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Supplementary Material to Gibbs Priors for Bayesian
Nonparametric Variable Selection with Weak Learners

S.1 Bayesian Backfitting for Random Basis Function

Expansions

Consider the model

Yi =
M∑
m=1

βm b(Xi; γm) + ϵi, ϵi ∼ Normal(0, σ2),

with βm ∼ Normal(0, σ2
β). To update the parameters of a single function (βm, γm) we consider

the residual Ri ∼ Normal{βm b(Xi; γm), σ
2}. Routine calculations show that the marginal

likelihood of R given γm (integrating out βm) is given by

Λ(γm) = (2πσ2)−N/2
(
1 +

σ2
β

σ2
b⊤b

)−1/2

exp

{
− 1

2σ2

[
R⊤R−

(R⊤b)2σ2
β

σ2 + σ2
β b

⊤b

]}
,

where b = (b(X1; γm), . . . , b(XN ; γm))
⊤. We can then use Λ(γ) to construct a Metropolis-

Hastings algorithm with βm integrated out. To update βm, we simply notice that the full

conditional of βm is given by

βm ∼ Normal

(
σ−2 b⊤R

σ−2
β + σ−2 b⊤b

,
1

σ−2
β + σ−2 b⊤b

)
.

Using these results we (i) update γm using a Metropolis-Hastings algorithm and (ii) sample

βm form its full-conditional, where any changes to the xj’s used in γm are sampled according
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to Proposition 2. For the multivariate adaptive regression splines (MARS) basis we use the

following proposals to modify γm.

BIRTH Select a covariate j according to Proposition 2 and sample a new basis function

max(0, xj − C) by sampling C ∼ Uniform(0, 1); add this to the basis function by taking

b(x; γm)← b(x; γm) max(0, xj − C).

DEATH Randomly select one of the basis components max(0, xj − C) and remove it from

b(x; γm).

SWAP Randomly select one of the basis components max(0, xj − C) and sample a new pre-

dictor j′ according to Proposition 2 and C ′ ∼ Uniform(0, 1). Then swap max(0, xj−C) with

max(0, xj′ − C ′) in b(x; γm).

As with BART, the BIRTH and DEATH moves are inverses of one another, while the SWAP

move is its own inverse. The acceptance probabilities for these moves can be derived along

similar lines as Proposition 4.

S.2 Proof of Proposition 3

This follows by induction from the proof of Proposition 2 and the fact that Gibbs priors

correspond to exchangeable random partition processes.

S.3 Proof of Proposition 4

We compute the Metropolis-Hastings ratio as the product of (i) the tree construction ratio

πT (T ′)/πT (Tt), (ii) the likelihood ratio Λ(T ′)/Λ(Tt), (iii) and the transition ratio q(Tt |

T ′)/q(T ′ | Tt).

We begin with the BIRTH step. First, the probability q(Tt | T ′) is given by the probability

of choosing a DEATH move associated to the node ℓ proposed from the BIRTH step. This is

2



Not for Publication Supplementary Material

given by qDEATH(T ′)
|NOG(T ′)| . The probability q(T ′ | Tt) is given by the probability of (i) choosing

the leaf node ℓ, (ii) choosing the splitting coordinate jℓ according to (5), and (iii) sampling

Cℓ ∼ Uniform(Aℓ, Bℓ). The probability density of this move is given by
qBIRTH(Tt)ψjℓ

(Tt)
(Bℓ−Aℓ) |L(Tt)|

, where

ψjℓ(Tt) is given by (5). Putting these together we get

qDEATH(T ′) (Bℓ − Aℓ) |L(Tt)|
|NOG(T ′)|qBIRTH(Tt)ψj(Tt)

.

Next, the prior ratio is given by π(T ′)/π(Tt). Note that the probability of T ′ is the same

as the probability of Tt except that the leaf node ℓ is instead chosen to be a branch, its

two children are both made leaves, jℓ is chosen according to (5), and Cℓ ∼ Uniform(Aℓ, Bℓ).

Hence when we compute the ratio we get

π(T ′)

π(T )
=
ρ(d){1− ρ(d+ 1)}2ψjℓ(Tt)

(Bℓ − Aℓ){1− ρ(d)}
.

We now observe that the term ψjℓ(Tt)/(Bℓ−Aℓ) cancels when the prior ratio and transition

ratio are multiplied together. Hence multiplying the three ratios together gives the result

for RBIRTH.

The argument for RDEATH is the same as the argument for RBIRTH with the roles of T ′ and

Tt switched. Finally, for RPRIOR we have q(T ′ | Tt) = π(T ′) and q(Tt | T ′) = π(Tt), so the

prior and transition ratios cancel.

S.4 Traceplots for Real Data Examples

In Figure S.1 and Figure S.2 we provide the traceplots for the MCMC schemes of the DART

and Gibbs priors when fit to the Hitters and WIPP datasets respectively. We monitor (i) the

error standard deviation σ, (ii) the log-likelihood of the data “Loglik”, and (iii) the size of the

model, given by the number of predictors used on a particular iteration. For both datasets

we ran four parallel chains for 10,000 warmup iterations and 10,000 sampling iterations with
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Figure S.1: Traceplots for the Hitters dataset.

a thinning interval of 5 (so 2,000 samples saved in total).

We see that, generally speaking, the Gibbs prior tends to mix better and, surprisingly,

this carries over to the mixing of both σ and “Loglik.” Interestingly, the data suggests that

the DART prior may also be overfitting substantially - the training data log-likelihood is

substantially larger and the error is substantially smaller than the corresponding quantities

for the Gibbs prior. That this is due to overfitting is suggested by the fact that the Gibbs

prior outperforms DART once cross-validation is applied.
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Figure S.2: Traceplots for the WIPP dataset.
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