1

fjχrj(x),

where rj is a subdivision of unit cube, our area of interest, and χΩ is the characteristic
function of Ω ⊂ R2. If we substitute this representation into (31) and evaluate it
at several points k, θ we obtain a linear system Ef = g for the solution of unknown
coefficients f = (fj)

N
j=1.
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We use N = 802, 12 values for k and 40 values for θ uniformly from the unit
circle. Hence our linear system is of size 480 × 6400. The regularized solution of our
underdetermined and ill-conditioned linear system is obtained by truncated singular
value decomposition (TSVD) as follows. If E = USV ∗ with S = diag(s1, . . . , sn) is
the singular value decomposition of E then we compute

f = V LU∗g,

where L = diag(1/s1, . . . , 1/sr, 0, . . . , 0) and sr is the last singular value exceeding a
prescribed tolerance stol = 0.02.

Next we describe our sample scatterers. Since ~W is actually bounded and continu-
ous we concentrate our attention to recovering jumps of V . We put V (x) = 0.5χΩ(x),
where the domain Ω is an ellipse in Example 1 and a rectangle in Example 2, see
Figures 1-2. For ~W = (W1,W2) we use the (infinitely smooth) bump function

Wj(x) = wj exp(1)χ|x−cj |2<r2j (x) exp(r2
j/(|x− cj|2 − r2

j )), j = 1, 2

supported in the ball of radius rj centered at cj with scaled height wj. The following
table summarizes the parameters of magnetic potentials for both examples.

j wj cj rj
1
√

0.4 (0.3, 0.5) 0.2

2
√

0.3 (0.5,−0.5) 0.2

In Figures 1-2, the left panel shows the unknown combination | ~W |2 +V . The right
panel shows the reconstruction of qb

B. In both figures white line indicates the true
geometry of the support of the scatterers. We see that the inverse Born approximation
is able to locate quite accurately the shape and location of these supports from noisy
data, even in the case of non-smooth support of V .

Acknowledgments

This work was supported by the Academy of Finland (application number 250215,
Finnish Programme for Centres of Excellence in Research 2012-2017).

References
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Appendix: Proof of (3)

We rewrite first the magnetic Schrödinger operator in the form

H = −∆− 2i ~W · ∇+ q,

where q = i∇ ~W + | ~W |2 +V . If now f ∈ W 2
2 (Rn) then for inclusion W 2

2 (Rn) ⊂ D(H) it

is enough to show that ~W ·∇f and qf belong to L2(Rn), since obviously ∆f ∈ L2(Rn).

We have ~W ∈ W 1
p,σ(Rn) ⊂ W 1

p (Rn) ⊂ L∞(Rn) for σ > 0 and p > n. This fact implies

that ~W · ∇f ∈ L2(Rn) and q ∈ Lp(Rn). Further, since W 2
2 (Rn) ⊂ L∞(Rn) for n = 2, 3

then ∫
Rn
|q|2|f |2dx =

∫
|q|<1

|q|2|f |2dx+

∫
|q|>1

|q|2|f |2dx

≤ ‖f‖2
L2(Rn) + ‖f‖2

L∞(Rn)‖q‖
p
Lp(Rn) <∞
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for p > n. If n ≥ 5 then using the imbedding W 2
2 (Rn) ⊂ L

2n
n−4 (Rn) we obtain analo-

gously that∫
Rn
|q|2|f |2dx ≤ ‖f‖2

L2(Rn) + ‖f‖2
L2n/(n−4)(Rn)‖q‖

4p/n
Lp(Rn) <∞, p > n.

The same result is valid for n = 4 due to the imbedding W 2
2 (R4) ⊂ Ls(R4) for any

s <∞. Thus
W 2

2 (Rn) ⊂ D(H), n ≥ 2.

For the opposite inclusion we need to show that if g = Hf belongs to L2(Rn) with
f ∈ W 1

2 (Rn) then actually f ∈ W 2
2 (Rn). To this end, we use the identity

f = (−∆ + I)−1(g + 2i ~W · ∇f − qf + f).

Using now the imbedding W 1
2 (Rn) ⊂ L

2n
n−2 (Rn) for n ≥ 3 and W 1

2 (R2) ⊂ Ls(R2) for
any s <∞ we may easily obtain that

g + 2i ~W · ∇f − qf + f ∈ L2(Rn), n ≥ 2.

Thus, f ∈ W 2
2 (Rn) since

(−∆ + I)−1 : L2(Rn)→ W 2
2 (Rn), n ≥ 2.

This proves the needed opposite imbedding.
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