POLITECNICO DI TORINO
Repository ISTITUZIONALE

Network interface power management and TCP congestion control: a troubled marriage

Original

Network interface power management and TCP congestion control: a troubled marriage / Panarello, Carla; Lombardo,
Alfio; Schembra, Giovanni; Meo, Michela; Mellia, Marco; AJMONE MARSAN, Marco Giuseppe. - In;: AUSTRALIAN
JOURNAL OF ELECTRICAL & ELECTRONICS ENGINEERING. - ISSN 1448-837X. - STAMPA. - 13:1(2016), pp. 67-76.
[10.1080/1448837X.2015.1093678]

Availability:
This version is available at: 11583/2645227 since: 2016-07-16T22:25:47Z

Publisher:
Taylor Francis

Published
DOI:10.1080/1448837X.2015.1093678

Terms of use:

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Publisher copyright

(Article begins on next page)

28 April 2024

Network Interface Power Management and
TCP Congestion Control: a Troubled Marriage

Carla Panarello*, Alfio Lombardo, Giovanni Schembra®, Michela Meo*, Marco Mellia*, Marco Ajmone Marsan*$
*CNIT - Research Unit of University of Catania, Italy - cpana@dieei.unict.it
TDIEEI - University of Catania, Italy - {lombardo,schembra} @dieei.unict.it
fDET - Politecnico di Torino, Italy - {meo,mellia,ajmone } @tlc.polito.it
Snstitute IMDEA Networks - Madrid, Spain

Abstract—Optimizing the tradeoff between power saving and
Quality of Service (QoS) in the current Internet is a challenging
research objective, whose difficulty stems also from the dominant
presence of TCP traffic, and its elastic nature. In a previous
work we have shown that an intertwining exists between capacity
scaling approaches and TCP congestion control. In this paper we
investigate the reasons of such intertwining, and we evaluate how
and how much the dynamics of the two algorithms affect each
other’s performance. More specifically, we will show that such
an interaction is essentially due to the overlap of the two closed
loop controls, with different time constants.

I. INTRODUCTION

In today’s Internet, a significant fraction of the energy
consumed by network devices is wasted, because no or very
little proportionality exists between energy consumption and
device utilization; in other words, the energy consumption of
network devices is today largely independent of the carried
traffic. For this reason, recent research works advocate the
possibility of improving energy efficiency of network devices
by modulating their switching and transmission capacity ac-
cording to their current traffic load [1], [2], [3], [4]. In such
case, the power consumption of a network device can be
expressed as a function of the current traffic rate r. Normally,
we assume that the power P(r) consumed by a network device
carrying traffic at rate r can be expressed as: P(r) = Py+ f(r),
where P is the static amount of power necessary to power on
the device at zero traffic load, and f(r) represents the rate-
dependent portion of power consumption.

Of course, in the designer intention, the reduction of the
overall network energy consumption achieved by modulating
switching and transmission capacity should be achieved with-
out adversely affecting network performance. This quite obvi-
ous request is not trivially achieved in the case of TCP traffic.
Indeed, in the case of TCP, congestion control algorithms and
energy-saving mechanisms may interact, with the effect of
decreasing both QoS and energy savings. More specifically,
while on the one side the TCP congestion control algorithm
adapts the TCP source sending rate to the available network
resources, on the other, green routers activate their power

The research leading to these results has received funding from the Eu-
ropean Union Seventh Framework Programme (FP7/2007-2013) under grant
agreement n. 257740 (Network of Excellence "TREND”).

management schemes by scaling their service rate, that is their
switching and transmission capacity, according to traffic. In
turn, the variation of a green router service rate determined by
power management schemes induces changes in the network
available resources, which affect TCP congestion control, and
so on, with a loop whose effects are difficult to predict. Since
most of the traffic in today’s Internet is carried by TCP, the
investigation of the behavior of the resulting closed loop and
of the effect of its time constants is of fundamental importance
for energy-efficient networking research, and is the objective
of this work.

In a previous work [5], we presented a preliminary ex-
ploration of the interplay between the congestion control
algorithm of TCP and capacity scaling approaches. Simulation
results for a simple scenario showed that mutual reactions
exist, and impact performance, in terms of both energy saving
and QoS. In this paper, we conduct a much more detailed
analysis, to understand how the dynamics of both mechanisms
affect each other’s performance. The results collected in this
paper indicate that the relative speed of the two algorithms
plays a fundamental role, determining the conditions for the
successful or unsuccessful coexistence of the two mechanisms.

In particular, in Section II, we describe the case study we
use to investigate on the intertwining between capacity scaling
and TCP congestion control. The simulation setup is described
in Section III. Numerical results are presented in Section IV.
In Section V we discuss related work, and finally, in Section
VI we draw our conclusions.

II. CASE STUDY

In this section we describe the selected case study. In
order to understand how TCP congestion control and capacity
scaling interact, and affect each other’s performance, we
consider a simple bottleneck network topology, like the one
depicted in Fig. 1. We look at two scenarios. In the first one,
named TCP + PC, we have both power control in node N1
and TCP traffic with its congestion control. In the second
scenario, named TCPonly, node N1 does not implement any
power control, and TCP implements the only traffic control
mechanism. Let us note that we address this latter scenario as
a reference for our study.

TCP source

e .

»

TCP degtination

R

oF

5=

Background traffic source

Fig. 1.

To better understand which dynamics come into play, we
initially focus our attention on a single TCP connection
(Section IV-A).

In order to also analyze the interplay between TCP conges-
tion control and capacity scaling with a more realistic setting
for the TCP traffic, in Section IV-C, we consider the fact
that TCP traffic may not fully utilize the resources of node
N1 because of the presence of bottlenecks elsewhere in the
network. To model such a context, we modify the bandwidth
available to the TCP flow along its path, so as to introduce
higher variations on its sending rate. In the network topology
of Fig. 1 this corresponds to selecting different values for the
capacity of the link between nodes N2 and N3.

Note that the TCP congestion control provides a quick
reduction of the TCP sending rate in the case of losses or
congestion detection, but the increase of the TCP sending rate
is always gradual. However, in our study it can be interesting
to also look at the case of a rapid increase of the arrival rate
at router N1, to see how it may affect the performance of
both TCP and capacity scaling. For this reason we introduce
in Section IV-B, a bursty background traffic which follows the
same path as our reference TCP connection (see Fig. 1).

In all our simulations, for the scaling of switching and
transmission capacity within node N1 we consider the power
management mechanism proposed in [4], and there referred as
practRA. The goal of the practRA algorithm is to determine
the service rate closest to the arrival rate, among a set of
available values. To this purpose, this technique predicts the
future arrival rate at time ¢!, 7¢, by using an exponentially
weighted moving average (EWMA) of the measured history of
past arrivals. Moreover, both the current buffer length g and the
current service rate 7; of the green router are used to estimate
the potential queuing delay in the case the service rate 7¢ is
used, so as to avoid violating a given delay constraint, d. Due
to the arrangement procedures occurring when the service rate
of the green router is requested to change, the device cannot
send packets for & seconds after each transition. So, in order
to avoid the costs of a high number of rate transitions, these
can occur only if at least a minimum time interval, greater
than J, passed since the previous transition. In the following,
we will refer to this time interval as minimum Rate Change
Interval mRCI.

I'To simplify notation, we omit the explicit indication of dependence on
time f.

oL

i

Background tréffic destination

Network topology

TABLE I
SIMULATION PARAMETERS

Simulation Time 300s

Maximum Link Capacity (NV1-N2) 10Mb/s
Maximum Link Capacity (N2-N3) 10Mb/s
Maximum Transfer Unit (MTU) 1500B

Round-Trip Time (RTT) {1,10,50,100}ms

minimum Rate Change Interval (mRCI) {10,50,100,500, 1000} ms

Background traffic

Burst duration distribution Exponential

Average burst duration (bON) {1,10,50,100}ms

Background Traffic Cycle Is

Bottleneck link N2-N3

Available bandwidth distribution Uniform

Available bandwidth range [1,10]Mb/s

Time interval distribution .
Exponential

between bandwidth changes

Average time interval (BN)

-3 5.10-2 5.10-!
between bandwidth changes 15-107°,5-107%,5-107,5}s

In formulae, the algorithm works as follows:
« A link operating at rate r; with current queue size g
increases its rate to r;y iff <% >d OR SZ% >d— 8);
o A link operating at rate r; with current queue size g
decreases its rate to r;_1 iff (4 =0 AND 7y <r,_y).
Note that a detailed analysis of the power saving capability
of the above power management algorithm is out of the scope
of this paper, also because it is hardware and technology
dependent. Nevertheless, an indicative measure of the energy
saved by means of a capacity scaling mechanism can be
provided by evaluating the reduction of the average service rate
with respect to the maximum output link capacity, provided
that the power consumption profile of a green router is
supposed to be a monotonically increasing function of its
service rate. This is the case for the most relevant hardware
technologies available today, such as Frequency Scaling (FS)
and Dynamic Voltage Scaling (DVS) [7]. In these cases, the
power P(r) consumed by a network device can be computed
as P(r) = P;+ f(r), where the rate-dependent portion of the
power consumption f(r) is a linear or cubic function of r, i.e.
f(r)=0(r) and f(r) = O(r?), for FS and DVS respectively,
whereas Py is the static amount of power [4].

III. SIMULATION SETUP

In this section we describe the simulation setup. The
duration of each simulation run is 300 seconds. The MTU
length is 1500 bytes. The transport protocol is TCP NewReno.
TCP connections are long-lived, and transmit maximum size

== RTT=1ms
40¢ RTT=10ms |
35 —A=RTT=50ms ||
X ——RTT=100ms
_5 30¢ 8
S 25¢]
©
o
o 20F 8
©
< 15 8
£
—10; i
A |
0L~ 3 o
10 100 500 1000
BnB [ms]

(a) Average Link Rate chosen by the capacity scaling algorithm

15007 :
== RTT=1ms
RTT=10ms
—4—RTT=50ms
——RTT=100ms
1000¢ 1

N. switch

500¢

v

ol o .
10 100 500 1000
BnB [ms]
(c) Number of Link Rate changes
Fig. 2.

packets as allowed by the window size. The buffer size of
routers N1, N2 and N3 is set equal to the bandwidth-delay
product.

The round trip propagation delay varies in each simulation
run in the set RTT = {1,10,50,100} ms. The maximum
capacity of the link between nodes N1 and N2 is set to 10
Mb/s, while the service rate of N1 is set by the capacity
scaling algorithm with a granularity of 1 Mb/s in the range
[1,10] Mb/s. The interval between two consecutive service rate
updates (minimum Rate Change Interval, mRCI) varies in the
set mRCI = {10,50, 100,500, 1000} ms.

The capacity of the link between nodes N2 and N3 is
initially set to 10 Mb/s. However, in order to consider how the
presence of bottlenecks in the network impacts the interaction

— 45 ‘
X - RTT=1ms
s 401 RTT=10ms ||
8 35+ —4—RTT=50ms |l
3 ——RTT=100ms
230]
2
< 25 1
[@)]
=]
Q 20t 1
=
o L i
S 15
|_
o 10]
[@)]
©
FoN |
< A

o“ & —h

10 100 500 1000
BnB [ms]

(b) Average TCP throughput reduction in the TCP + PC case with respect to
the TCPonly case

-2

10 p
8 10_3P“ P4 == = = i
3 LA-' _____ A A
TCPonly TCP+PC
-m-RTT=1ms ===RTT=1ms
RTT=10ms RTT=10ms
-A-RTT=50ms —4—RTT=50ms
_4||"¢-RTT=100ms ——RTT=100ms
1 T T 1 T
0 10 100 500 1000
BnB [ms]
(d) Loss

Single TCP source

between TCP and capacity scaling, we have also considered,
in Section IV-C, the case where the available bandwidth
along the link between nodes N2 and N3 varies during the
simulation time. More specifically, the available bandwidth
in such a link is uniformly distributed in the range [1,10]
Mb/s, and the duration of the interval between changes of
available bandwidth is exponentially distributed with average
BN ={5-1073,5-10"2,5-10"",5} s.

Moreover, as mentioned in Section II, in order to consider
also the case where rapid increases of the arrival rate at node
N1 may affect the performance of both TCP and capacity scal-
ing, we have introduced, in Section IV-B, a bursty background
traffic whose burst duration is distributed exponentially with
average bON = {1,10,50,100} ms, and cycles every second.

60

—rIN TCPonly
—rIN TCP+PC

- 40 link rate
5
=

20

W NI LI TP IT T I e e ey rys
0 10 20 30 40 50
Time [s]
(a) RTT = 10ms - mRCI = 10ms
60 ‘
—rIN TCPonly
—rIN TCP+PC

) 407 link rate
S
=3

20

S'ANNNRNNRNANARARRRRERAREEE]
0 10 20 30 40 50
Time [s]
(¢) RTT = 10ms - mRCI = 500ms

Fig. 3.

evolution of the arrival rate at node N1 in the TCP + PC and TCPonly cases

The simulation parameters are summarized in Table I.

Next we present results in terms of both QoS and energy
saving. As far as QoS is concerned, we consider as perfor-
mance parameter the reduction of the TCP throughput in the
TCP + PC case with respect to the TCPonly case, and the
percentage of packet loss in both cases. The performance in
terms of energy saving is hardware and technology dependent.
However, an idea of the effectiveness of the capacity scaling
algorithm in reducing the energy consumption is given through
the evaluation of the reduction of the service rate with respect
to the maximum link capacity: higher rate reductions translate
into larger energy savings.

Moreover, an important parameter to evaluate the efficiency
of the capacity scaling mechanism is the number of changes of
service rate: every change of rate implies a cost (again depen-
dent from the hardware technology), so that the efficiency of
the mechanism is reduced as the number of change increases.

IV. NUMERICAL RESULTS

In this section we show how the intertwining between the
TCP congestion control algorithm and the capacity scaling
mechanism affects each other’s performance. To this purpose
we conducted extensive simulations with the ns-2.30 simulator
[6]. In particular, in Section IV-A we analyze results in the case
of a single persistent TCP source, without background traffic
and without bottlenecks elsewhere in the network. The impact
of a background traffic is evaluated in Section IV-B. Finally,
in Section IV-C, we presents results in the case a bottleneck
is present in the network.

A. Single TCP source

In this section we discuss results in the case of a single
persistent TCP source, without background traffic and without

—rIN TCPonly
—rIN TCP+PC H
link rate

50
Time [s]

(b) RTT = 100ms - mRCI = 10ms

—rIN TCPonly
— 1IN TCP+PC j
link rate

VG A

pov)

[Mb/s]

JES— P

30 40

Time [s]

(d) RTT = 100ms - mRCI = 500ms

Single TCP source - Comparison between the temporal evolution of the service rate chosen by the capacity scaling algorithm and the temporal

bottlenecks elsewhere in the network. Since both TCP and ca-
pacity scaling are feedback-based mechanisms, with temporal
parameters RTT and mRCI respectively, we demonstrate that
the relative values of this two parameters determine how the
two algorithms interact and affect each other’s performance.

In Fig. 2 we present the average service rate chosen by the
capacity scaling mechanism (Fig. 2(a)), the reduction of the
TCP throughput in the TCP + PC case with respect to the
TCPonly case (Fig. 2(b)), the number of service rate changes
made by the algorithm (Fig. 2(c)), and the percentage of packet
loss in both the TCP + PC and TCPonly cases (Fig. 2(d)).
Results show that for small values of RT'T', and for large values
of the mRCI parameter, the average service rate chosen by the
capacity scaling algorithm is very close to the maximum link
capacity. In these cases, no significant energy saving is present,
and at the same time no QoS degradation is introduced by the
capacity scaling mechanism. Indeed, the reduction of the TCP
throughput with respect to the TCPonly case is almost zero,
and the percentage of packet loss is almost the same as in the
TCPonly case. Note, however, that when small values of the
mRCI parameter are considered, a small service rate reduction
and a slight performance degradation is present.

Instead, when higher values of RTT are considered (e.g.
RTT = 100 ms, magenta line in Fig. 2(a) and Fig. 2(b)), the
service rate chosen by the capacity scaling algorithm is about
20-40% lower than the maximum link capacity, meaning that
some energy saving is present. However, the reduction of the
throughput of the TCP source, in the TCP + PC case with
respect to the TCPonly case, is higher than in the previous
cases, and because of this the loss probability becomes higher,
so the action of the capacity scaling negatively affects the TCP
performance. This performance degradation is higher for small

100y

—=—RTT=1ms

RTT=10ms
__ 80} ——RTT=50ms |
2, 2 1 ——RTT=100ms
= —Y
Xe)]
5 605 1
>
°
o
)
§ 40 g
X~
£
7
20r 1
.*}\]L)
O\ L ; “
10 100 500 1000
BnB [ms]

(a) Average Service Rate chosen by the capacity scaling algorithm

7000r ;
=== RTT=1ms
6000’ RTT=10mS 4
——RTT=50ms
5000 ——RTT=100ms||
S 4000]
=
7]
= 3000 1
2000 1
1000¢ 1
Ol - =
10 100 500 1000
BnB [ms]

(c) Number of Service Rate changes

— 100p :
X ——RTT=1ms
s RTT=10ms
S 80f ——RTT=50ms |
3 ,/{\ ——RTT=100ms
(] T =
é 60 L\}\‘* 1
<
(@]
>
e
£ 40 .
o
O
|_
g 20]
S —
5)1
<>E O L | T t

10 100 500 1000

BnB [ms]

(b) Average TCP throughput reduction in the TCP + PC case with respect to
the TCPonly case

10°
< 10 1
o
8
=107 :
TCPonly TCP+PC
_a]|""=RTT=1ms =——RTT=1ms
10 §-+-RTT=10ms RTT=10ms |
-+=-RTT=50ms ——RTT=50ms
10 - +-RTT=100ms ——RTT=100ms
10 100 500 1000
BnB [ms]
(d) Loss

Fig. 4. Background Traffic (hON = 100ms)

values of the mRCI parameter.

In order to understand the reasons of such results, Fig. 3
presents a comparison between the temporal evolution of
the service rate chosen by the capacity scaling algorithm
(green line) and the temporal evolution of the arrival rate
in the TCP + PC and TCPonly cases (blue and black lines,
respectively). Note that, in the case of single TCP source, the
arrival rate at node N1 corresponds to the TCP sending rate.

Let us start by considering the case where RTT is small.
Fig. 3(a) and Fig. 3(c) show that the TCP source achieves an
average sending rate almost equal to the maximum available
bandwidth (10 Mb/s), and the service rate provided by the
capacity scaling mechanism follows the TCP sending rate and

2The spikes in the figures are related to the increase of the TCP sending
rate before a loss detection and the consequent sending rate reduction

stabilizes on that value. Note that, when the mRCI parameter
presents small values (Fig. 3(a)), the service rate exhibits
small variations around the average value. Such variations
disappear as the mRCI parameter becomes higher (Fig. 3(c)).
In fact, for high values of the mRCI parameters, the capacity
scaling algorithm is less reactive: it works on an average of
the arrival rate calculated on longer time intervals and does
not need to modify the service rate, so the higher the mRCI
parameter, the more similar the behavior to a non-capacity
scaling mechanism.

On the contrary, when RT'T is large (Fig. 3(b) and Fig. 3(d)),
the consequent higher bandwidth-delay product makes the
TCP source sending rate widely variable. Therefore, the TCP
source is not able to completely exploit the available band-
width of 10 Mb/s, so the average TCP sending rate is lower,

60 :
—rIN TCPonly
—rIN TCP+PC
- 40 link rate I
)
=
20 “
0 4 | ‘ V
0 10 20 30 40 50
Time [s]
(a) RTT = 10ms - mRCI = 10ms
60 :
—IN TCPonly
—rIN TCP+PC
o 40r link rate I
)
=3
L L L]
ot
0
0 10 20 30 40 50
Time [s]
(¢) RTT = 10ms - mRCI = 500ms
Fig. 5.

—rIN TCPonly
—¥IN TCP+PC

link rate

Time [s]
(b) RTT = 100ms - mRCI = 10ms

20

—rIN TCPonly
—rIN TCP+PC
link rate

15

[Mb/s]

Time [s]
(d) RTT = 100ms - mRCI = 500ms

Background Traffic (hON = 100ms): Comparison between the temporal evolution of the service rate chosen by the capacity scaling algorithm and

the temporal evolution of the arrival rate at node N1 in the TCP+ PC and TCPonly cases

and the capacity scaling algorithm can reduce the service
rate, thus providing some energy saving. However, as we
noted before, in this cases the reduction of the service rate
by the capacity scaling mechanism heavily affects the TCP
performance. This performance degradation is higher for small
values of the mRCI parameter. Indeed, while for the TCP
congestion control, high values of RTT result in wide and
slow variations of the TCP sending rate, the capacity scaling
with small mRCI parameters quickly modifies the service rate
according to the TCP sending rate variation. So, every time
the TCP congestion control tries to increase the TCP sending
rate, it is hampered by the service rate previously chosen by the
capacity scaling mechanisms according to the previous (lower)
TCP sending rate. This is evident in Fig. 3(b), where it is
possible to see that, after a TCP sending rate reduction (e.g.
at the time instant 14, due probably to some loss), the TCP
sending rate takes about 6 seconds to reach again the 10Mb/s
value in TCPonly case, whereas it takes about 14 seconds in
TCP+ PC case.

Let us now investigate the effects of larger values of the
mRCI parameter, in the case of large RTT. As mentioned
before, the performance degradation is lower when mRCI
increases. However, note that the choice of a higher value
of mRCI does not represent actually a better choice, as
demonstrated in Fig. 3(d). Indeed, when the TCP sending rate
decreases as a consequence of some loss detection, the service
rate does not decrease accordingly. Therefore, the service rate
remains higher than the arrival rate, and a waste of energy
occurs. However, in the meanwhile, the TCP sending rate
can increase freely. Unfortunately, as soon as the arrival rate
becomes equal to the service rate, the further increase of the
sending rate by the TCP source is hampered again by the

service rate. We can see that the rising slope of the blue and
green lines, related to the TCP sending rate in the TCP + PC
case, and the service rate, respectively, are almost the same
as in the case of a small mRCI value (Fig. 3(b)). Therefore,
we can conclude that the improvement of performance for
increasing values of mRCI, is actually due only to the slower
decrease of the service rate. This is actually a very particular
case, where the variation of the arrival rate at node N1 is
quite regular due to the presence of a single TCP source,
which does not compete for the available bandwidth with other
traffic flows and does not suffer for the presence of bottlenecks
elsewhere in the network. We will see in the following, that
the presence of disturbing elements, like background traffic or
bottlenecks, reverse these results, with performance becoming
worst when mRCI increases.

B. Background traffic

In this section we evaluate the impact of bursty background
traffic on the interaction between TCP and capacity scaling
mechanisms. We generated results for different dynamics of
the background traffic. Confidence intervals at 95% confidence
level were evaluated for all cases. For the sake of space, here
we present only the case of hON = 100 ms. However, similar
results are obtained in the other cases that we studied.

Fig. 4(a) shows that the service rate is substantially lower
than the maximum link capacity of 10 Mb/s, specially for
larger values of RTT. This behavior may assure some energy
saving; however, as a consequence, the loss increases with
respect to the TCPonly case (Fig. 4(d)) and the reduction of
the TCP throughput is huge, specially for large values of RTT
(Fig. 4(b)).

The reason for such results is that, in presence of bursty

100y

—=—RTT=1ms

RTT=10ms
__ 80 . ——RTT=50ms |
S ! ——RTT=100ms
c
g 60 1 [-
2 1
o
[= | |
I 401 1T
X
=
-
20r 1
O\ L L L L
10 100 500 1000
BnB [ms]

(a) Average Service Rate chosen by the capacity scaling algorithm

7000 ;
=== RTT=1ms
6000 RTT=10ms 4
——RTT=50ms
5000 ——RTT=100ms||
S 4000(]
=
7]
= 30007 1
2000+ 1
1000¢ 1
o - ‘ —
10 100 500 1000
BnB [ms]

(c) Number of Service Rate changes

Fig. 6.

background traffic, the variation of the arrival rate at node
N1 becomes greater than for the case with only a single TCP
source (compare Fig. 5 and Fig. 3). If the capacity scaling
mechanism is slow (i.e. large values of mRCI), it may not
notice in due time the increase of the arrival rate due to a
spike of background traffic and the service rate may remain for
long time lower than the arrival rate (Fig. 5(c) and Fig. 5(d)),
forcing, in the meanwhile, losses and throughput reduction.
The performance is even worse when large values of RTT are
considered. Indeed, the larger the RTT, the longer the time
needed by TCP to discover the new bandwidth availability.
At the same time, large values of mRCI introduce additional
delay for the actions of the capacity scaling mechanism, that
follow the TCP variations too late.

Note however, that in the case of small values of mRClI,

Bottleneck (BN = 50ms) -

— 100r ‘

=, ——RTT=1ms

g RTT=10ms
S 80F ——RTT=50ms ||
3 ——RTT=100ms
(]

3 60/]
e

(@)

>

o

S 40F J— x/} 1
% N

= 3 I

% 20 B |]
3 1

< 1

O10 100 500
BnB [ms]

(b) Average TCP throughput reduction in the TCP + PC case with respect to
the TCPonly case

1000

10°
—— —3
107" b —
. a
T 107 :
Py El-i ------------ fozzzzzzzzzzzzzs: &
) m-w----sssssses m-------sssoioses =
Q.3
10 B E-E-----m-mm Fmmmmmmmmmmaaan A
TCPonly TCP+PC
_a]|""=RTT=1ms =——RTT=1ms
10 -+ -RTT=10ms RTT=10ms |
-4 =-RTT=50ms ——RTT=50ms
107 -+-RTT=100ms ——RTT=100ms
10 100 500 1000
BnB [ms]
(d) Loss

Background Traffic (bON = 100ms)

the performance is anyhow bad: the reduction of the TCP
throughput is high, as well as the packet loss, specially for
large values of RTT (Fig. 4(b) and Fig. 4(d)). These results
are due to the fact that the capacity scaling mechanism tries
to follow “almost instantaneously” the arrival rate variations
due to the variations of the TCP sending rate (Fig. 5(b)), even
before TCP is able to discover the new available bandwidth,
whose value will be altered by the (low) service rate forced
by the capacity scaling algorithm.

C. Bottlenecks elsewhere

Finally, we analyzed the case in which a bottleneck is
present elsewhere in the network, both in presence of a single
TCP source, and in conjunction with background traffic. We
have considered several dynamics for the variation of the

40

—thriN TCPonly
30 ——thrIN TCP+PC
- link rate
§ 20I L l]f
10 | L }} l.q
R R
0 10 20 30 40 50
Time [s]
(a) RTT = 10ms - mRCI = 10ms
“0 —thriN TCPonly
301 ——thrIN TCP+PC
- link rate
ok | ol
101 bk by s 1\.
© 10 20 30 4

0 0 50

Time [s]

(¢) RTT = 10ms - mRCI = 500ms

15

—rIN TCPonly
—rIN TCP+PC
link rate

[Mb/s]

Time [s]
(b) RTT = 100ms - mRCI = 10ms

15

—rIN TCPonly
—rIN TCP+PC
link rate

[Mb/s]
(——
=,

Time [s]
(d) RTT = 100ms - mRCI = 500ms

Fig. 7. Bottleneck (BN = 50ms) - Background Traffic (b ON = 100ms): Comparison between the temporal evolution of the service rate chosen by the capacity
scaling algorithm and the temporal evolution of the arrival rate at node N1 in the TCP + PC and TCPonly cases

available bandwidth in the bottleneck link (from node N2
to node N3). However, for the sake of space, again we
only present results for just one representative case. More
specifically, the results in Fig. 6 refer to the case where
a background traffic is present (hON = 100 ms) and the
bottleneck available bandwidth varies with temporal parameter
BN =50 ms.

When a bottleneck is present, results are better than for
the case with background traffic considered in Section IV-B.
Indeed, the energy saving is higher, specially for small values
of RTT, and the TCP throughput reduction is lower, specially
for large values of RTT (compare Fig. 4 with Fig. 6). This
is due to the fact that the presence of a bottleneck in the
network reduces the average available bandwidth (remember
that it varies uniformly between 1 and 10 Mb/s), thus forcing
the reduction of the TCP sending rate and, therefore, a lower
average arrival rate at node N1, with respect to the case
where no bottleneck is present. This is evident for example
when comparing Fig. 7(b) with Fig. 5(b): when a bottleneck
is present (Fig. 7(b)), after some loss detection, and the
consequent reduction of the TCP sending rate, the arrival
rate at node N1 rises to no more than 5 Mb/s (apart from
the spike of background traffic); instead, when no bottleneck
is present (Fig. 5(b)), the arrival rate increases to about 10
Mb/s. Therefore, in this specific condition of bottleneck in
the network, the error margin between the average arrival
rate at node N1 and the service rate chosen by the capacity
scaling algorithm is generally lower, thus producing better
performance with respect to the case shown in Section IV-B.
Even so, the analysis of the temporal evolution of the service
rate and of the arrival rate in both the TCPonly and TCP+ PC
cases, reveals the same issues found in Section IV-B. Indeed,

again, if the capacity scaling algorithm is too slow (i.e. for
large values of mRCI), the need of reducing or increasing the
service rate may be noticed too late by the capacity scaling
mechanism, and in the meanwhile a waste of energy or a
performance degradation may be produced (see e.g. Fig. 7(d),
time instants 8 and 35, respectively). On the contrary, if the
capacity scaling mechanism is too fast (i.e. for low values of
mRCI), it follows almost instantaneously the TCP sending rate
variations. Remember that when TCP experiments losses, it
reduces suddenly the sending rate, and then gradually increases
it again. So, if the capacity scaling reduces the service rate
suddenly as well, TCP ends up to be limited either by the
bottleneck bandwidth, or by the (too early) reduced service
rate of the capacity scaling mechanism (see e.g. Fig. 7(b),
around time instant 30). As a consequence, even achieving
some energy saving (Fig. 6(a)) the performance degrades: the
percentage of lost packets increases (Fig. 6(d)) and the TCP
throughput is reduced (Fig. 6(b)).

V. RELATED WORK

The issue of TCP energy efficiency has attracted the interest
of researchers since the late 90’s. The early works study the
energy consumption of TCP connections over wireless chan-
nels and compare the performance of different TCP versions
using different approaches (see for example [8], [9]). More
recent works (see for example [10], [11]) look at the behavior
of TCP in energy-efficient networks, and are thus more in line
with our approach. However, they do not consider the impact
of speed scaling. Two recent papers that look at speed scaling
and TCP are [4], [12]; however, they do not address the issue
of the interaction between the speed scaling algorithm and the
TCP congestion control algorithm, like we do in this paper.

This issue was, to the best of our knowledge, only addressed
in our previous paper [5].

VI. CONCLUSIONS

In this paper we have looked at the interaction between
the congestion control algorithm of TCP and the capacity
scaling algorithms proposed for the improvement of the energy
efficiency of Internet nodes.

Our simple simulation setups show that in a number of cases
the two types of algorithms may interact in quite a negative
fashion, with a drastic performance reduction of TCP flows.
This is essentially due to the overlap of the two closed loop
controls, with different time constants.

More simulation experiments are necessary to further char-
acterize the phenomenon that we have discussed in this paper,
considering the simultaneous presence of a number of TCP
connections with different values of RTT, as well as more
complex network topologies, with the final objective of de-
vising a TCP-friendly capacity scaling algorithm for the next
generations of green Internet nodes.

REFERENCES

[1] R.Bolla, R.Bruschi, FE.Davoli, F.Cucchietti, Energy Efficiency in the Fu-

ture Internet: A Survey of Existing Approaches and Trends in Energy-

Aware Fixed Netweork Infrastuctures, IEEE Communications Surveys &

Tutorials, vol.13, no.2, pp.223-244, 2011.

R.Bolla, R.Bruschi, F.Davoli, A.Ranieri, Performance Constrained Power

Consumption Optimization in Distributed Network Equipment, Green

Communications Workshop, Dresden, Germany, June 2009.

[3] A.Wierman, L.L.H.Andrew, A.Tang, Power-Aware Speed Scaling in Pro-

cessor Sharing Systems, IEEE INFOCOM 2009, Rio de Janeiro, Brazil,

April 2009.

S.Nedevschi, L.Popa, G.lannaccone, S.Ratnasamy, D.Wetherall, Reduc-

ing Network Energy Consumption via Sleeping and Rate-Adaptation,

USENIX/ACM NSDI 08, San Francisco, USA, April 2008.

C.Panarello, M.Ajmone Marsan, A.Lombardo, M.Mellia, M.Meo,

G.Schembra, On the intertwining between capacity scaling and TCP

congestion control, Third International Conference on Future Energy

Systems: Where Energy, Computing and Communication Meet (e-Energy)

2012, pp.1-4, 9-11 May 2012

[6] http://www.isi.edu/nsnam/ns/

[7]1 B.Zhai, D.Blaauw, D. Sylvester , K. Flautner, Theoretical and Practical
Limits of Dynamic Voltage Scaling, DAC 2004, San Diego, California,
USA, June 2004.

[8] M.Zorzi, RR.Rao, Is TCP energy efficient?, 1999 IEEE International
Workshop on Mobile Multimedia Communications (MoMuC ’99),
pp-198-201, 1999.

[9] V.Tsaoussidis, H.Badr, X.Ge, K.Pentikousis, Energy/throughput tradeoffs
of TCP error control strategies, Fifth IEEE Symposium on Computers
and Communications (ISCC 2000), pp.106-112, 2000.

[10] A.Sassu, C.Scarso, F.Cuomo, TCP behavior over a greened network,
Sustainable Internet and ICT for Sustainability (SustainlIT 2012), pp.1-5,
October 2012.

[11] R.Bolla, R.Bruschi, O.M.Jaramillo Ortiz, P.Lago, The Energy Consump-
tion of TCP, 3rd ACM/IEEE Internat. Conf. on Future Energy Systems
(e-Energy 2013), Berkeley, CA, USA, May 2013.

[12] C.Gunaratne, K.Christensen, B.Nordman, Managing energy consump-
tion costs in desktop PCs and LAN switches with proxying, split TCP
connections, and scaling of link speed, Int. J. Netw. Manag. 15, 5
(September 2005), 297-310.

[2

—

[4

=

[5

—_

