Skip to main content
Log in

The neural basis of ataxic dysarthria

  • Original Article
  • Scientific Papers
  • Published:
The Cerebellum Aims and scope Submit manuscript

Abstract

Lesions to the cerebellum often give rise to ataxic dysarthria which is characterized by a primary disruption to articulation and prosody. Converging evidence supports the likelihood of speech motor programming abnormalities in addition to speech execution deficits. The understanding of ataxic dysarthria has been further refined by the development of neural network models and neuroimaging studies. A critical role of feedforward processing by the cerebellum has been established and linked to speech motor control and to aspects of ataxic dysarthria. Moreover, this research has helped to define models of the cerebellar contributions to speech processing and production, and to posit possible regions of speech localization within the cerebellum. Bilateral, superior areas of the cerebellum appear to mediate speech motor control while a putative role of the right cerebellar hemispheres in the planning and processing of speech has been suggested.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Charcot JM. Lectures on the diseases of the nervous system. London: New Sydenham Society; 1877.

    Google Scholar 

  2. Duffy JR. Motor speech disorders: Substrates, differential diagnosis, and management. 2nd ed. St Louis: Mosby; 2005.

    Google Scholar 

  3. Zyski BJ, Weisiger B. Identification of dysarthria types based on perceptual analysis. J Communic Disorders. 1987;20: 367–78.

    Article  CAS  Google Scholar 

  4. Darley FL, Aronson AE, Brown JR. Clusters of deviant speech dimensions in the dysarthrias. J Speech Hearing Res. 1969;12:246.

    PubMed  CAS  Google Scholar 

  5. Zeplin J, Kent RD. Reliability of auditory-perceptual scaling of dysarthria. In: Robin D, Yorkston K, Beukelman DR, editors. Disorders of motor speech: Recent advances in assessment, treatment, and clinical characterization. Baltimore: Paul H. Brookes; 1996.

    Google Scholar 

  6. Cannito MP, Marquardt TP. Ataxic dysarthria. In: McNeil MR, editor. Clinical management of sensorimotor speech disorders. New York: Thieme Medical Publishers, Inc.; 1997. pp 217–47.

    Google Scholar 

  7. Ackermann H, Ziegler W. Acoustic analysis of vocal instability in cerebellar dysfunction. Ann Otol, Rhinol Laryngol. 1994;103:98–104.

    CAS  Google Scholar 

  8. Boutsen FR, Bakker K, Duffy JR. Subgroups in ataxic dysarthria. J Med Speech-Lang Pathol. 1997;5(1):27–36.

    Google Scholar 

  9. Yorkston KM, Beukelman DR, Strand EA, Bell KA. Management of motor speech disorders in children and adults. 2nd ed. Austin: PRO-ED, Inc.; 1999.

    Google Scholar 

  10. Ghez C. The cerebellum. In: Kandel ER, Schwartz JH, Jessell TM, editors. Principles of neural science. 3rd ed. East Norwalk, CT: Appleton & Lange; 1991. pp 626–46.

    Google Scholar 

  11. Ito M. Movement and thought: Identical control mechanisms by the cerebellum. Trends Neurosci. 1993;16:448–50, 453–4.

    Article  PubMed  CAS  Google Scholar 

  12. Miall RC. The cerebellum, predictive control and motor coordination. In: Sensory guidance of movement. West Sussex, UK: Novartis Foundation; 1998. pp 272–90.

    Google Scholar 

  13. Bioulac B, Burbaud P, Varoqueux D. Activity of area 5 neurons in monkeys during arm movements: Effects of dentate nucleus lesions and motor cortex ablation. Neurosci Lett. 1995;192:189–92.

    Article  PubMed  CAS  Google Scholar 

  14. Chapman CE, Spidalieri G, Lamarre Y. Activity of dentate neurons during arm movements triggered by visual, auditory and somesthetic stimuli in the monkey. J Neurophysiol. 1986;55(2):203–26.

    PubMed  CAS  Google Scholar 

  15. Cui S-Z, Li E-Z, Zang Y-F, Weng X-C, Ivry R, Want J-J. Both sides of the human cerebellum involved in preparation and execution of sequential movements. NeuroReport. 2000;11(17):3849–53.

    Article  PubMed  CAS  Google Scholar 

  16. Dreher J-C, Grafman J. The roles of the cerebellum and basal ganglia in timing and error prediction. Eur J Neurosci. 2002; 16 (8): 1609–19.

    Article  PubMed  Google Scholar 

  17. Horwitz B, Deiber MP, Ibanez V, Sadato N, Hallet M. Correlations between reaction time and cerebral blood flow during motor preparation. NeuroImage. 2000;12: 434–41.

    Article  PubMed  CAS  Google Scholar 

  18. Sakai K, Hikosaka O, Takina R, Miyauchi S, Nielsen M, Tamada T. What and when: Parallel and convergent processing in motor control. J Neurosci. 2000;20(7): 2691–700.

    PubMed  CAS  Google Scholar 

  19. Inhoff AW, Diener HC, Rafal RD, Ivry R. The role of cerebellar structures in the execution of serial movement. Brain. 1989;112:565–81.

    Article  PubMed  Google Scholar 

  20. Kent RD, Kent JF, Duffy JR, Thomas JE, Weismer G, Stuntebeck S. Ataxic dysarthria. J Speech, Lang Hearing Res. 2000;43(5):1275–89.

    CAS  Google Scholar 

  21. Kent RD, Kent JF, Rosenbek JC, Vorperian HK, Weismer G. A speaking task analysis of the dysarthria in cerebellar disease. Folia Phoniatrica et Logopaedica. 1997;49:63–82.

    Article  PubMed  CAS  Google Scholar 

  22. Hartelius L, Runmarker B, Andersen O, Nord L. Temporal speech characteristics of individuals with multiple sclerosis and ataxic dysarthria: ‘Scanning speech’ revisited. Folia Phoniatrica et Logopaedica. 2000;52:228–38.

    Article  PubMed  CAS  Google Scholar 

  23. Ackermann H, Hertrich I. Dysarthria in Friedreich’s ataxia: Timing of speech segments. Clin Linguistics Phonetics. 1993;7(1):75–91.

    Google Scholar 

  24. Ziegler W, Wessel K. Speech timing in ataxic disorders. Neurology. 1996;47:208–14.

    PubMed  CAS  Google Scholar 

  25. Kent RD, Rosenbek JC. Prosodic disturbance and neurologic lesion. Brain Lang. 1982;15:259–91.

    Article  PubMed  CAS  Google Scholar 

  26. Spencer KA, Rogers MA. Speech motor programming in hypokinetic and ataxic dysarthria. Brain Lang. 2005;94: 347–66.

    Article  PubMed  Google Scholar 

  27. Henry FM, Rogers DE. Increased response latency for complicated movements and a “memory drum” theory of neuromotor reaction. Res Quart. 1960;31:448–58.

    Google Scholar 

  28. Haaland KY, Harrington DL. Complex movement behavior: Toward understanding cortical and subcortical interactions in regulating control processes. In: Hammond GE, editor. Cerebral control of speech and limb movements. North Holland: Elsevier Science Publishers B.V.; 1990. pp 169–200.

    Chapter  Google Scholar 

  29. Harrington DL, Rao SM, Haaland KY, Bobholz JA, Mayer AR, Binder JR, et al. Specialized neural systems underlying representations of sequential movements. J Cognit Neurosci. 2000;12(1):56–77.

    Article  CAS  Google Scholar 

  30. Sheridan MR, Flowers KA, Hurrell J. Programming and execution of movement in Parkinson’s disease. Brain. 1987;110:1247–71.

    Article  PubMed  Google Scholar 

  31. Stelmach GE, Worringham CJ, Strand EA. The programming and execution of movement sequences in Parkinson’s disease. Int J Neurosci. 1987;36:55–65.

    Article  PubMed  CAS  Google Scholar 

  32. Silveri MC, Di Betta AM, Filippini V, Leggio MG, Molinari M. Verbal short-term store-rehearsal system and the cerebellum: Evidence from a patient with a right cerebellar lesion. Brain. 1998;121:2175–87.

    Article  PubMed  Google Scholar 

  33. Riva D. The cerebellar contribution to language and sequential functions: Evidence from a child with cerebellitis. Cortex. 1998;34:279–87.

    Article  PubMed  CAS  Google Scholar 

  34. Kent RD, Adams SG, Turner GS. Models of speech production. In: Lass NJ, editor. Principles of experimental phonetics. St Louis: Mosby; 1996. pp 3–44.

    Google Scholar 

  35. Gomi H, Kawato M. Adaptive feedback control models of the vestibulocerebellum and spinocerebellum. Biological Cybernetics. 1992;68(2):105–114.

    Article  PubMed  CAS  Google Scholar 

  36. Mehta B, Schaal S. Forward models in visuomotor control. J Neurophysiol. 2002;88:942–53.

    PubMed  Google Scholar 

  37. Van der Merwe A. A theoretical framework for the characterization of pathological speech sensorimotor control. In: McNeil MR, editor. Clinical management of sensorimotor speech disorders. New York: Thieme Medical Publishers, Inc.; 1997. pp 1–26.

    Google Scholar 

  38. Guenther FH, Hampson M, Johnson D. A theoretical investigation of reference frames for the planning of speech movements. Psychological Rev. 1998;105(4):611–33.

    Article  CAS  Google Scholar 

  39. Kent RD, Kent JF, Weismer G, Duffy JR. What dysarthrias can tell us about the neural control of speech. J Phonetics. 2000;28:273–302.

    Article  Google Scholar 

  40. Guenther FH. Cortical interactions underlying the production of speech sounds. J Communic Disorders. 2006;39: 350–365.

    Article  Google Scholar 

  41. Guenther FH, Ghosh SS, Tourville JA. Neural modeling and imaging of the cortical interactions underlying syllable production. Brain Lang. 2006;96(3):280–301.

    Article  PubMed  Google Scholar 

  42. Guenther F. Neural control of speech movements. In: Schiller NO, Meyer AS, editors. Phonetics & phonology in language comprehension and production: Differences and similarities. New York: Mounton de Gruyter; 2003.

    Google Scholar 

  43. Ackermann H, Mathiak K, Ivry R. Temporal organization of “internal speech” as a basis for cerebellar modulation of cognitive functions. Behav Cognit Neurosci Rev. 2004;3(1): 451–6.

    Google Scholar 

  44. Urban PP, Marx J, Hunsche S, Gawehn J, Vucurevic G, Wicht S, et al. Cerebellar speech representation: lesion topography in dysarthria as derived from cerebellar ischemia and functional magnetic resonance imaging. Arch Neurol. 2003;60(7):965–72.

    Article  PubMed  Google Scholar 

  45. Riecker A, Ackermann H, Wildgruber D, Dogil G, Grodd W. Opposite hemispheric lateralization effects during speaking and singing at motor cortex, insula and cerebellum. NeuroReport. 2000;11(9):1997–2000.

    Article  PubMed  CAS  Google Scholar 

  46. Riecker A, Wildgruber D, Grodd W, Ackermann H. Reorganization of speech production at the motor cortex and cerebellum following capsular infarction: A follow-up functional magnetic resonance imaging study. Neurocase. 2002;8(6):417–23.

    Article  PubMed  Google Scholar 

  47. Wildgruber D, Ackermann H, Grodd W. Differential contributions of motor cortex, basal ganglia, and cerebellum to speech motor control: Effects of syllable repetition rate evaluated by fMRI. NeuroImage. 2001;13:101–9.

    Article  PubMed  CAS  Google Scholar 

  48. Chen SH, Desmond JE. Cerebrocerebellar networks during articulatory rehearsal and verbal working memory tasks. Neuroimage. 2005;24(2):332–8.

    Article  PubMed  Google Scholar 

  49. Dogil G, Ackermann H, Grodd W, Haider H, Kamp H, Mayer J, et al. The speaking brain: A tutorial introduction to fMRI experiments in the production of speech, prosody and syntax. J Neurolinguistics. 2002;15(1):59–90.

    Article  Google Scholar 

  50. Papathanassiou D, Etard O, Mellet E, Zago L, Mazoyer B, Tzourio-Mazoyer N. A common language network for comprehension and production: A contribution to the definition of language epicenters with PET. Neuroimage. 2000;11(4):347–57.

    Article  PubMed  CAS  Google Scholar 

  51. Ackermann H, Wildgruber D, Daum I, Grodd W. Does the cerebellum contribute to cognitive aspects of speech production? A functional magnetic resonance imaging (fMRI) study in humans. Neurosci Lett. 1998;247(2-3):187–90.

    Article  PubMed  CAS  Google Scholar 

  52. Strelnikov KN, Vorobyev VA, Chernigovskaya TV, Medvedev SV. Prosodic clues to syntactic processing - a PET and ERP study. Neuroimage. 2006;29(4):1127–34.

    Article  PubMed  CAS  Google Scholar 

  53. Mathiak K, Hertrich I, Grodd W, Ackermann H. Discrimination of temporal information at the cerebellum: Functional magnetic resonance imaging of nonverbal auditory memory. Neuroimage. 2004;21(1):154–62.

    Article  PubMed  Google Scholar 

  54. Mathiak K, Hertrich I, Grodd W, Ackermann H. Cerebellum and speech perception: A functional magnetic resonance imaging study. J Cognit Neurosci. 2002;14(6):902–12.

    Article  Google Scholar 

  55. Marien P, Engelborghs S, Fabbro F, De Deyn PP. The lateralized linguistic cerebellum: A review and a new hypothesis. Brain Lang. 2001;79:580–600.

    Article  PubMed  CAS  Google Scholar 

  56. Cook M, Murdoch B, Cahill L, Whelan B-M. Higher-level language deficits resulting form left primary cerebellar lesions. Aphasiology. 2004;18(9):771–84.

    Article  Google Scholar 

  57. Bohland JW, Guenther FH. An fMRI investigation of syllable sequence production. Neuroimage. 2006;32(2):821–41.

    Article  PubMed  Google Scholar 

  58. Gilman S, Kluin KJ. Speech disorders in cerebellar degeneration studied with positron emission tomography. In: Blistzer A, Brin MF, Sasaki CT, Fahn S, Harris KS, editors. Neurologic disorders of the larynx. New York: Thieme Medical Publishers, Inc.; 1992.

    Google Scholar 

  59. Jürgens U. Neural pathways underlying vocal control. Neurosci Biobehav Rev. 2002;262:235–58.

    Article  Google Scholar 

  60. Kent RD, Duffy JR, Slama A, Kent JF, Clift A. Clinicoanatomic studies in dysarthria: Review, critique, and directions for research. JSLHR. 2001;44(3):535.

    Article  PubMed  CAS  Google Scholar 

  61. Ackermann H, Vogel M, Petersen D, Poremba M. Speech deficits in ischaemic cerebellar lesions. J Neurology. 1992;239(4):223–7.

    Article  CAS  Google Scholar 

  62. Nitschke M, Kleinschmidt A, Wessel K, Frahm J. Somatotopic motor representation in the human anterior cerebellum: A high-resolution functional MRI study. Brain. 1996;119(Part 3):1023–9.

    Article  PubMed  Google Scholar 

  63. Ackermann H, Hertrich I. The contribution of the cerebellum to speech processing. J Neurolinguistics. 2000;13:95–116.

    Article  Google Scholar 

  64. Klein D, Watkins KE, Zatorre RJ, Milner B. Word and nonword repetition in bilingual subjects: A PET study. Human Brain Mapping. 2006;27(2):153–61.

    Article  PubMed  Google Scholar 

  65. Riecker A, Kassubek J, Groschel K, Grodd W, Ackermann H. The cerebral control of speech tempo: Opposite relationship between speaking rate and BOLD signal changes at striatal and cerebellar structures. Neuroimage. 2006;29(1):46–53.

    Article  PubMed  Google Scholar 

  66. Soros P, Sokoloff LG, Bose A, McIntosh AR, Graham SJ, Stuss DT. Clustered functional MRI of overt speech production. Neuroimage. 2006;32(1):376–87.

    Article  PubMed  Google Scholar 

  67. Bengtsson SL, Ehrsson HH, Forssberg H, Ullen F. Effectorindependent voluntary timing: Behavioural and neuroimaging evidence. Eur J Neurosci. 2005;22(12):3255–65.

    Article  PubMed  Google Scholar 

  68. Jansen A, Floel A, Van Randenborgh J, Konrad C, Rotte M, Forster AF, et al. Crossed cerebro-cerebellar language dominance. Human Brain Mapping. 2005;24(3):165–72.

    Article  PubMed  Google Scholar 

  69. Riecker A, Mathiak K, Wildgruber D, Erb M, Hertrich I, Grodd W, et al. fMRI reveals two distinct cerebral networks subserving speech motor control. Neurology. 2005;64(4): 700–6.

    PubMed  CAS  Google Scholar 

  70. Tan LH, Spinks JA, Gao JH, Liu HL, Perfetti CA, Xiong J, et al. Brain activation in the processing of Chinese characters and words: A functional MRI study. Human Brain Mapping. 2000;10(1):16–27.

    Article  PubMed  CAS  Google Scholar 

  71. Perry D, Zatorre R, Petrides M, Alivisators B, Meyer E, Evans A. Localization of cerebral activity during simple singing. Neuroreport. 1999;10(18):3979–84.

    Article  PubMed  CAS  Google Scholar 

  72. Price CJ, Wise RJ, Warburton EA, Moore CJ, Howard D, Patterson K, et al. Hearing and saying. The functional neuroanatomy of auditory word processing. Brain. 1996;119(Part 3):919–31.

    Article  PubMed  Google Scholar 

  73. Sidtis JJ, Gomez C, Groshong A, Strother SC, Rottenberg DA. Mapping cerebral blood flow during speech production in hereditary ataxia. Neuroimage. 2006;31(1): 246–54.

    Article  PubMed  Google Scholar 

  74. Urban PP, Rolke R, Wicht S, Keilmann A, Stoeter P, Hopf HC, et al. Left-hemispheric dominance for articulation: A prospective study on acute ischaemic dysarthria at different localizations. Brain: J Neurol. 2006;129(3):767–77.

    CAS  Google Scholar 

  75. Schoch B, Dimitrova A, Gizewski ER, Timmann D. Functional localization in the human cerebellum based on voxelwise statistical analysis: A study of 90 patients. Neuroimage. 2005;30(1):36–51.

    Article  PubMed  Google Scholar 

  76. Stangel M, Stapf C, Marx P. Presentation and prognosis of bilateral infarcts in the territory of the superior cerebellar artery. Cerebrovasc Dis. 1999;9(6):328–33.

    Article  PubMed  CAS  Google Scholar 

  77. Erdemoglu AK, Duman T. Superior cerebellar artery territory stroke. Acta Neurologica Scand. 1998;98(4):283–7.

    Article  CAS  Google Scholar 

  78. Marie RM, Rossa Y, Lambert J, Verard L, Marchal G, Viader F. Ataxic hemiparesis with cerebellar dysarthria due to an opercular lesion. Revue Neurol. 1998;154(1): 28–34.

    CAS  Google Scholar 

  79. Chiu MJ, Chen RC, Tseng CY. Clinical correlates of quantitative acoustic analysis in ataxic dysarthria. Eur Neurol. 1996;36(5):310–4.

    Article  PubMed  CAS  Google Scholar 

  80. Gironell A, Arboix A, Marti-Vilalta JL. Isolated dysarthria caused by a right paravermal infarction. J Neurol, Neurosurg Psychiatry. 1996;61(2):205–6.

    CAS  Google Scholar 

  81. Terry JB, Rosenberg RN. Frontal lobe ataxia. Surgical Neurol. 1995;44(6):583–8.

    Article  CAS  Google Scholar 

  82. Chaves CJ, Caplan LR, Chung CS, Tapia J, Amarenco P, Teal P, et al. Cerebellar infarcts in the New England Medical Center Posterior Circulation Stroke Registry. Neurology. 1994;44(8):1385–90.

    PubMed  CAS  Google Scholar 

  83. Silveri MC, Leggio MG, Molinari M. The cerebellum contributes to linguistic production: A case of agrammatic speech following a right cerebellar lesion. Neurology. 1994;44:2047–50.

    PubMed  CAS  Google Scholar 

  84. Barth A, Bogousslavsky J, Regli F. The clinical and topographic spectrum of cerebellar infarcts: A clinicalmagnetic resonance imaging correlation study. Ann Neurol. 1993;33(5):451–6.

    Article  PubMed  CAS  Google Scholar 

  85. Kase CS, Norrving B, Levine SR, Babikian VL, Chodosh EH, Wolf PA, et al. Cerebellar infarction. Clinical and anatomic observations in 66 cases. Stroke. 1993;24(1):76–83.

    PubMed  CAS  Google Scholar 

  86. Amarenco P, Chevrie-Muller C, Roullet E, Bousser MG. Paravermal infarct and isolated cerebellar dysarthria. Ann Neurol. 1991;30(2):211–3.

    Article  PubMed  CAS  Google Scholar 

  87. Amarenco P, Roullet E, Goujon C, Cheron F, Hauw JJ, Bousser MG. Infarction in the anterior rostral cerebellum (the territory of the lateral branch of the superior cerebellar artery). Neurology. 1991;41(2, Part 1):253–8.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kristie A. Spencer PhD.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Spencer, K.A., Slocomb, D.L. The neural basis of ataxic dysarthria. Cerebellum 6, 58–65 (2007). https://doi.org/10.1080/14734220601145459

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1080/14734220601145459

Keywords

Navigation