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Abstract

It is known that the accuracy of the maximum likelihood based covariance and
precision matrix estimates can be improved by penalized log-likelihood estimation. In
this article we propose a Ridge-type Operator for the Precision matrix Estimation,
ROPE for short, to maximize a penalized likelihood function where the Frobenius
norm is used as the penalty function. We show that there is an explicit closed
form representation of a shrinkage estimator for the precision matrix when using a
penalized log-likelihood, which is analogous to ridge regression in a regression context.
The performance of the proposed method is illustrated by a simulation study and
real data applications. Computer codes used in the example analyses as well as other
supplementary materials for this article are available online.
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1 Introduction

In recent years, there have been numerous studies which consider the estimation of a co-

variance matrix and its inverse, which is called the precision matrix (see e.g., Ledoit and

Wolf (2004a,b); Friedman et al. (2008); Witten et al. (2011); Bien and Tibshirani (2011);

Cai et al. (2011); Deng and Tsui (2013); Yuan and Wang (2013); Kuismin and Sillanpää

(2016)). The drive behind this development has been the criticism that commonly-used

likelihood-based methods produce inaccurate estimates for the covariance and precision

matrices, even when there are more data points than variables (see e.g., Ledoit and Wolf

(2004a)). The penalized log-likelihood functions and other constrained optimization tech-

niques are used to gain better estimates for the matrices. Examples of these include the

graphical Lasso algorithm and its extensions (Friedman et al. (2008); Fan et al. (2009); Wit-

ten et al. (2011); Bien and Tibshirani (2011)) and other regularization driven approaches

for the log-likelihood function (see e.g., Won et al. (2009); Yuan and Wang (2013); Deng

and Tsui (2013)). Examples of optimization-based approaches which do not deal with the

likelihood-based inference are presented in Ledoit and Wolf (2004a,b) and Cai et al. (2011).

We divide the aforementioned approaches and other covariance and precision matrix

estimation methods into sparse and non-sparse categories. Ignoring the exact theoretical

justification, we intuitively parallel this division to regularized regression models; these

models are polarized into two schools according to two of the most influential methods:

Lasso and ridge regression.

Lasso (Tibshirani, 1996) permits a shrinkage-inducing model for regression coefficients,

which shrinks unimportant coefficients toward zero. This has proved to be efficient when

the true model is sparse. The precision matrix is closely related to the structure of the

Gaussian graphical models. Thus, most precision matrix estimators are motivated on

these grounds and, similar to Lasso, they can be called sparsity-inducing methods (the

sparse category). Methods which exploit this standpoint are presented in Meinshausen and

Bühlmann (2006); Friedman et al. (2008); Fan et al. (2009); Bien and Tibshirani (2011);

Cai et al. (2011); Witten et al. (2011); Yuan and Wang (2013); Bühlmann et al. (2014) and

Liu and Luo (2015).

Ridge regression is also a shrinkage-inducing method which shrinks all the regression
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coefficients of the model. However, unlike Lasso, it cannot set any of the coefficients

exactly to zero. Ridge regression might be useful when the true model has many small non-

zero elements or when there is substantial collinearity between the explanatory variables.

Similarly, in the context of covariance and precision matrix estimation, there is an interest

in examining non-sparse shrinkage methods which are more suitable to some applications,

such as portfolio optimization, principal component analysis, linear discriminant analysis

and genetic applications. Methods which are more convenient for these applications are

presented in Ledoit and Wolf (2004a,b); Huang et al. (2006); Warton (2008); Won et al.

(2009) and Deng and Tsui (2013) along with our approach presented in this article.

Huang et al. (2006) were among the first to parallel the penalized log-likelihood esti-

mation with l2 (and l1) regularization with the common ridge (Lasso) regression. They

shrunk the elements of the covariance matrix by examining the modified Cholesky decom-

position. Using this decomposition, they transformed the estimation of a covariance matrix

to a penalized regression problem. This approach uses an iterative procedure to obtain the

estimated entries in the Cholesky decomposition matrices to gain covariance and precision

matrix estimates in the original scale.

In the context of covariance matrix estimation, shrinkage/ridge-type estimators are

linear combinations of a sample covariance matrix and a scaled identity matrix. This is

equivalent to ridge regression in the sense that the estimate is not sparse but is able to

correct the possible singularity of the sample covariance matrix and thus make it invertible

(see e.g., Warton, 2008). This is more or less an ad hoc solution where the aim is to

examine the precision matrix, since the inversion is always done with computer software

causing some numerical error in the final estimate. There are just few methods available for

direct precision matrix estimation which are computationally efficient when dealing with

several hundreds or even thousands of variables. The starting point of our study is to

find a simple and fast estimator which provides a symmetric and positive definite estimate

directly for the precision matrix even in the high dimensional setting from the standpoint of

common ridge regression. We propose a penalized maximum likelihood approach to obtain

a shrinkage estimate of the precision matrix, thus avoiding the inversion of the estimate.

This leads to a non-sparse, always positive definite and rotation-equivariant estimate for
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the precision matrix with shrunken elements, where the estimator is almost as lightweight

to compute as other ridge-type estimators. We see our method as the “true” counterpart

of ridge regression in the context of precision matrix estimation. This is due to subtle

differences in the penalty functions between our approach and the common ridge-type

estimator.

The valuable properties of our approach are:

• In the high-dimensional setting when p > n one can determine a symmetric and

positive definite estimate directly for the precision matrix which cannot be determined

by inverting the singular sample covariance matrix.

• Ridge-type estimators are usually less complex to compute than estimators obtained

by methods using the l1-type penalty function. Moreover, ridge-type estimators do

not force a rigid diagonal structure for the final estimate. There would be no need to

use more complex or sparse methods in the precision or covariance matrix estimation

if sparsity is not an essential property, like in risk minimization problems, principal

component analysis, mixed model analysis and so on.

• Using “proper” ridge-penalty (the squared Frobenius norm) and deriving the estimate

with our method one can gain even better estimates than with the commonly used

ridge-type penalties.

• Our empirical observations also indicate that our method could be relatively robust

for the choice of the tuning parameter.

The structure of the remaining article is as follows. In Section 2 we illustrate some

properties of common ridge-type estimators. We show that one can calculate explicit

closed form solution to the penalized maximum likelihood precision matrix estimate using

the l2-norm as a penalty function, which is consistent with using the Frobenius norm for

matrices as the penalization function. In Section 3 we demonstrate the performance of

our method with a basic simulation study using different precision matrix structures. In

Section 4 we apply our method to the analysis of real data. We use different covariance

and precision matrix estimates in linear discriminant analysis with an ionosphere data
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set and demonstrate how they affect the misclassification error. We also study whether

the covariance and the precision matrix estimates can be efficiently used in place of the

genomic relationship matrix as a part of linear mixed model formulation in plant breeding.

We conclude the article with discussion in Section 5.

Deng and Tsui (2013) examined a similar penalized log-likelihood to us. They used

the properties of the matrix-logarithm transform of the covariance matrix and expressed

their penalized log-likelihood as the function of this transform. This means that their

penalty-function can regularize both the small and large eigenvalues of the covariance

matrix. This is a desirable penalization following the results of Ledoit and Wolf (2004b)

but the ensuing penalized log-likelihood has to be minimized using the iterative quadratic

programming algorithm, which could possibly be slow. We derive a closed form approach

with an untransformed penalty function. Then we show that common matrix calculus can

be used to derive a positive definite estimate of the precision matrix. The theories and

methods described in this article are well-studied but we do not believe they have yet been

applied to likelihood-based inference.

Finally, we note that our work was developed independently and concurrently by a

recent paper of Wieringen and Peeters (2016). The main difference is that we use substan-

tially different calculus to derive a positive definite estimate for the precision matrix. We

also show that there is a connection between the penalized log-likelihood estimation and

the Riccati equation. We have utilized their notion of a target matrix also here since it

makes our method more flexible and interpretative. In contrast to Wieringen and Peeters

(2016), we express the estimator in less complex form and provide more comprehensive

numerical comparison between different precision and covariance matrix estimators using

simulated and real data.

2 Penalized precision matrix estimation

2.1 Ridge-type Estimators

In ridge regression, one finds parameter estimates that minimize the sum of squared resid-

uals with a regularization constraint of the parameters. This can be done by minimizing
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Q(β) = (Y− Xβ)T (Y− Xβ) + ρ

p∑
j=1

|βj|2, (1)

where Y ∈ Rn is the vector of response, X ∈ Rn×p is a data matrix, β ∈ Rp is the vector

of parameter coefficients, the superscript T denotes the matrix transposition and ρ > 0 is

a tuning parameter. This leads to so-called ridge solutions

β̂ridge = (XTX + ρI)−1XTY, (2)

where I is the p× p identity matrix and (·)−1 denotes the inverse of a matrix. The aim

of the penalization is to make XTX invertible by adding a small constant ρ to the diagonal

entries of XTX.

Ledoit and Wolf (2004a,b) proposed a linear combination of the form

Σ̂ = α1I + α2S, (3)

where Σ̂ is an estimator of the covariance Σ and S is the sample covariance matrix. With

α1 and α2 properly chosen, this always leads to a positive definite estimate for Σ and Σ−1

even when S is singular.

All estimators which resemble (3) can be considered shrinkage/ridge-type estimators

and they leave the eigenvectors of S intact, only shrinking the eigenvalues of S. Warton

(2008) set α2 to 1 and showed that the ridge estimator Σ̂ρ = S + ρI is the maximum

penalized normal likelihood estimator when log-likelihood is maximized in terms of Σ with

a tuning term proportional to −tr(Σ−1) =
∑p

i=1 λi, where tr(·) denotes the matrix trace

and λi is the ith eigenvalue of the precision matrix. Compared to equation (1), this type of

penalization does not follow the original (squared) ridge-penalization. Instead, ridge-type

covariance matrix estimation relies on an expression resembling the form XTX + ρI in the

formula (2). Even the graphical Lasso (hereafter Glasso) algorithm (Friedman et al., 2008)

uses the matrix S + ρI as an initial covariance matrix estimate to derive a positive definite

estimate. For more information about shrinkage/ridge-type estimators, see Pourahmadi

(2013) pp. 13–15 and 99–105.
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2.2 The Proposed Method

We are interested in estimating the precision matrix Θ which is defined as the inverse

of the covariance matrix Σ , Θ = Σ−1. Both matrices Θ ,Σ ∈ Rp×p are symmetric and

positive definite. Consider a data matrix Y comprising of n sample realizations from a

p-dimensional, independent and identically distributed random vectors Yi that follow a

multivariate Gaussian distribution with the mean vector µ ∈ Rp and the covariance matrix

Σ , that is

Yi ∼ N(µ,Θ−1), i = 1, . . . , n, Yi ∈ Rp.

Without loss of generality, assume that µ = 0. The log-likelihood can be expressed as

a function of the n× p data matrix Y = (Y1, . . . ,Yn)T ,

log p(Y|Θ) = log
[ n∏
i=1

p(Yi|Θ)
]
∝ log |Θ | − tr(SΘ), (4)

where p(Yi|Θ) denotes the multivariate Gaussian probability density function of a single

data vector, |Θ | is the determinant of the matrix Θ and S = YTY/n, which is also the

maximum likelihood (ML) estimate of the covariance matrix. Glasso penalizes the log-

likelihood (4) with an l1-norm to induce sparsity of Θ and maximizes the penalized log-

likelihood

log |Θ | − tr(SΘ)− ρ||Θ ||1, ||Θ ||1 =
∑p

k,k′
|θk,k′ |, ρ > 0, (5)

over all non-singular matrices Θ .

Motivated by expression (1), we penalize (4) with the squared Frobenius norm, which

is a convex penalty function consistent with the (squared) ridge penalty, and which does

not substantially complicate the maximization of the expression

log |Θ | − tr(SΘ)− ρ||Θ ||2F , ||Θ ||2F =
∑p

k,k′
|θk,k′ |2 = tr(Θ2) =

p∑
i=1

λ2i , (6)

where Θ2 = ΘΘ .

By the Karush-Kuhn-Tucker conditions, Θ maximizes the penalized log-likelihood (6)

if the sub-gradient of (6) is a zero matrix (see e.g., Boyd and Vandenberghe, 2004). The
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sub-gradient equation for maximization of (6) is

Θ−1 − S− 2ρΘ = 0, (7)

where 0 = [0k,k′ ] is a zero matrix.

Multiplying the resulting equation by Θ from the right, a solution to the maximization

problem can be found by solving the equation

D(Θ) = 2ρΘ2 + SΘ − I = 0, (8)

There is no unambiguous method to solve this quadratic matrix equation (see e.g.,

Highman and Kim, 2000 and Larin, 2014) and the solution might not be symmetric. How-

ever, we will use the known properties of the Riccati equations (see e.g., Dym, 2007 pp.

390–398) to prove that the symmetric solution of (8) is unique if it exists.

The equation (8) is closely related to the Riccati equation. Here we will use a special

case of the Riccati equation, which is of the form (Laub, 1979)

ATX + XA− XRX + Q = 0, (9)

where A,R,Q ∈ Rp×p, R = RT ≥ 0 and Q = QT ≥ 0, where M ≥ 0 means that the matrix

M is positive-semidefinite.

Let us assume that (8) has a symmetric solution. Adding (8) together with its transpose,

we derive the equation

−D(Θ)−D(Θ)T = −SΘ −ΘS−Θ4ρIΘ + 2I = 0, (10)

which is a special case of the Riccati equation (9) and where the left hand side of (10)

is clearly symmetric. By finding a method to solve the equation (10), we find the unique

symmetric solution of (8), provided it exists.

The Riccati equation (10) is connected with the invariant subspaces of the Hamiltonian

matrix H defined as
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H =

 −S −4ρI

−2I S

 . (11)

The following property of the eigenvalues of the Hamiltonian matrix (11) plays a central

role in the following (Dym, 2007, pp. 390).

Lemma 1. The eigenvalues of H are symmetrically distributed with respect to the imaginary

axis iR and σ(H) ∩ iR = ∅, where σ(H) denotes the spectrum of H.

Lemma 1 guarantees that H admits a Jordan decomposition of the form

H = U

 J1 0

0 J2

U−1, (12)

where J1, J2 ∈ Rp×p, σ(J1) ⊂ Π−, σ(J2) ⊂ Π+, where Π− (Π+) denotes the left (right)

half-plane {z ∈ C : Re(z) < 0} ({z ∈ C : Re(z) > 0}). U is a square matrix and we divide

it to equal sized blocks as follows

U =

 X1 X3

X2 X4

 . (13)

We can use the following results shown by Wonham (1968) and Laub (1979) to determine

the unique positive-semidefinite solution to the Riccati equation (10).

Theorem 1. The equation (10) has a unique positive-semidefinite and symmetric solution.

Moreover, the p× p block X1 defined in (13) is invertible and the solution of (10) is given

by the matrix X = X2X
−1
1 .

Proof. See (Laub, 1979, Theorem 5). See also Wonham (1968).

Thus, we can derive the unique positive-semidefinite and symmetric solution to the

matrix equation (8), assuming it exists. Hence, we have a solution which maximizes (6),

where the solution is
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Θ̂ = X2X
−1
1 . (14)

It is clear that Θ̂ has to be a positive definite matrix but this is hard to verify from the

form (14). It can be shown that (14) is not only a positive-semidefinite solution but a

positive definite solution by using another method similar to Larin (2014):

Property 1. The eigenvalues λ̂i of the solution (14) are

λ̂i =
2

li +
√
l2i + 8ρ

, i = 1, . . . , p,

where lis are the eigenvalues of the sample covariance matrix S and ρ is a tuning parameter.

It is not difficult to see that the solution (14) also has the following property.

Property 2. The eigenvectors of the solution (14) are the same as the eigenvectors of the

sample covariance matrix S.

Proof. From the sub-gradient (7) equation for maximization of (6) we derive that Θ̂ com-

mutes with the sample covariance matrix S. Then, we apply the spectral theorem for

commuting Hermitian matrices (see e.g., Theorem 9.6 in Dym, 2007, pp. 188), which

completes the proof.

The technical proofs can be found in the Supplementary materials.

Using these properties we can derive the maximizing solution of (6) in the following

form:

Θ̂ = MΛMT , (15)

where Λ is a p × p diagonal matrix whose diagonal elements are those presented in Prop-

erty 1, sorted in ascending order beginning from the upper left corner of Λ, i.e. Λ =

diag(λ̂1, . . . , λ̂p), λ̂1 ≥ . . . ,≥ λ̂p. M is an orthogonal p × p matrix whose columns corre-

spond to the eigenvectors of S, which are ordered in the same order in which the sample

covariance matrix eigenvalues appear in the matrix Λ. We call this solution a Ridge-type

Operator for the Precision matrix Estimation, shortly ROPE. We note that ROPE clearly
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shares the complexity of principal component analysis (PCA) as in both PCA and ROPE

one has to determine the eigenvalue decomposition of the sample covariance matrix S.

Wieringen and Peeters (2016) suggested a penalty ρ||Θ − T||2F , where T is a p × p

symmetric and positive definite target matrix in the expression (6). Clearly the penalty

ρ||Θ ||2F is a special case of this penalty when the target matrix T is a p × p zero matrix.

Our equation (15) can still be used to find the maximizing solution of

log |Θ | − tr(SΘ)− ρ||Θ − T||2F (16)

by replacing the sample covariance matrix S with S∗ = S − 2ρT in the above mentioned

equations and using the eigenvalues and eigenvectors of the matrix S∗ in the equation (15).

From Property 1 it can be seen by using an elementary algebra that when the target matrix

T is a diagonal matrix or a zero matrix the eigenvalues of the solution (15) actually go

towards the eigenvalues of the target matrix T when the tuning parameter ρ approaches

infinity. In addition, because in this case the solution (15) is also a rotation equivariant

estimator (Property 2), the solution (15) approaches the target matrix T as ρ approaches

infinity. In this paper we consider only the cases of T being either a zero matrix or a

diagonal matrix. Wieringen and Peeters (2016) have shown that the solution (15) in fact

approaches any symmetric and positive definite target matrix T when ρ approaches infinity

(see their Proposition 1). This target matrix has valuable properties in risk minimization

which we will demonstrate in the next section.

From Property 1 it can be seen that ROPE induces a nonlinear shrinkage in the sample

covariance matrix eigenvalues. The shrinkage is nonlinear in the sense that the relationship

between the eigenvalues 1/λ̂i and the eigenvalues li is not affine. Here, it differs from

other ridge-type estimators of the form (3), since they shrink the sample covariance matrix

eigenvalues linearly, where the eigenvalues are of the form α1 + α2li for the covariance

matrix estimate Σ̂ . When the sample covariance matrix is singular (li = 0), corresponding

eigenvalue of ROPE is
√

2ρ for the estimated covariance matrix (α1 for the common ridge-

type estimator) and 1/
√

2ρ (1/α1, respectively) for the estimated precision matrix.

Choosing α2 = 1 as in Warton (2008) and using the inequality a2 + b2 ≤ (a+ b)2 we get

the inequality
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λ̂i ≥
1

li +
√

2ρ
,

which shows that the shrinkage of the eigenvalues of S−1 by using the estimator (3) with

α2 = 1 and α1 =
√

2ρ is at least as heavy as the shrinkage given by ROPE (see also

Proposition 4 in Wieringen and Peeters, 2016). At least for large values of ρ this is a

desirable property, since in the limit ρ→∞ all the eigenvalues of the estimators are zero,

which naturally is not desirable.

In general, it is not a simple task to compare the shrinkage of the eigenvalues since there

may be neither simple formulae nor simple estimates for the eigenvalues of the estimator

(see e.g. Formula (4.3) in Ledoit and Wolf, 2012).

In Figure 1, we demonstrate how the different methods shrink the eigenvalues of the

sample covariance matrix (hereafter sample eigenvalues) compared to the real eigenvalues

(hereafter population eigenvalues). For a more convenient interpretation, we illustrate the

methods with the sample eigenvalues and not with the eigenvalues of the precision matrix

estimate.

As studied in (Ledoit and Wolf, 2004b) and (Won et al., 2009), the eigenstructure of

the sample eigenvalues tend to be biased in that the small population eigenvalues are un-

derestimated and the large population eigenvalues are overestimated. The ridge estimator

which has the form of a convex combination ρvI + (1− ρ)S (Ledoit and Wolf, 2004b) tries

to overcome this problem by setting a “fulcrum” at the point v which is the mean of the

sample eigenvalues determined by v = tr(S )/p. This can be seen in the left-hand plot

of Figure 1 since all the sample eigenvalues under v are increased and the values greater

than v are decreased, whereas the ridge estimator of the form ρI + S with the same level

of regularization can even increase the bias between the large population eigenvalues and

the shrunken eigenvalues. In the right-hand plot of Figure 1 we have illustrated a special

case where most of the population eigenvalues are underestimated by the sample covari-

ance matrix but the large population eigenvalues are fairly close to the sample eigenvalues.

With a small regularization, the ridge estimator is quite close to the population eigenvalues

but it still underestimates the small ones and overestimates the large ones. With the same

regularization, ROPE is able to reduce this bias by actually setting a fulcrum at the point
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Figure 1: A rough illustration of how different ridge estimators shrink the eigenvalues com-

pared to the hypothetical population eigenvalues as a function of the sample eigenvalues.

The gray solid lines correspond to the eigenvalues of S (Sample). The red solid lines illus-

trate the assumed population eigenvalues (Truth). The black dashed lines correspond to

the ridge-type estimator 1 (Ridge). The green dotted line illustrates how the ridge-type es-

timator 2 (LW) linearly shrinks the real eigenvalues in a case close to the optimal shrinkage.

The blue dotted line demonstrates how ROPE would non-linearly shrink the eigenvalues

in an ideal shrinkage scenario.

2− ρ with the ridge estimator ρI + S. This can be seen by setting 1/λ̂i = li.

However, our main goal is still to estimate the precision matrix elements. Like its regres-

sion counterpart, ROPE does not lead to a sparse estimate of Θ . For graphical illustration

of the differences between l2- and l1-type penalties, see Bühlmann et al. (2014). Figure

2 illustrates the shrinkage of five random off-diagonal elements of the ROPE estimate,

Glasso, the ridge-estimate of the form S + ρI, and a linear convex combination resembling

the estimator presented in Ledoit and Wolf (2004b) as a function of ρ. The data matrix

is drawn from N(0,Θ−1), where Θ is a sparse precision matrix and p > n. ROPE shrinks

the off-diagonals much faster than the other two ridge estimates and, furthermore, there is
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some resemblance between the solution paths of Glasso and ROPE.
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Figure 2: The solution paths of five random off-diagonal elements of Θ̂ for ROPE, graphical

Lasso (Glasso), common ridge-type estimate Θ̂ = (ρI + S)−1 (Shrinkage/ridge estimate 1),

and a linear convex combination Θ̂ = (ρvI + (1 − ρ)S)−1 (Shrinkage/ridge estimate 2) as

a function of ρ. The vertical dashed lines represent the value of ρ selected by five-fold

cross-validation (ρ̂ = 0.373 for ROPE and ρ̂ = 0.355 for Glasso) when the log-likelihood

(4) is used as a loss-function.

Due to the closed form of the solution (15) to the penalized maximum likelihood prob-

lem, this method is easy to implement and computationally fast even with problems which

consider a cross-validation setting, because the computational speed does not depend on

the value of the tuning parameter or the structure of the sample covariance matrix. The

computational speed of Glasso and SCIO (Liu and Luo, 2015) depends on the value of the

tuning parameter and on the structure of the sample covariance matrix; when ρ is smaller

than the absolute value of the off-diagonal elements in the sample covariance matrix, Glasso

and SCIO slow down considerably. For example, when p = 1000, ρ = 0.01 and the data is a

sample of size n = 5000 from a multivariate Gaussian distribution with mean vector 0 and

covariance matrix I, the computation of the precision matrix estimate takes under three
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seconds with ROPE, about 14 seconds with SCIO and over a minute with Glasso with R

version 3.1.3 running on a standard desktop computer (64-bit operating system, 3.1 GHz

CPU and 8Gb RAM). When ρ = 0.9, Glasso and SCIO speed up and finish in under one

second. With a more complex (sample) covariance matrix structure and a smaller sample

size, Glasso and SCIO slow down substantially and they can take several minutes to con-

verge unless ρ is very large, which usually causes the final estimate to be a simple diagonal

matrix. The computational performance of ROPE depends on the method which is used to

compute the eigenvalue decomposition of the sample covariance S. A time taken to find the

optimal value for the tuning parameter ρ makes ROPE somewhat slower to use than the

LW-estimator, which derives the optimal regularization from the data. The tuning param-

eter ρ for ROPE can be chosen either by cross-validation with a suitable loss-function (e.g.,

Bien and Tibshirani, 2011), an information criterion (e.g., Bayesian information criterion,

like in Yuan and Wang, 2013), or an independent validation method (Deng and Tsui, 2013).

3 Simulation study

There are numerous estimators for the precision matrix and the covariance matrix. We

have chosen four other methods for comparison with ROPE. Three of the methods are

developed for precision matrix estimation like ours and one is developed for the estimation

a better-conditioned covariance matrix;

• Glasso is discussed in Friedman et al. (2008); Witten et al. (2011). Glasso can be

used either for the covariance or for the precision matrix estimation without any need

to invert the final estimate to have one or the other.

• Ledoit and Wolf estimator (LW) presented in Ledoit and Wolf (2004b) leads to a

better-conditioned, non-sparse estimate for the covariance matrix, and we invert the

estimate to obtain an estimate for the precision matrix. Note that the matrix in-

version is not an issue with the dimensions in our model problems. The inversion is

needed to compare the results.

• Constrained l1-minimization for Inverse Matrix Estimation (CLIME) presented in

Cai et al. (2011); Pang et al. (2014).
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• Sparse Column-wise Inverse Operator (SCIO) discussed in Liu and Luo (2015).

We consider cases where the data is a sample from a multivariate Gaussian distribution

N(0,Θ−1), where Θ = [θk,k′ ] and Θ−1 = Σ = [σk,k′ ] are p×p positive definite matrices. Six

different models are used to compare the methods. We have described below the matrices

used in our simulation study. We have also derived the condition numbers of the matrices

(three corresponding to each of the dimensions) which can be calculated by dividing the

largest eigenvalue with the smallest eigenvalue of the corresponding matrix. We examined

three settings with dimension p set to 20, 50 and 100, respectively.

• Model 1. A compound symmetry model with σk,k = 1 and σk,k′ = 0.62 for k 6= k
′
.

This covariance matrix is structured and non-sparse. The condition numbers of this

matrix are 12.25, 29.13 and 57.25.

• Model 2. The second model comes from Cai et al. (2011) and Liu and Luo (2015).

Let the prototype Θ0 = A + aI, where each off-diagonal entry in A is generated

independently and equals 0.5 with probability 0.1 or 0 with probability 0.9. a is

chosen such that the condition number of the matrix is equal to p. Finally, the

matrix is standardized to have unit diagonal. This precision matrix is unstructured

and sparse.

• Model 3. Θ = 1
n

YTY where Y = [yi,j] is a n× p matrix with n = 10000 and each yi,j

is drawn from N(0, 1). This precision matrix is unstructured and non-sparse. The

condition numbers of this matrix are 1.16, 1.32 and 1.47.

• Model 4. A star model with θk,k = 1, θ1,k = θk,1 = 0.1 and θk,k′ = 0 otherwise. This

precision matrix is structured and sparse. The condition numbers of this matrix are

2.55, 5.67 and 398.00.

• Model 5. A moving average (MA) model with σk,k′ = 1, σk,k−1 = σk−1,k = 0.2

and σk,k−2 = σk−2,k = 0.22. This covariance matrix is structured and sparse. The

condition numbers of this matrix are 2.16, 2.17 and 2.18.

• Model 6. A diagonally dominant model. Let B = 1
2
(A + AT ), where A = [ak,k′ ] is a

p × p matrix. Each ak,k′ for k 6= k
′

is drawn from U(0, 1) and ak,k = 0. Compute a
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matrix D = 1
γ

B, where D = [dk,k′ ] and γ is the largest row sum of the absolute values

of the elements of the matrix B. Finally, each off-diagonal elements of Σ are chosen

as σk,k′ = dk,k′ and σk,k = 1 + ei, where ei is drawn from U(0, 0.1). This covariance

matrix is unstructured and non-sparse. The condition numbers of this matrix are

2.04, 2.12 and 2.06.

An independent sample of size 50 is generated from a multivariate Gaussian distribu-

tion using each of the models. All the methods, except LW, need to pre-specify a restric-

tion/tuning parameter ρ. A five-fold cross-validation described by Bien and Tibshirani

(2011) is used to choose the parameter for ROPE and Glasso such that the optimal value

of ρ minimizes the log-likelihood (4). For CLIME, we use the five-fold cross-validation

found in the R-package “clime” (version 0.41) along with the CLIME estimator; the value

of ρ, in the context of minimization of ||Θ ||1 subject to |SΘ − I|∞ ≤ ρ, is chosen to be such

that it minimizes the likelihood-based loss-function tr(ΣΘ) − log |Θ | − p as presented in

the R reference manual. For SCIO, we use the cross-validation portrayed by Liu and Luo

(2015) and implemented in the R-package “scio” (version 0.6.1). For ROPE and Glasso,

we use a candidate set for ρ with 50 elements varying from 0.01 to 10. For ROPE we used

two target matrices for T: an identity matrix I and a scalar matrix vI, where v = p/tr(S),

shortly ROPE I and ROPE vI. For CLIME, we consider the sequence of tuning param-

eters to 20 elements since CLIME tended to suffer from slow computations with some of

the models; we note that there are faster implementations for CLIME in R such as “flare”

and “fastclime” but, in practice, we found the “clime” package to be the most stable one.

ROPE is based on our own implementations with R. The R-package “glasso” (version 1.8)

is used to solve the Glasso problem (5) and the LW-estimator is implemented with our

own R code based on the MATLAB code freely available at the web page of Michael Wolf

(www.econ.uzh.ch/faculty/wolf/publications.html).

To compare the performance of the methods, four loss-functions are used:

• The Kullback-Leibler loss KL = tr(ΣΘ̂)− log(|ΣΘ̂ |)− p.

• The L2 loss L2 = ||Θ − Θ̂ ||F .

• The quadratic loss QL = tr(ΣΘ̂ − I)2.
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• The spectral (a.k.a operator) norm loss SP = ||Θ − Θ̂ ||2,2 = d1, where d21 is the

largest eigenvalue of the matrix (Θ − Θ̂)2.

Averages of these losses are calculated for each of the methods from 100 simulations to

gain risk measures. The results are displayed in Figures 3, 4, 5 and 6.

3.1 Results

The risk measures give a comprehensive look at the benefits of ROPE. It is quite clear

that ROPE is a very efficient estimator when Θ and Σ have a structure as described in

these Models. Particularly this can be seen in Figures 3 and 4. In all Models, ROPE is

the top ranking method compared to all other methods. With the exception of few risk

estimates, like high averaged quadratic losses in Figure 5, ROPE produces a lower risk

than LW, CLIME and SCIO in all Model matrices. Only in Model 2 Glasso is able to give

competitive risk measures compared to ROPE.
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Figure 3: Summary of Kullback-Leibler loss for the different Models and different methods

based on 100 replications. The columns along the small black dots indicate loss means.

The bars on the top of each column show standard errors (mean ± SE).
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Figure 4: Summary of L2 loss for the different Models and different methods based on 100

replications. The columns along the small black dots indicate loss means. The bars on the

top of each column show standard errors (mean ± SE).

In Models 4 and 5 ROPE performs better than Glasso, CLIME and SCIO although

these methods should have the advantage in graph structure estimation. In particular this

can be seen by comparing averaged spectral norm losses in Figure 6. When the precision

matrix is unstructured and non-sparse like the precision matrix in Models 3 and 6, ROPE

gives almost unequivocally the lowest risk measures compared to the other methods. Also,

the risk associated with the quadratic loss is quite low in Models 3 and 5, indicating that

ROPE is able to estimate the underlying eigenvalues associated with this model quite

efficiently overall.

SCIO performed quite poorly in this simulation study, but this is in line with the results

of Liu and Luo (2015). In their study, SCIO with a cross-validation scheme showed better

performance when the dimension p was quite large (p ≥ 800) and no Model we used was a

block diagonal matrix. We also note that when the precision matrix Θ had the structure

described in the Models 1, 2, 4, some methods produced remarkably high risk estimates.

We also computed the risk estimates using the penalization (6) (a zero matrix as the
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Figure 5: Summary of quadratic loss for the different Models and different methods based

on 100 replications. The columns along the small black dots indicate loss means. The bars

on the top of each column show standard errors (mean ± SE).

Table 1: Comparison of average (sd) computational times for different methods over 100

replications when p = 100 and n = 50.

Method ROPE LW Glasso CLIME SCIO

Time (seconds) 1.45 (0.05) 0.00 (0.01) 21.72 (5.44) 639.93 (4.36) 0.01 (0.01)

target matrix). The additional results with all averaged risk measures are given in the

supplementary materials. Table 1 shows how long it takes on average for each method

to compute one of the replicated simulation analyses through in Model 1 with dimension

p = 100 and sample size n = 50 for standardized data.
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Figure 6: Summary of spectral norm loss for the different Models and different methods

based on 100 replications. The columns along the small black dots indicate loss means.

The bars on the top of each column show standard errors (mean ± SE).

4 Application to real data

4.1 Linear Discriminant Analysis With Ionosphere Data

In this section, we calculate the misclassification rates of linear discriminant analysis (LDA)

by using different covariance and precision matrix estimates and the Mahalanobis distance

to allocate samples to two different groups using a so called ionosphere data set. The data

set is freely available at http://archive.ics.uci.edu/ml/datasets/Ionosphere.

The data was collected by a system in Goose Bay, Labrador. The targets were free

electrons in the ionosphere. ”Good” radar returns are those showing evidence of some type

of structure in the ionosphere. ”Bad” returns are those that do not show any evidence;

their signals pass through the ionosphere. The data contains 351 observations with 35

variables; 34 continuous and one nominal with two values g(“good”) or b(“bad”).

Here we illustrate how different covariance matrix and precision matrix estimates can

affect the classification performance of LDA. Let µ1 and µ2 be the population means and
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Θ = Σ−1 the population precision matrix. It is reasonable to assume that the observations

are divided into two groups, G1 (good radar returns) and G2 (bad radar returns). Suppose

G1 is the N(µ1,Σ ) distribution and G2 is the N(µ2,Σ ) distribution. To estimate µ1, µ2

and Θ , we split the data into two separate sets: a training set of 40 observations is chosen

randomly and a test set contains the rest of the 311 observations. We chose the size of

the training set advisedly close to the dimension p = 32. The misclassification rate was

calculated by classifying observations in the test set using the rule determined from the

training set. We use the squared Mahalanobis distance aT (x− µ), where a = Θ(µ1 − µ2)

and µ = 0.5(µ1 + µ2) (see e.g., Mardia et al., 1979, pp. 300-315), to determine which

group an observation x belongs to. We use x1 and x2 to estimate µ1 and µ1, and different

estimators including the common sample covariance matrix S to estimate Θ . We use

ROPE, LW, Glasso, CLIME and SCIO as the alternative estimates of Θ and allocate x to

group G1 if âT (x−µ̂) > 0, where â = Θ̂(x1−x2) and µ̂ = .5(x1−x2). With ROPE, we use

three different target matrices: the zero matrix (ROPE 0), identity matrix (ROPE I) and

scalar matrix vI, where v = p/tr(S) (ROPE vI). The corresponding misclassification rates

are the averages based on 100 repetitions of the aforementioned setting. We derive the

misclassification rates for ROPE, Glasso, CLIME and SCIO for each value of the tuning

parameter ρ from a sequence of length 50 varying from 0.1 to 0.9. The results are presented

in Figure 7A. For additional analysis we randomly divide the data into three separate sets:

a training set of 40 observations, a validation set of also 40 observations and a test set

containing the rest of the observations. The validation set is used to choose the tuning

parameter through the cross-validation for ROPE, Glasso, CLIME and SCIO. Then we

derive the precision matrix estimates from the training set based on this tuning parameter

value. Finally we compute the misclassification errors based on the test set. We repeat

this procedure 100 times. The boxplots of the 100 misclassification errors produced with

this procedure are presented in Figure 7B.

For each value of ρ, ROPE gives a lower misclassification rate than Glasso, CLIME,

SCIO and the sample covariance matrix. ROPE even shows some robustness to the tuning

parameter selection with quite a low misclassification rate. With a small value of ρ, the

precision matrix estimate determined with ROPE gives a slightly smaller misclassification
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Figure 7: The misclassification rates of LDA and standard errors (shaded areas) averaged

over 100 replications as the solution path of the tuning parameter ρ (A) and boxplots of

test misclassification errors from 100 replications when the tuning parameter is chosen with

the cross-validation from a validation set (B). All standard errors in A are smaller than

0.007.

rate than the LW-estimator; ROPE has rate of 0.170 (zero target matrix), 0.170 (identity

matrix) and 0.170 (scalar matrix vI). LW estimator gives a rate of 0.173. It seems that with

this data set, ROPE gives the smallest misclassification rate when the tuning parameter is

small. We tested this by setting the values of ρ almost at zero, but this only marginally re-

duced the misclassification rates compared to the aforementioned value (results not shown).

When the tuning parameter is chosen with cross-validation from the validation set (Figure

7B), ROPE also gives the lowest median calculated for the misclassification error: 0.166

(ROPE 0), 0.166 (ROPE I), 0.170 (ROPE vI). LW estimator gives a rate of 0.166.
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4.2 Genomic Prediction with Wheat Data

In this section, we introduce how different precision and covariance matrix estimators could

be used to increase the cross-validation prediction accuracy and decrease the prediction

error in genomic selection as part of genomic-enabled best linear unbiased prediction (G-

BLUP). We compare the results with the commonly used genomic relationship matrix of

VanRaden (VanRaden, 2008).

We want to estimate the parameters of a mixed model of the form

y = 1β + Zu + ε, ε ∼ N(0, Iσ2
ε ), u ∼ N(0,Kσ2

u), (17)

where 1 is a vector of ones, β is a value of fixed effects, u is a vector of random effects,

ε is a vector of random errors and K is a known positive semidefinite matrix. The design

matrix Z = [I 0] for the genomic values has been partitioned into lines which have their

own observation (I) and lines which do not. The variance components σ2
ε and σ2

u can

be estimated with a restricted maximum likelihood (REML) algorithm (Patterson and

Thompson, 1971). The best linear unbiased prediction (BLUP) estimate of vector u is

defined as a solution to the mixed model equations given by Henderson (1975).

When one wants to predict the genomic breeding values with the model (17), the ge-

nomic additive relationship matrix G is used in place of the covariance matrix K, where G

is derived from the genotype matrix X = [xi,k], xi,k ∈ {−1, 1} as follows: G = WWT/c,

where W = [wi,k] = [xi,k + 1 − 2pk], pk is the frequency of allele 1 at the marker k and

c = 2
∑

k pk(1− pk). This is known as VanRaden’s method 1 (VanRaden, 2008).

For comparison, we derive the marker-based matrix K from the covariance and precision

matrix estimates and examine whether they improve the prediction ability and the accuracy

of the G-BLUP model (17) over VanRaden’s method. We follow the data analyses described

in Endelman (2011) and Li and Sillanpää (2012). We use the R package “rrBLUP” (version

4.4) for the parameter estimation (Endelman, 2011), which allows us to use a specific

covariance structure for K.

We calculate the five-fold cross-validation error (CVE) described in Li and Sillanpää

(2012) based on the mean squared prediction error
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PCV =
1

V

V∑
v=1

P (yv, ũv),

where V = 5 for five-fold cross-validation and P (yv, ũv) is the mean squared error (MSE)

P (yv, ũv) =
1

mv

(yv − ũv)
T (yv − ũv).

Here mv is the size of the partition v, v = 1, . . . , 5, and ũv is the vector of prediction

values. We also calculate the cross-validation accuracies (ACC) based on the means of the

correlations cor(ũv,yv), i.e.

ACC =
1

V

V∑
v=1

cor(ũv,yv).

The data is divided into 5 roughly equal sized partitions and each partition is used in

turns as the prediction set while the rest of the partitions are used as the training set. We

standardize the marker data following the technique of Patterson et al. (2006) to binary data

in the following manner: Recode X such that xi,k ∈ {0, 1}. Then derive the standardized

data matrix V = [vi,k], vi,k = (xi,k − pk)/
√
pk(1− pk), where pk is determined as above.

Finally, derive the covariance matrix estimates from the transpose VT .

We analyze the set of n = 599 wheat lines (Crossa et al., 2010). The data set consists of

599 historical CIMMYT wheat lines and the data can be found from the R package “BLR”

(Pérez et al., 2010). The trait was the 2-year average grain yield in four environments.

Phenotypes are standardized to unit variance for each environment. We evaluate each

environment independently.

We use three of the fastest and most stable estimators along with ROPE: Glasso, SCIO

and LW-estimator, out of which the LW is distribution-free estimator (Ledoit and Wolf,

2004b). We compare their results with the common “VanRaden” estimator G. We repeat

the cross-validation 50 times and for ROPE, Glasso and SCIO, we use a tuning parameter

from a sequence of length 40 varying from 0.1 to 0.9 and calculate accuracies for each of

these values. Because we calculate the estimators for each value of ρ, we use the Glasso

algorithm implemented in the R-package “huge” (version 1.2.7), which we found to be

faster in this data study compared to the R-package used in Sections 3 and 4.1. Again we
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used three different target matrices T for ROPE: 0 (ROPE 0), I (ROPE I) and a scalar

matrix for each partition bvI, where bv = n/cv, cv = tr(VT
v Vv)/r and r is the number of

markers (ROPE vI). The results are presented in Figure 8.
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Figure 8: The accuracy for wheat traits for different precision and covariance matrix esti-

mators. All standard errors were smaller than 0.005 and do not have a visible difference in

the averaged accuracy diagnostics.

In environments 1 and 3, ROPE is able to improve the accuracy compared to the Van-

Raden matrix G. Other methods seem to perform even better than ROPE in environments

1,3 and 4 but they tend to produce a very high CV-error (see Figure in the supplementary

materials), whereas, compared to the VanRaden matrix, ROPE is able to greatly reduce

errors. SCIO gives a higher accuracy and a lower CV-error in environments 3 and 4 when

the tuning parameter ρ is chosen to be very small. When the marker-based matrix K is

estimated with ROPE, accuracies and CV-errors seem to differ very little regardless of

the ρ value, indicating that ROPE is highly robust compared to Glasso and SCIO in this

particular case. Still, a closer look shows that the curves are not strictly monotonic.

26



Increased accuracy and decreased error in environments 1 and 3 indicate that using

ROPE for the covariance structure of the random effects u in model (17) could improve

the performance of G-BLUP over that of the VanRaden G matrix with certain data sets

regardless the choice of the target matrix and the value of the tuning parameter. In addition

to our incremental findings, benefits of shrinkage based methods to improve prediction

accuracy (ACC) for small number of markers have been observed by Müller et al. (2015).

When the G-BLUP model (17) is used for predictions, that is, fitted using mixed model

equations, the inverse of the matrix K has to be determined. This can be problematic since

the VanRaden matrix G can be singular and, particularly in high dimensions, we would

like to avoid unnecessarily inverting the matrix K. With ROPE, Glasso and SCIO, one

can always determine a positive definite estimate directly for the inverse of K, which is a

valuable property in practice. However, this possibility is not fully utilized in the current

genetics oriented literature.

5 Discussion

We have shown that, similar to graphical Lasso, there is an analogue to the ridge-type

penalization in the likelihood-based precision matrix inference. This analogue even shares

similar properties with its penalized regression counterpart. We call this method ROPE.

ROPE is easy to use and will always lead to a positive definite estimate even when one

cannot derive the precision matrix from the maximum likelihood estimate of the covariance

matrix. In the real data applications ROPE was found to show quite robust performance

despite the choice of the target matrix and the value of the tuning parameter.

In some applications it might be convenient to use a special weight matrix P to em-

phasize the effect of the tuning parameter ρ on the precision matrix elements in the reg-

ularized log-likelihood function. This leads to a maximization problem for the expression

log |Θ | − tr(SΘ)− ρ||P ◦Θ ||2F . The weight matrix would extend the regularized likelihood

inference to an adaptive setting similar to the adaptive LASSO penalty and SCAD, as

demonstrated by Fan et al. (2009). This optimization problem needs further studying.

Arguably ROPE could offer some worthwhile properties in applications when combined

with other methods. In data studies it would be more useful to fuse the favorable properties
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of different methods to strengthen the overall performance. For example, ROPE could

potentially be used as an initial covariance matrix estimate in the Glasso algorithm to gain

more accurate covariance or precision matrix estimates. How this would work in practice

is an open research question.

ROPE has also a Bayesian interpretation when the prior is placed to the eigenvalues of

the precision matrix Θ independently for each individual element and the target matrix is

a zero matrix. Suppose that the eigenvalues of the precision matrix Θ have been assigned

the generalized gamma distribution priors (β/θκ)λκ−1e−(λ/θ)
β

(see e.g., Stacy, 1962) with

parameters β, θ and κ set to β = 2, θ = 1/
√
ρ and κ = 1 respectively. It can be easily

shown that the mode of the logarithm of the posterior p(Θ |Y) is identical to that of the

penalized log-likelihood (6), up to a multiplicative constant of proportionality. This choice

of prior is related to Huang et al. (2006), where independent normal priors are used for the

generalized autoregressive parameters in the Cholesky decomposition when the normalizing

constant is omitted.

Though ROPE is primarily a precision matrix estimator, it is interesting to examine

its properties in the context of principal component analysis (PCA). As mentioned in

recent studies (see e.g., Ledoit and Wolf, 2015), the variation explained by a principal

component is not equal to the population eigenvalue. Because of this, alternative estimators

for the covariance matrix could improve the accuracy of PCA. Motivated by this, we tested

how ROPE, along with other precision and covariance matrix estimators, can improve the

accuracy of PCA in a small simulation study similar to the one described in Ledoit and

Wolf (2015). The results were promising, and in some cases ROPE clearly outperformed

all the other methods (results not shown).

SUPPLEMENTARY MATERIALS

ROPE codes.zip: This .zip file contains various R codes used in the simulation studies

and real data applications along with alternative procedures to derive the ROPE

solution, and a README.txt file.

Proof.pdf: This .pdf file contains the detailed proofs of Lemma 1 and Property 1.
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Table1.pdf and Table2.pdf: These .pdf files contain tables of detailed and additional

risk measures of the simulation study described in section 3.

Fig S1.pdf, Fig S2.pdf, Fig S3.pdf and Fig S4.pdf: These .pdf files contain a graph-

ical illustration of the information presented in the supplementary Tables 1 and 2.

WheatCVE.pdf: This .pdf file contains a plot of the cross-validation errors as a func-

tion of the tuning parameter ρ concerning the genomic prediction study described in

Section 4.2.
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