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Abstract

The moving sofa problem, posed by L. Moser in 1966, asks for the
planar shape of maximal area that can move around a right-angled
corner in a hallway of unit width, and is conjectured to have as its
solution a complicated shape derived by Gerver in 1992. We extend
Gerver’s techniques by deriving a family of six differential equations
arising from the area-maximization property. We then use this result
to derive a new shape that we propose as a possible solution to the
ambidextrous moving sofa problem, a variant of the problem previously
studied by Conway and others in which the shape is required to be able
to negotiate a right-angle turn both to the left and to the right. Unlike
Gerver’s construction, our new shape can be expressed in closed form,
and its boundary is a piecewise algebraic curve. Its area is equal to
X + arctanY , where X and Y are solutions to the cubic equations
x2(x+ 3) = 8 and x(4x2 + 3) = 1, respectively.

1 Introduction

“Odd,” agreed Reg. “I’ve certainly never come across any irre-
versible mathematics involving sofas. Could be a new field. Have
you spoken to any spatial geometricians?”

—Douglas Adams, “Dirk Gently’s Holistic Detective Agency”
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1.1 Background: the moving sofa problem

The humorist and science-fiction writer Douglas Adams, whose 1987 novel
[4] featuring a sofa stuck in a staircase is quoted above, was not the first
to observe that the geometric intricacies of moving sofas around corners
and other obstacles, familiar from our everyday experience, raise some chal-
lenging mathematical questions. In 1966, the mathematician Leo Moser
asked [15] the following curious question, which came to be known as the
moving sofa problem:

What is the planar shape of maximal area that can be moved
around a right-angled corner in a hallway of unit width?

Fifty years later, the problem is still unsolved. Thanks to its whimsical
nature and the surprising contrast between the ease of stating and explaining
the problem and the apparent difficulty of solving it, it has been mentioned
in several books [7, 8, 20, 23], has dedicated pages describing it on Wikipedia
[1] and Wolfram MathWorld [22], and, especially in recent years, has been
a popular topic for discussion online in math-themed blogs [5, 6, 11, 16, 19]
and online communities [2, 3]. (As further illustrations of its popular ap-
peal, the moving sofa problem is the first of three open problems mentioned
on the back cover of Croft, Falconer and Guy’s book [7] on 148 unsolved
problems in geometry, and is currently the third-highest-voted open prob-
lem from among a list of 99 “not especially famous, long-open problems
which anyone can understand” compiled by participants of the online math
research community MathOverflow [3].) However, as those who have studied
it can appreciate, and as we hope this paper will convince you, the problem
is far more than just a curiosity, and hides behind its simple statement a
remarkable amount of mathematical structure and depth.

Fig. 1(a) shows two trivial examples of shapes that can be moved around
a corner — a unit square (with area 1) and a semicircle of unit radius (with
area π/2 ≈ 1.57). The latter example is more interesting, since moving the
semicircle around the corner requires translating it, then rotating it by an
angle of π/2 radians, then translating it again, whereas moving the square
involves only translations. By simultaneously performing translations and
rotations it is not hard to improve on these trivial constructions, and indeed
the key to maximizing the area is to find the precise sequence that combines
those two rigid motions in the optimal way.

It is known that a shape of maximal area in the moving sofa problem
exists (a result attributed to Conway and M. Guy [7], though Gerver’s proof
in [9] is the only one we are aware of that appeared in print). Hammersley in
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(a) (b)

Figure 1: (a) The L-shaped hallway and two trivial sofa shapes that can
move around a corner; (b) Hammersley’s sofa.

1968 showed that the maximal area is at most 2
√

2 ≈ 2.828 [13] (see also [20,
21]), and proposed a shape of area π

2 + 2
π ≈ 2.2074 comprising two unit radius

quarter-circles separated by a rectangular block of dimensions 4
π × 1 with

a semicircular piece of radius 2
π removed (Fig. 1(b)). He conjectured this

shape to be optimal, but this was discovered to be false when constructions
of slightly larger area were discovered [12]. In 1992, Gerver [9] proposed
a considerably more complicated shape that can move around the corner,
whose boundary comprises 3 straight line segments and 15 distinct curved
segments, each described by a separate analytic expression; see Fig. 2. (As
recounted by Stewart in [20], the same solution had been found earlier in
1976 by B. F. Logan but never published.) Gerver conjectured that his
proposed shape, derived from considerations of local optimality and having
area 2.21953166 . . ., has maximal area, and to date no constructions with
larger area have been found.

It is worth noting that Gerver’s description of his shape is not fully
explicit, in the sense that the analytic formulas for the curved pieces of the
shape are given in terms of four numerical constants A, B, ϕ and θ (where
0 < ϕ < θ < π/4 are angles with a certain geometric meaning), which are
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Figure 2: Gerver’s sofa. The tick marks delineate the transition points
between distinct pieces of the boundary — 3 straight line segments and 15
curved pieces, each of which is described by a separate analytic expression.

defined only implicitly as solutions of the nonlinear system of four equations

A(cos θ − cosϕ)− 2B sinϕ

+ (θ − ϕ− 1) cos θ − sin θ + cosϕ+ sinϕ = 0, (1)

A(3 sin θ + sinϕ)− 2B cosϕ

+ 3(θ − ϕ− 1) sin θ + 3 cos θ − sinϕ+ cosϕ = 0, (2)

A cosϕ− (sinϕ+ 1
2 −

1
2 cosϕ+B sinϕ) = 0, (3)

(A+ 1
2π − ϕ− θ)−

(
(B − 1

2(θ − ϕ)(1 +A)− 1
4(θ − ϕ)2

)
= 0. (4)

Actually these equations are linear in A, B, so these auxiliary variables can
be eliminated, leaving just two transcendental equations for the angles ϕ
and θ, but this is as much of a simplification as one can get, and even then,
Gerver’s shape, its area, and other interesting quantities associated with it
(such as its length from left to right, the arc length of its boundary, and the
angles ϕ and θ themselves) cannot be expressed in closed form.

1.2 Main result: the ambidextrous moving sofa problem

Around the time that the moving sofa problem was first published, John H.
Conway, G. C. Shepard and several other mathematicians were said to have
worked on the problem during a geometry conference, as well as on several
other variants of the problem, each of which was apparently assigned to one
member of the group [20]. We now consider one of these variants, which
asks for the planar shape of maximal area that can negotiate right-angled
turns both to the right and to the left in a hallway of width 1. We refer
to this as the ambidextrous moving sofa problem. The Conway et
al. early attack led to two rough guesses about the approximate shape of
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(a) (b) (c)

(d) (e)

Figure 3: Five graphic figures reproduced from [7, 10, 14, 20] showing past
attempts to attack the ambidextrous moving sofa problem and another ver-
sion of it asking for the largest shape that can turn completely around in
a T-junction (the answer to both versions may be the same): (a) a shape
dubbed the “Conway car” in [7]; (b) another shape from [20], also referred
to as the Conway car; (c) another shape from [20], where it is referred to as
the “Shepard piano”; (d) an approximate shape computed numerically by
Maruyama [14]; (e) another approximate polygonal shape computed numer-
ically by Gibbs [10].

the solution, nicknamed the “Conway car” and “Shepard piano” (Fig. 3(a)–
(c)). The problem was considered again in 1973 by Maruyama [14], who
developed a numerical scheme for computing polygonal approximations to
the problem and several other variants (Fig. 3(d)). More recently, in a
2014 paper Gibbs [10] developed another numerical technique to study the
problem, and computed a similar-looking shape (in much higher resolution),
whose area he calculated to be approximately 1.64495. Gibbs’ shape is
shown in Fig. 3(e).

Our main result is the construction of a precisely-defined shape that sat-
isfies the conditions of an ambidextrous moving sofa (i.e., it can move around
corners to the left and to the right) and is derived from considerations of
local optimality analogous to Gerver’s shape, and hence is a plausible can-
didate to be the solution to the ambidextrous moving sofa problem. Our
shape, shown in Fig. 4, appears visually indistinguishable from Gibbs’ nu-
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Figure 4: Our new analytic construction in the ambidextrous moving sofa
problem. The tick marks show the subdivision of the boundary of the shape
into 18 distinct curves, each described by a separate analytic expression.

merically computed approximate shape. Its boundary comprises 18 distinct
segments, each given by a separate explicit formula. Moreover, to our sur-
prise we found that, unlike the case of Gerver’s sofa, the new shape and all
of its associated parameters can be described in closed form, and its bound-
ary segments are all pieces of algebraic curves (see Fig. 9 in Section 6). In
particular, its area is given by the rather unusual explicit constant

3

√
3 + 2

√
2 +

3

√
3− 2

√
2− 1 + arctan

[
1

2

(
3

√√
2 + 1− 3

√√
2− 1

)]
≈ 1.644955218425440, (5)

a result which is nicely in accordance with Gibbs’ earlier numerical predic-
tion. The left-to-right length of our new shape is

2

3

√
4 +

3

√
71 + 8

√
2 +

3

√
71− 8

√
2 ≈ 2.334099633100619, (6)

an algebraic number of degree 6. Section 5, where the details of our deriva-
tion are given, contains additional curious formulas of this sort, and Section 6
has a further discussion of geometric and algebraic properties of the shape.

1.3 Additional results

On the way to deriving the new shape, this paper makes several additional
contributions to the understanding of the moving sofa problem and its vari-
ants. A main new advance in the theory is the development of a general
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framework extending and generalizing Gerver’s ideas. Two key elements of
this new framework are:

• First, we define a convenient terminology and notation that parametrizes
candidate sofa shapes in terms of the so-called rotation path, which
is the path traversed by the inner corner of the hallway as it slides and
rotates around the shape in a sofa-centric frame of reference in which
the shape stays fixed and it is the hallway that moves and rotates. We
give an explicit description of this parametrization by deriving for-
mulas for the boundary of the shape associated with a given rotation
path. These ideas are described in Section 2.

• Second, by starting with Gerver’s key insight that a shape moving
around a corner can have maximal area only if it is a limit of polygo-
nal shapes satisfying a certain geometric condition (what Gerver refers
to as a balanced polygon) and reconsidering it from our new point
of view, we rework Gerver’s balance condition into a family of six or-
dinary differential equations. We show that it is a necessary condition
for the rotation path associated with an area-maximizing moving sofa
shape to satisfy these ODEs, subject to certain mild assumptions. The
ODEs are derived and discussed in Section 3.

After developing this new framework, we illustrate its applicability by
first giving a new and conceptually quite simple derivation of Gerver’s shape,
which consists of writing down an intuitive and easy-to-understand system of
equations for gluing together solutions to five of the six ODEs. The equations
are then easily solved by a computer using the symbolic math software
application Mathematica. This is discussed in Section 4. In Section 5 we
then show how the same ideas can then be applied with slight modifications
to derive the new shape in the ambidextrous moving sofa problem.

Several of the proofs in this paper rely on numerical and algebraic com-
putations that can be performed by a computer using symbolic math soft-
ware. We prepared a Mathematica software package, MovingSofas, as a
companion package to this paper to aid the reader in the verification of
a few of the claims [17]. The software package also includes interactive
graphical visualizations and video animations that can greatly enhance the
intuitive understanding of the geometry of shapes moving around a corner;
see also [18].

7



Acknowledgements

The author wishes to thank Greg Kuperberg, Alexander Coward, Alexander
Holroyd, James Martin and Anastasia Tsvietkova for helpful conversations
and suggestions during the work described in this paper. The author was
supported by the National Science Foundation under grant DMS-0955584.

2 Rotation paths, contact points and contact paths

We equip the L-shaped hallway and its two arms with coordinates by de-
noting

Lhoriz = {(x, y) ∈ R2 : x ≤ 1, 0 ≤ y ≤ 1},
Lvert = {(x, y) ∈ R2 : y ≤ 1, 0 ≤ x ≤ 1},

L = Lhoriz ∪ Lvert.

The moving sofa problem considers shapes that undergo a rigid motion (a
combination of rotations and translations) to move continuously from Lhoriz

into Lvert, while staying within L. In this paper we further restrict our
attention to shapes that, while being translated, rotate monotonically from
an angle of 0 radians to an angle of π/2 radians. It has not been shown
rigorously, but seems extremely plausible, that the optimal shape can be
transported around the corner using a rigid motion of this type.

It will be convenient to also keep in mind (as several earlier authors have
done) a dual point of view from the frame of reference of the sofa, in which
it is the hallway being rotated and translated whereas the sofa stays in a
fixed place. From this point of view we see that a shape S can be moved
around the corner if it satisfies the condition

S ⊆ Lhoriz ∩
⋂

0≤t≤π/2

(
x(t) +Rt(L)

)
∩
(
x(π/2) +Rπ/2(Lvert)

)
, (7)

where we denote by Rt the rotation matrix

Rt =

(
cos t − sin t
sin t cos t

)
,

and where x : [0, π/2]→ R2 is a continuous path satisfying x(0) = (0, 0)>.1

The path x describes the motion of the inner corner (0, 0) of the hallway in
the frame of reference of the sofa, with the time parameter being the angle
of rotation of the hallway. We refer to any such path as a rotation path.

1Throughout the paper, we denote vectors in R2 with boldface letters and consider
them as column vectors.
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(0,0)

x (t)

Figure 5: Constructing a shape from a rotation path.

Now note that, given a rotation path x, there is no loss of generality
in considering only shapes S such that the containment relation in (7) is
actually an equality, since in the case of a strict containment one can replace
the shape by a bigger one with a larger (or equal) area. We therefore define

Sx = Lhoriz ∩
⋂

0≤t≤π/2

(
x(t) +Rt(L)

)
∩
(
x(π/2) +Rπ/2(Lvert)

)
, (8)

and refer to this set as the shape associated with the rotation path x; see
Fig. 5. Parametrizing shapes in such a way in terms of their rotation paths,
the problem is now reduced to identifying the rotation path whose associated
shape has maximal area.

A natural question now arises of describing the map x 7→ Sx associating
shapes to rotation paths. Giving a fully explicit description of this map
seems challenging (and therein perhaps lies a key difficulty to solving the
moving sofa problem) due to the complicated and rather subtle effect that
a local change to the rotation path can have on several different parts of
the shape Sx. However, we can give a partial description that is valid for
relatively simple rotation paths and is already quite useful. The key idea is
to keep track of the contact points, which are the tangency points between
the four walls of the hallway and the shape, in addition to the position x
of the rotating hallway corner, which is also considered a contact point if
it touches the shape Sx. We label these additional tangency points A, B,
C and D, where A and C correspond to the outer walls and B and D
correspond to the inner walls, as shown in Fig. 6. As the hallway slides and
rotates, the tangency points of the four walls trace four paths, which we
refer to as the contact paths, and denote by A(t), B(t), C(t) and D(t).
Note that for any given value of t, one or both of the contact points B and
D may not exist, and x may or may not be a contact point. We denote by
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A

B

x

D

C

(t)

(t)

(t)

(t)

(t)

Figure 6: The contact points and contact paths x(t),A(t), B(t), C(t), D(t).

Γx(t) the set of contact points; for example, in the situation shown in Fig. 6
we have Γx(t) = {x,A,B,C,D}.

Note also that for certain choices of rotation paths and values of t, one
or both of the inner hallway walls may have more than one tangency point
with the shape, in which case our notation B and D breaks down. We do
not consider such more complicated situations.

Denote

µt =

(
cos t
sin t

)
= Rt

(
1
0

)
, νt =

(
− sin t
cos t

)
= Rt

(
0
1

)
,

a rotating orthonormal frame. Our first result gives an explicit description
of the contact paths A,B,C,D in terms of the rotation path x, under the
assumptions described above.

Theorem 1. We have the relations

A(t) = x(t) +
〈
x′(t),µt

〉
νt + µt, (9)

B(t) = x(t) +
〈
x′(t),µt

〉
νt, (10)

C(t) = x(t)−
〈
x′(t),νt

〉
µt + νt (11)

D(t) = x(t)−
〈
x′(t),νt

〉
µt, (12)

which are valid whenever the respective contact points are defined, the re-
spective contact path is continuous at t and x is differentiable at t.
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Proof. By definition, the contact point A(t) lies on the line

`t :=
{
p :

〈
p,µt

〉
=
〈
x(t),µt

〉
+ 1
}
.

Denote s = t+ δ, where δ is a small positive number. Let p(t, s) denote the
point at the intersection of the lines `t and `s. We will derive (9) starting
from the fact that

A(t) = lim
δ→0

p(t, s),

which is immediate from the assumption that A(·) is continuous at t. To
this end, note that p(t, s) satisfies〈

p(t, s),µt

〉
=
〈
x(t),µt

〉
+ 1, (13)〈

p(t, s),µs

〉
=
〈
x(s),µs

〉
+ 1. (14)

Furthermore, µs can be represented as

µs = cos δ · µt + sin δ · νt,

which allows us to rewrite (14) as

cos δ
〈
p(t, s),µt

〉
+ sin δ

〈
p(t, s),νt

〉
= cos δ

〈
x(s),µt

〉
+ sin δ

〈
x(s),νt

〉
+ 1.

Using (13), this equation transforms into

sin δ
〈
p(t, s),νt

〉
= cos δ

〈
x(s)− x(t),µt

〉
+ sin δ

〈
x(s),νt

〉
.

Dividing by δ and taking the limit as δ → 0, we get that〈
A(t),νt

〉
=
〈
x(t),νt

〉
+
〈
x′(t),µt

〉
.

Combining this with the defining relation〈
A(t),µt

〉
=
〈
x(t),µt

〉
+ 1,

we have two linear equations giving the orthonormal projections of A(t)
in the directions µt and νt. It is immediate to see that the expression on
the right-hand side of (9) satisfies those equations and hence is the correct
expression for A(t). This proves (9). The proof of the remaining equations
(10)–(12) is similar and left to the reader.
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Example: generalized Hammersley sofas. Fix 0 ≤ r ≤ 1, and con-
sider a semicircular rotation path x(r)(t) = r(cos(2t)− 1, sin(2t)) of radius r
traveling from (0, 0) to (−2r, 0). An easy computation using (9)–(12) shows
that the associated contact paths A(r)(t), B(r)(t), C(r)(t), D(r)(t) are given
by

A(r)(t) = (cos t, sin t)>,

B(r)(t) = (0, 0)>,

C(r)(t) = (−2r, 0)>,

D(r)(t) = (−2r − sin t, cos t)>.

Thus, the contact paths and B and D are fixed at the corners of the semicir-
cular hole traced out by the rotation path, and the contact paths A and C
trace out two quarter-circles of unit radius. (These assertions are also easy
to prove using elementary geometry.) The sofa shape S(r) = Sx(r) there-
fore consists of two unit quarter-circles separated by a 2r × 1 rectangular
block from which a semicircular piece of radius r has been removed. This
family of shapes was considered by Hammersley, who noticed that the area
f(r) = π

2 + r
(
2− π

2 r
)

of the shape takes its maximum value at r∗ = 2
π , this

maximum being equal to f(r∗) = π
2 + 2

π ≈ 2.2074. The shape S(r∗) was
the one proposed by Hammersley as a possible solution to the moving sofa
problem.

In addition to our assumptions about the contact paths being well-
defined, we introduce another geometric assumption about the rotation
path x. For 0 < t < π/2, we say that x is well-behaved at t if x is
twice continuously differentiable at t (which by Theorem 1 also implies that
any of the contact paths A(t), B(t), C(t) and D(t) that are defined at t are
continuously differentiable there), and if the following conditions hold:

1. If x(t) is a contact point then
〈
x′(t),νt

〉
≥ 0 and

〈
x′(t),µt

〉
≤ 0.

2. If A(t) is defined then
〈
A′(t),νt

〉
≥ 0.

3. If B(t) is defined then
〈
B′(t),νt

〉
≤ 0.

4. If C(t) is defined then
〈
C′(t),µt

〉
≤ 0.

5. If D(t) is defined then
〈
D′(t),µt

〉
≥ 0.

It seems highly plausible that the rotation path associated with an area-
maximizing shape will automatically be well-behaved at all except a finite
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number of values of t where second differentiability fails, but we did not
attempt to prove this. As we shall see in the next section, the assumption
will prove useful in simplifying the form of certain equations.

3 A family of six differential equations

A key insight due to Gerver in his paper [9] is that an area-maximizing
shape in the moving sofa problem must be the limit of polygonal shapes
satisfying a certain condition, which he referred to as balanced polygons.
He defined a polygon to be balanced if, for any side of the polygon, that side
and all other sides that are parallel to it lie on one of two lines, such that
the distance between the lines is 1 and the total lengths of the sides lying
on each of the two lines are equal. By passing from the polygonal scenario
to the limit of a curved shape he was able to derive his sofa shape.

While this was an important breakthrough, Gerver’s computations were
of a somewhat ad hoc nature and seem rather narrowly focused on his im-
mediate goal of deriving his specific shape. In this section we extend his
method to arrive at more general and explicit conditions that must hold for
an area-maximizing moving sofa shape, and which we believe shed important
new light on the problem. One change in our point of view is that we for-
mulate our analogous “balancedness” condition for smooth shapes in terms
of the rotation path x, which as we showed in the previous section can be
used to conveniently parametrize the associated shape Sx. More precisely,
our result is a family of six ordinary differential equations that the rotation
path must satisfy in different phases of the motion of the shape around the
corner, as explained in the following theorem.

Theorem 2. Let x be a rotation path, with an associated shape Sx, set Γx

of contact points, and contact paths A,B,C,D as described in the previous
section. Let t ∈ (0, π/2) be a point where x(t) is well-behaved. Assume that
Γ = Γx remains constant in a neighborhood of t and is given by one of the
six possibilities listed below. Then a necessary condition for the shape Sx to
be a solution to the moving sofa problem is that x satisfies at t one of the
following six differential equations, according to the different possibilities for
the set of contact points.

• Case 1: Γx(t) = {A,C,D}.

x′′(t) = Rt

((
−1
−1/2

)
+

(
2 sin t −2 cos t
2 cos t 2 sin t

)
x′(t)

)
(ODE1)
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• Case 2: Γx(t) = {x,A,C,D}.

x′′(t) = Rt

((
−1
−1/2

)
+

(
sin t − cos t
3
2 cos t 3

2 sin t

)
x′(t)

)
(ODE2)

• Case 3: Γx(t) = {x,A,C}.

x′′(t) = Rt

((
−1
−1

)
+

(
sin t − cos t
cos t sin t

)
x′(t)

)
(ODE3)

• Case 4: Γx(t) = {x,A,B,C}.

x′′(t) = Rt

((
−1/2
−1

)
+

(
3
2 sin t −3

2 cos t
cos t sin t

)
x′(t)

)
(ODE4)

• Case 5: Γx(t) = {A,B,C}.

x′′(t) = Rt

((
−1/2
−1

)
+

(
2 sin t −2 cos t
2 cos t 2 sin t

)
x′(t)

)
(ODE5)

• Case 6: Γx(t) = {x,A,B,C,D}.

x′′(t) = Rt

((
−1/2
−1/2

)
+

(
3
2 sin t −3

2 cos t
3
2 cos t 3

2 sin t

)
x′(t)

)
(ODE6)

Moreover, in Case 1 we have additionally that A′(t) = 0 (that is, the contact
point A remains fixed during an interval when Case 1 is applicable), and
similarly in Case 5 we have that C′(t) = 0.

Proof. Let us start by considering Case 3, which is conceptually the simplest
of the six cases. We will derive (ODE3) by considering the effect on the area
of the shape of certain local perturbations to the sequence of rigid motions
encoded by the rotation path. This is a continuum version of the argument
employed by Gerver, who used similar but less direct reasoning, starting
from a discrete-geometric version of the moving sofa problem in which the
intersection in (8) is assumed to take place over a finite set of values of t
(say, the values tk = kπ/2n, k = 0, . . . , n, where n is a discrete parameter)
and the area of the resulting shape is to be optimized over the resulting
finite-dimensional configuration space of polygonal shapes. Our calculation
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works directly in the continuum regime and does not require taking a limit
from the discrete variant of the problem.

Fix a small positive value δ, and denote t′ = t + δ. The idea is to
replace the rigid motion (simultaneous rotation and sliding) of the hallway
L encoded by the rotation path x by the following modified sequence of
operations:

1. As a time coordinate s ranges in [0, t], drag the inner corner (0, 0) of
the hallway along the rotation path x(s) while rotating the hallway
around that corner (with the rotation angle being equal to the time
coordinate s), similarly to the original sequence of motions.

2. Slide the hallway without rotating it by a distance of δ in the direction
of the vector µt.

3. As s ranges in [t, t′], drag the inner corner of the hallway, now po-
sitioned at x(t) + δµt, along the translated copy x(s) + δµt of the
segment x(s), t ≤ s ≤ t′ of x, while continuing the rotation so that for
each s the angle of rotation is equal to s as in the original motion.

4. Slide the hallway without rotating it by a distance of δ in the direction
of the vector −µt′ . The inner corner of the hallway is now at x(t′).

5. Continue the rotation for s ∈ [t′, π/2] as prescribed by the original
rotation path x, similarly to step 1 above.

Denote by S′x the shape contained in the intersection of the hallway copies
being translated and rotated in this modified sequence, formally given by
the expression

S′x = Lhoriz ∩
(
x(π/2) +Rπ/2(Lvert)

)
∩
⋂

0≤s≤t

(
x(s) +Rs(L)

)
∩
⋂

0≤r≤δ

(
x(t) + rµt +Rt(L)

)
∩
⋂

t≤s≤t′

(
x(s) + δµt +Rs(L)

)
∩
⋂

0≤r≤δ

(
x(t′) + rµt +Rt′(L)

)
∩

⋂
t′≤s≤π/2

(
x(s) +Rs(L)

)
.
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Comparing Sx and S′x, we see that in changing from the former to the latter,
some area was lost near the point x(t), and some area was gained near the
contact point A(t). The part of the shape near the third contact point C
remains the same, since for each s ∈ [t, t′], at time s during step 3 of the
motion, the outer hallway wall parallel to µs is tangent to the contact path
C(s) just as in the original motion of the hallway.

Now, because of the assumption that x is differentiable at t, the shape
of the piece that was lost is approximately a parallelogram with sides rep-
resented by the vectors δx′(t) and δµt incident to the point x(t), so its area
is easily seen to be given (approximately for small δ) by∣∣∣〈x′(t),νt〉δ2∣∣∣+ o(δ2) =

〈
x′(t),νt

〉
δ2 + o(δ2) (δ → 0), (15)

where the equality follows from the assumption that x is well-behaved at t.
Similar reasoning applies to the piece that was gained, which is approxi-
mately a parallelogram (actually a rectangle, because A′(t) is parallel to
νt) with sides represented by the vectors δA′(t) and δµt incident to the
point A(t). Again using the well-behavedness assumption, the area of this
rectangle is given for small δ by〈

A′(t),νt

〉
δ2 + o(δ2) (δ → 0). (16)

Comparing (15) and (16), we see that under the assumption that the shape
Sx has maximal area, the inequality〈

x′(t)−A′(t),νt

〉
≥ 0

must hold. But then, the reverse inequality 〈x′(t)−A′(t),νt〉 ≤ 0 must hold
as well, because in the definition of the modified sequence of rigid motions
we could have decided to push the hallway in the opposite direction −µt in
step 2 and then in the direction µt in step 4, which would lead to a piece of
area being gained, instead of lost, near x(t), and a piece being lost instead
of gained near A′(t), with the formulas (15) and (16) remaining valid but
exchanging their meanings. Thus, we can conclude that under the area-
maximization assumption, the rotation path must satisfy the differential
relation 〈

x′(t)−A′(t),νt

〉
= 0. (17)

By a similar argument, it can now be shown that x satisfies a second differ-
ential relation, namely 〈

x′(t)−C′(t),µt

〉
= 0. (18)
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This is derived by considering a different modification of the sequence of
rigid motions of the hallway, in which in steps 2 and 4 described above we
slide it in a direction parallel to the vector νt instead of µt.

Now, recall from Theorem 1 that A(t) and C(t) can be expressed in
terms of x. Differentiating (9) and (11) and using the relations µ′t = νt,
ν ′t = −µt, we get that

A′(t) = x′(t) +
〈
x′′(t),µt

〉
νt +

〈
x′(t),νt

〉
νt −

〈
x′(t),µt

〉
µt + νt,

C′(t) = x′(t)−
〈
x′′(t),νt

〉
µt +

〈
x′(t),µt

〉
µt −

〈
x′(t),νt

〉
νt − µt.

By substituting these expressions into the two equations (17)–(18) we get
the pair of differential equations〈

x′′(t),µt

〉
= −

〈
x′(t),νt

〉
− 1,〈

x′′(t),νt

〉
=
〈
x′(t),µt

〉
− 1.

It is now easily checked that (ODE3) is the same pair of equations written
in matrix form. This concludes our proof for Case 3.

Next, consider Case 2. Here we employ similar reasoning involving the
same local modification of the sequence of rigid motions as described above,
but now take into account the additional effect of perturbing the motion on
the part of the shape near the contact point D(t). In this case the equation
(17) is still satisfied, since the perturbed sequence of rigid motions that led
to this equation does not change the shape near D(t), just like it did not
affect the shape near C(t). However, in the second equation (18) an extra
term needs to be introduced to take into account the behavior near D(t).
By looking at the change in the areas between Sx and S′x and reasoning as
we did for Case 3, it is not hard to work out that the correct equation that
should replace (18) is 〈

x′(t)−C′(t)−D′(t),µt

〉
= 0. (19)

Again, taking (17) and (19) and substituting the expressions (11)–(12) for
C(t) and D(t) yields (ODE2) after a short computation. This explains
Case 2. Case 4 is completely analogous to Case 2 (in fact, they are related
to each other by an obvious symmetry) and is handled similarly; one can
check that in this case the two differential equations consist of (18) and a
modified version of (17), namely〈

x′(t)−A′(t)−B′(t),νt

〉
= 0. (20)
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Again, a short computation, which we omit, brings this to the form of the
vector ODE (ODE4).

Next, Case 6 combines the two modifications of the equations for Case 3
that we made to handle Cases 2 and 4. Thus, the relevant pair of differential
equations consists of (19) and (20), which as before can be checked to be
equivalent to (ODE6).

It remains to consider Cases 1 and 5. Since they are symmetric to each
other, we discuss only Case 1. This case can be thought of as a degenerate
version of Case 2. The argument involving sliding the hallway in the direc-
tion of µt in step 2 and in the direction of −µt′ in step 4 still applies, but
results in the differential equation〈

A′(t),νt

〉
= 0 (21)

instead of (17), since x is not a contact point, so for small values of δ there
is no change to the area near x(t). The second equation (19) from Case 2 is
similarly replaced with 〈

C′(t) + D′(t),µt

〉
= 0. (22)

Once again, those two equations can be brought to the form of the single
vector equation (ODE1) using routine algebra. Note also that because A′(t)
is parallel to νt, (21) is equivalent to the relation A′(t) = 0, which explains
the additional claim in the theorem that the contact point A remains fixed
on an interval in which Case 1 applies. This completes the proof.

The equations (ODE1)–(ODE6) are easy to solve, and their solutions will
form the basis to our rederivation of Gerver’s results and to our new con-
struction in the ambidextrous moving sofa problem. We record the general
form of these solutions in the following result.

Theorem 3. The general solutions of the ODEs (ODE1)–(ODE6) are given
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respectively by

x1(t) = Rt

(
a1 cos t+ a2 sin t− 1
−a2 cos t+ a1 sin t− 1/2

)
+ κ1 (SOL1)

x2(t) = Rt

(
−1

4 t
2 + b1t+ b2

1
2 t− b1 − 1

)
+ κ2 (SOL2)

x3(t) = Rt

(
c1 − t
c2 + t

)
+ κ3 (SOL3)

x4(t) = Rt

(
−1

2 t+ d1 − 1

−1
4 t

2 + d1t+ d2

)
+ κ4 (SOL4)

x5(t) = Rt

(
e1 cos t+ e2 sin t− 1/2
−e2 cos t+ e1 sin t− 1

)
+ κ5 (SOL5)

x6(t) = Rt

(
f1 cos(t/2) + f2 sin(t/2)− 1
−f2 cos(t/2) + f1 sin(t/2)− 1

)
+ κ6, (SOL6)

where κj = (κj,1, κj,2)
> (j = 1, . . . , 6) and ai, bi, ci, di, ei, fi (i = 1, 2) are

arbitrary real constants.

Proof. By the general theory of linear ODEs it is enough to check that
the equations are satisfied by the respective expressions. This is a routine
computation, which we omit. See Section 5 of MovingSofas, the companion
Mathematica package to this article [17], for an automated verification. Note
that the solutions were derived by making the substitution y(t) = R−tx

′(t)
and then rewriting each of the ODEs in terms of y(t). It is easy to check that
with this substitution each of the six equations transforms into an equation
of the form

y′(t) = Ty + v,

where T is a constant 2×2 matrix and v is a constant vector. (For example,

in the case of (ODE2) we get T =
(

0 0
1/2 0

)
and v = (−1,−1/2)>, and in the

case of (ODE3) we get T = ( 0 0
0 0 ) and v = (−1,−1)>.) The procedure for

solving ODEs of this type is standard.

4 A new derivation of Gerver’s sofa

We now show how the results of the previous sections can be used to give
a transparent and conceptually simple derivation of Gerver’s sofa. The idea
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is to look for a rotation path x that satisfies the following assumptions:

1. The path x is continuously differentiable.

2. The path x (and therefore also the associated shape Sx) has a left-to-
right symmetry around the vertical axis passing through its midpoint
x(π/4).

3. The associated contact path A(t) satisfies

A(0) = (1, 0)>. (23)

4. The set of contact points transitions through the following five distinct
phases:

Γx(t) =



{A,C,D} if 0 < t < ϕ,

{x,A,C,D} if ϕ ≤ t < θ,

{x,A,C} if θ ≤ t ≤ π/2− θ,
{x,A,B,C} if π/2− θ < t ≤ π/2− ϕ,
{A,B,C} if π/2− ϕ < t < π/2,

(24)

where 0 < ϕ < θ < π/4 are two critical angles corresponding to where
these transitions occur, and whose values need to be determined.

5. During each of the five phases in (24) the rotation path is well-behaved
(in the sense of Section 2).

Under these assumptions, in order for the shape to be area-maximizing,
the rotation path must satisfy in each of the phases of the rotation the
correpsonding ODE from the family (ODE1)–(ODE5) given in Theorem 2.
(Note that the sixth differential equation (ODE6) does not appear; it plays
no part in the derivation of Gerver’s sofa, but will appear in our new con-
struction for the ambidextrous moving sofa problem — see Section 5.) In
other words, our rotation path must be of the form

x(t) =



x1(t) if 0 ≤ t < ϕ,

x2(t) if ϕ ≤ t < θ,

x3(t) if θ ≤ t ≤ π/2− θ,
x4(t) if π/2− θ < t ≤ π/2− ϕ,
x5(t) if π/2− ϕ < t ≤ π/2.

(25)
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obtained by gluing together the solutions (SOL1)–(SOL5) to the first five
ODEs. The problem therefore reduces to the question of finding the values
of the 22 unknown parameters ϕ, θ, κj (j = 1, . . . , 5), and ai, bi, ci, di, ei,
(i = 1, 2). But the parameters are not independent; rather, they satisfy
a system of constraints arising out of the assumptions we made about the
properties of x. For example, the left-to-right symmetry condition can be
expressed in the form of the relation

x′(π/2− t) ≡
(

1 0
0 −1

)
x′(t). (26)

Referring to the definitions, it is easy to translate this into explicit linear
relations between the parameters, namely the five equations

e1 = a1, (27)

e2 = −a2, (28)

d1 =
π

4
− b1, (29)

d2 = b2 +
π

4

(
2b1 −

π

4

)
, (30)

c2 = c1 −
π

2
. (31)

Next, the assumption that A(0) = (1, 0)>, together with the standard
requirement that x(0) = (0, 0)>, translate to the three linear relations
κ1,1 = 1− a1, κ1,2 = 1/2− a2, κ1,2 = −a2, which can be rewritten as

κ1,1 = 1− a1, (32)

κ1,2 = 1/4, (33)

a2 = −1/4. (34)

Next, the condition that x be continuously differentiable implies the vector
relations

x1(ϕ) = x2(ϕ), (35)

x′1(ϕ) = x′2(ϕ), (36)

x2(θ) = x3(θ), (37)

x′2(θ) = x′3(θ), (38)

x3(π/2− θ) = x4(π/2− θ), (39)

x′3(π/2− θ) = x′4(π/2− θ), (40)

x4(π/2− ϕ) = x5(π/2− ϕ), (41)

x′4(π/2− ϕ) = x′5(π/2− ϕ), (42)
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ϕ 0.039177364790083641 . . . θ 0.681301509382724894 . . .

κ1,1 −0.210322422072688751 . . . a1 1.210322422072688751 . . .
κ1,2 1/4 a2 −1/4

κ2,1 −0.919179292771593322 . . . b1 −0.527624598026784624 . . .
κ2,2 0.472406619750805465 . . . b2 0.920258385160637622 . . .

κ3,1 −0.613763229430251668 . . . c1 0.626045522848465867 . . .
κ3,2 0.889626479003221860 . . . c2 −0.944750803946430751 . . .

κ4,1 −0.308347166088910014 . . . d1 1.313022761424232933 . . .
κ4,2 0.472406619750805465 . . . d2 −0.525382670414554437 . . .

κ5,1 −1.017204036787814585 . . . e1 1.210322422072688751 . . .
κ5,2 1/4 e2 1/4

Table 1: Numerical values for the constants in Gerver’s sofa.

of which (40) and (42) are redundant, since they are easily seen to follow
automatically from (35)–(38) together with the symmetry assumptions.

Finally, we have two additional vector equations,

x1(ϕ) = B(π/2− θ), (43)

x5(π/2− ϕ) = D(θ), (44)

that encapsulate the requirement that the transitions described in (24) be-
tween the different phases for the set of contact points occur where we
assumed they do. Here, too, the second equation (44) is redundant and
follows from (43) and the symmetry assumption.

The equations (27)–(44) comprise a total of 28 (scalar) equations in the
22 variables ϕ, θ, κj , ai, bi, ci, di, ei, of which 6 were noted as being re-
dundant, leaving 22 truly independent equations, equal to the number of
variables. It is not immediately obvious, but this system of equations has a
unique solution. Moreover, finding the numerical values of the parameters
is now a simple matter of entering the equations into Mathematica and in-
voking its FindRoot[· · · ] command to numerically solve the system. This
immediately yields the desired numerical values to any reasonable desired
level of accuracy. The computation is carried out in MovingSofas, the com-
panion Mathematica package to this article [17, Section 6]. The numerical
values of the parameters are listed in Table 1 for reference.

22



While the technique described above provides the quickest and most
effortless way to get the value of the constants, it is worth taking a closer
look at the system of equations we are solving to get a better insight into its
structure, which may be useful, for example, if one wishes to prove that the
solution is unique, and in preparation for our analysis of the ambidextrous
moving sofa problem in the next section. A key observation is that all
our equations are linear in all the parameters κj,1, κj,2, ai, bi, ci, di, ei, and
are only nonlinear in the two critical angles ϕ, θ. This suggests that a
large part of the solution to the system can be carried out symbolically,
with only the last step involving a numerical root-finding procedure. Thus,
an alternative approach to solving the system is to pick a set of 20 of the
equations (out of the 22 we used in the purely numerical approach described
above); solve it as a linear system in the 20 “linear” parameters to obtain
symbolic expressions for those 20 parameters in terms of the two angular
variables ϕ and θ; then substitute those expressions into the two remaining
equations, to obtain two nonlinear equations in ϕ and θ, which can then
be solved numerically. Our companion Mathematica package illustrates this
method as well [17, Section 7], and also shows how to compute the area
2.21953166 . . . of Gerver’s sofa to high accuracy [17, Section 8].

5 An exact solution in the ambidextrous moving
sofa problem

Having rederived Gerver’s shape, we now show how the same techniques can
be used with slight modification to derive a new shape that, analogously
to Gerver’s sofa, is a highly plausible candidate to be the solution to the
ambidextrous moving sofa problem.

The idea behind our new construction is to look for a rotation path x,
with an associated shape Sx, that satisfies a modified version of the list of
assumptions in our derivation of Gerver’s shape. Namely, we assume:

1. The path x is continuously differentiable, as before.

2. The path x has a left-to-right symmetry, as before.

3. The associated contact path A(t) satisfies

A(0) = (1, 1/2)> (45)

(compare with (23)).
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Figure 7: The shape Sx is turned into an ambidextrous shape by intersecting
it with its reflection across the line y = 1/2.

4. The set of contact points transitions through the following three (in-
stead of five) distinct phases:

Γx(t) =


{A,C,D} if 0 < t < β,

{x,A,B,C,D} if β ≤ t ≤ π/2− β,
{A,B,C} if π/2− β < t < π/2,

(46)

(compare with (24)) where 0 < β < π/4 is a new critical angle whose
value needs to be determined.

5. During each of the five phases in (46) the rotation path is well-behaved.

Now observe that given any rotation path x and an associated shape
Sx, one can trivially turn the shape into an “ambidextrous shape” that can
move around corners both to the left and to the right by replacing it with
its intersection with its reflection across the line y = 1/2; see Fig. 7, which
illustrates why the assumption (45) is precisely the condition that makes the
most efficient use of this type of symmetrization in terms of maximizing the
area. Furthermore, in order for such an up-down-symmetrized shape to have
maximal area for the ambidextrous moving sofa problem, it should certainly
be a local maximum of the area, and in particular its area should only
decrease under the kinds of local perturbations that were used in the proof
of Theorem 2. Thus, we see that the necessary conditions of Theorem 2
would need to hold, and the above assumptions together with the area-
maximization assumption therefore imply that the rotation path x must be
of the form

x(t) =


x1(t) if 0 < t < β,

x6(t) if β ≤ t ≤ π/2− β,
x5(t) if π/2− β < t < π/2,

(47)
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with x1(t), x6(t) and x5(t) being given by (SOL1), (SOL6) and (SOL5). As
with our derivation of Gerver’s sofa, the goal is now to find values of the
parameters β, κj (j = 1, 6, 5), and ai, fi, ei, (i = 1, 2) that enter into the
definition of x and for which the above assumptions on x are satisfied.

To proceed, we translate the list of assumptions on x into a concrete sys-
tem of equations, following similar reasoning to that employed in Section 4.
First, the symmetry condition (encapsulated by (26)) now translates to the
three equations

e1 = a1, (48)

e2 = −a2, (49)

f2 = (1−
√

2)f1. (50)

Second, it is readily checked that the equations x(0) = (0, 0)>, A(0) =
(1, 1/2) are equivalent to the linear relations

κ1,1 = 1− a1, (51)

a2 = 0, (52)

κ1,2 = 1/2. (53)

Third, the assumption that the rotation path is continuously differentiable
translates to the equations

x1(β) = x6(β), (54)

x′1(β) = x′6(β), (55)

x6(π/2− β) = x5(π/2− β), (56)

x′6(π/2− β) = x′5(π/2− β). (57)

Here, the last equation (57) is redundant and follows from (55) together
with the symmetry relations (48)–(50).

Finally, the assumption (46) regarding the structure of the set of contact
points will be satisfied if the two equations

x1(β) = B(β), (58)

x5(π/2− ϕ) = D(π/2− β) (59)

hold. In this pair of equations (59) is again redundant and follows from (58)
and symmetry. Furthermore, by (10), the vector equation (58) is actually
equivalent to the scalar equation〈

x′1(β),µt
〉

= 0. (60)
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The procedure for solving the equations is now very similar to the one
we carried out in the previous section, with the crucial difference that the
equations in this case are solvable in closed form.

Theorem 4. The equations (48)–(60) have a unique solution in the 13 pa-
rameters β, κ1,i, κ6,i, κ5,i, ai, fi, ei (i = 1, 2), which are given by the following
expressions:

β = arctan

[
1

2

(
3

√√
2 + 1− 3

√√
2− 1

)]
, (61)

a1 = e1 =
1

4
cosecβ =

1

4

√
4 +

3

√
71 + 8

√
2 +

3

√
71− 8

√
2, (62)

a2 = e2 = 0, (63)

κ1,2 = κ6,2 = κ5,2 =
1

2
, (64)

κ1,1 = 1− a1, (65)

κ6,1 = 1− 4

3
a1, (66)

κ5,1 = 1− 5

3
a1, (67)

f1 =

(
83 +

3
√

420619 + 15104
√

2 +
3
√

420619− 15104
√

2
)1/4

3
√

2
(
2−
√

2
) , (68)

f2 = −(
√

2− 1)f1, (69)

The numerical values of these parameters are listed in Table 2.

Proof. The system of equations we wrote down consists of precisely 13
independent scalar equations in the 13 variables, namely (48)–(56) and
(60), together with four additional equations that were pointed out to be
redundant. Moreover, the equations are all linear in the 12 parameters
κ1,i, κ6,i, κ5,i, ai, fi, ei (i = 1, 2). Using Mathematica, we can solve the linear
system consisting of the first 12 equations of the 13, to get expressions for
these linear parameters as functions of β. Substituting these expressions
back into the remaining equation gives a single nonlinear equation for β,
which upon simplification becomes the relation

3 sin

(
β

2

)
+ sin

(
3β

2

)
+
(√

2− 1
)(
−3 cos

(
β

2

)
+ cos

(
3β

2

))
= 0.
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β 0.289653820817320941 . . .

κ1,1 0.124712637587267758 . . . a1 0.875287362412732241 . . .
κ1,2 1/2 a2 0

κ6,1 −0.167049816550309655 . . . f1 1.202938908156911389 . . .
κ6,2 1/2 f2 −0.498273610464875672 . . .

κ5,1 −0.458812270687887068 . . . e1 0.875287362412732241 . . .
κ5,2 1/2 e2 0

Table 2: Numerical values for the constants in our construction.

Crucially, this equation is algebraic in Z = tan(β); it can be easily solved,
to give that

tan(β) =
1

2

(
3

√√
2 + 1− 3

√√
2− 1

)
.

This proves that the system has a unique solution (under the assumption
0 < β < π/4) and establishes the relation (61). Once β is found, its value can
be substituted into the formulas for the other 12 parameters, which are all

rational functions in the algebraic numbers cos(β/2) =
(
1
2 + 1

2
√
1+Z2

)1/2
and

sin(β/2) =
(
1
2−

1
2
√
1+Z2

)1/2
. This shows that these parameters are algebraic

numbers as well. Routine algebraic computations, which would be tedious
to do by hand but can be performed automatically in Mathematica or other
symbolic math applications, can now be used to verify the correctness of the
formulas listed in the theorem. The details are found in the MovingSofas

companion software package [17, Section 10].

We summarize our findings with the following theorem, which is the
main result of the paper.

Theorem 5. Let x be the rotation path (47), with the associated numerical
parameters being given by (61)–(69). Denote Σ = Sx ∩ ρ(Sx), where ρ is
the affine reflection in the plane across the line y = 1/2. Then Σ is a
shape that can move around corners both to the left and to the right. The
rotation path x is the unique one satisfying the assumptions 1–5 stated at
the beginning of this section and that satisfies the necessary conditions from
Theorem 2 at all t ∈ (0, π/2) \ {β, π/2 − β}. The area ∆ of the shape Σ is
given by (5), and the distance λ between the left and right endpoints of Σ is
given by (6).

27



Proof. We have already explained all the claims, except the computation
of the area ∆ and the length λ of the shape. For the length, note that the
coordinates of the left and right endpoints of Σ are C(π/2) = (C1(π/2), 1/2)
and A(0) = (1, 1/2), so we have that

λ = 1− C1(π/2) = 1 + a1 − κ5,1 = 1 + a1 −
(

1− 5

3
a1

)
=

8

3
a1 =

2

3

√
4 +

3

√
71 + 8

√
2 +

3

√
71− 8

√
2,

as claimed. Regarding the area, from the left-right and up-down symmetry
of the shape we see that ∆ can be expressed as the sum of integrals

∆ = 4

[∫ π/2

β
(1/2−A1(t))A

′
2(t) dt

+

∫ π/2

β
(1/2−B1(t))B

′
2(t) dt+

∫ π/4

β
(x1(t)− 1/2)x′2(t) dt

]
,

where we denote x(t) = (x1(t), x2(t))
>, A(t) = (A1(t), A2(t))

>, B(t) =
(B1(t), B2(t))

>. The integration can be performed symbolically and the
result simplified by Mathematica to show that indeed

∆ =
3

√
2
√

2 + 3 +
3

√
3− 2

√
2− 1 + β.

See [17, Section 11] for the details.

Our calculations involved several curious algebraic numbers. We ex-
pressed them in radicals, but of course they can be alternatively (and per-
haps better) described in terms of their minimal polynomials. The minimal
polynomials, computed again using Mathematica [17, Section 12], are listed
in Table 3.
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Quantity Minimal polynomial

tan(β) 4x3 + 3x− 1

sin(β) 2x6 + 3x4 + 12x2 − 1

cos(β) 2x6 − 9x4 + 24x2 − 16

a1, e1 2048x6 − 1536x4 − 24x2 − 1

f1, f2 4251528x12−9920232x10+6672537x8−1936224x6+256608x4−13824x2+256

κ1,1 2048x6 − 12288x5 + 29184x4 − 34816x3 + 21480x2 − 6096x+ 487

κ6,1 729x6 − 4374x5 + 9963x4 − 10692x3 + 5076x2 − 432x− 272

κ5,1 1492992x6−8957952x5+19284480x4−17418240x3+3597480x2+3753648x−1768033

∆− β x3 + 3x2 − 8

λ 729x6 − 3888x4 − 432x2 − 128

Table 3: The minimal polynomials of some of the algebraic numbers associ-
ated with the shape Σ.

6 Geometric and algebraic properties of the shape Σ

The shape Σ we constructed seems like quite a natural and symmetric ob-
ject. Moreover, in addition to its pleasing analytic and algebraic properties
discussed so far, the shape exhibits several additional interesting geometric
and algebraic relationships. The geometric properties are shown in Fig. 8;
note the multiple appearances of the critical angle β, and the fact that the
segments σ2, σ3, σ16, σ17 and σ7, σ8, σ11, σ12 of the boundary of the shape are
circular arcs lying on the circles of radius 1/2 around the “focal points” F2

and F1, respectively (which in particular means that the pairs of segments
σj , σj+1 for each of j = 2, 7, 11, 16 could in principle be considered as single
analytical segments, reducing the total number of segments involved in the
description of the shape from 18 to 14; we chose however to describe the
segments in each of these pairs separately, since they arise out of separate
analytical processes and so far as we know it is only by computation that
one can verify they belong to the same analytic curve). Another interesting
geometric property, which can be easily verified from our formulas but for
which we can see no obvious geometric explanation, is that the distance
between the two focal points is precisely half the total length of the shape.

Turning to algebraic properties of Σ, we have the feature that the 18
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Figure 8: The shape Σ with annotations highlighting interesting geometric
relationships.

segments of the boundary all lie on algebraic curves, as was mentioned in the
introduction. A simple example of this are the circular arcs σ2, σ3, σ16, σ17,
σ7, σ8, σ11, σ12 (in the notation of Fig. 8) already pointed out above. More
intriguingly, there are three other distinct algebraic curves (up to obvious
symmetries) of degree 6 that appear as analytic continuations of boundary
segments. To write down the equations for these curves, it is convenient to
switch to new coordinates X,Y defined through the affine change of variables

X =
x− κ6,1

1
4

√
2−
√

2f1
, Y =

y − κ6,2
1
4

√
2−
√

2f1

from the coordinates x, y used in our original description of the shape Σ
(where f1, κ6,1, κ6,2 are the values given in Theorem 4). In these new
coordinates, it can be shown (see the companion Mathematica package [17,
Section 13]) that the boundary segments σ18 and σ9 of Σ both lie on the
algebraic curve

P (X,Y ) = 0,

and the segments σ4 and σ5 lie on the algebraic curves

Q(X,Y ) = 0,

R(X,Y ) = 0,
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respectively, where P (X,Y ), Q(X,Y ), R(X,Y ) are polynomials defined by

P (X,Y ) =
(
X2 + Y 2 − 8

)3 − 216(Y −X)2,

Q(X,Y ) =
(
X2 + Y 2

)3 − 12γ1
(
X2 + Y 2

)2 − 216
√
γ2
(
X2 + Y 2

)
(Y −X)

− 12γ3
(
X2 + Y 2

)
− 432

√
γ4(Y −X) + 432XY − 32γ5,

R(X,Y ) =
(
X2 + Y 2

)3 − 24α1

(
X2 + Y 2

)2
+ 48α2

(
X2 + Y 2

)
+ 13824

√
α3Y + 4096α4.

Here, γ1, γ2, γ3, γ4, γ5, α1, α2, α3, α4 are cubic algebraic numbers, which can
be expressed in terms of the constant Z = (4 + 2

√
2)1/3 + (4 − 2

√
2)1/3 in

the form

γ1 = −3Z + 14, α1 = −3Z + 16,

γ2 = −Z + 4, α2 = 27Z2 − 240Z + 592,

γ3 = −27Z2 + 156Z − 190, α3 = 12Z2 − 54Z + 56,

γ4 = 8Z2 − 26Z + 8, α4 = −9Z + 28.

γ5 = 9Z − 20,

(This way of representing the constants γi, αj was suggested to us by Greg
Kuperberg, who also found the above way of expressing the polynomial
P (X,Y ) that simplifies our earlier formula.)

The algebraic curves and their relations to the boundary segments of Σ
are shown in Fig. 9. Note also that since the different curve segments satisfy
algebraic equations over an algebraic extension field of Q, they also satisfy
algebraic equations of higher degree with integer coefficients.

7 Open problems

We conclude with a few open problems:

1. Prove that Gerver’s sofa and our shape Σ are local maxima of the area
functional in the moving sofa problem and ambidextrous moving sofa
problem, respectively.

2. Do there exist other locally area-maximizing shapes? For example, is
there an asymmetric version of Gerver’s sofa — that is, a construction
that follows the pattern (24) and is obtained by gluing together the
functions xj(t), 1 ≤ j ≤ 5, except that the transitions between the five

31



(a) (b)

(c) (d)

Figure 9: The segments of the boundary of the shape Σ are pieces of alge-
braic curves. Here we see the four distinct algebraic curves that appear as
analytic continuations of boundary segments (along with their various sym-
metric reflections), consisting of: (a) a circle, and the three sextic algebraic
curves: (b) P (X,Y ) = 0; (c) Q(X,Y ) = 0; (d) R(X,Y ) = 0.
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types of contact point sets occur at four successive angles ϕ, θ, η, τ ,
where

0 < ϕ < θ < π/4 < η < τ < π/2,

and it is not the case that η = π/2 − θ and τ = π/2 − ϕ? Is there
a version of Gerver’s sofa (symmetric or asymmetric) in which for
the third phase of rotation when θ < t < π/2 − θ, the assump-
tion that Γx(t) = {x,A,C} is replaced by the modified condition
Γx(t) = {x,A,B,C,D} (corresponding to Case 6 of Theorem 2 in-
stead of Case 3 as in Gerver’s construction)?

3. Can the assumption that the rotation path is “well-behaved” in The-
orem 2 be weakened or removed?

4. Are there other natural variants of the moving sofa problem that give
rise to shapes that can be expressed in closed form and/or are piecewise
algebraic?
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