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On the dynamics of subcontinua of a tree

MYKOLA MATVIICHUK

Given a tree magf : T — T, we study the dynamics of subcontinua of
under action off . In particular, we prove that a subcontinuum Dfis either
asymptotically periodic or asymptotically degenerate. afssapplication of this
result, we show that zero topological entropy of the systa@nf)(implies zero
topological entropy of its functional envelope (endowethwhe Hausdorff metric).

1 Introduction

By a (topological) dynamical systemve mean a pair X, f) where X is a compact
metrizable topological space afid X — X is a map, i.e. continuous function. Recall
that acontinuumis a nonempty compact connected metric space. Given a dgabmi
system K, f), one can in a natural way extefido a mapF on the hyperspace Coxi(

of all subcontinua oX. We call the system (CoKj, F) aconnected envelog&here
Con(X) is endowed with the topology induced by the Hausdorff nogtrirhe natural
guestion arises here: what is the connection between dgaaproperties of the base
mapf and its extensiorF. For papers related to this topic, ség [5], [8], [11].

In the present paper we deal with the case when underlyingedzace is atree. Atthe
end of the paper we will prove (Theorefiithe equality of topological entropies of a
dynamical system on a tree and its connected envelope. Assegoence, we will get
a nice result concerning a system which a dynamical systemtoge induces on the
hyperspace of all maps on this tree endowed with the Hausueitfic; following [4]
we call it afunctional envelopeNamely, we prove (TheoreB) that if a system on a tree
has zero topological entropy, then so does its functionatlepe (cf. with result due
to Glasner and Weis®] who proved that zero entropy of any topological dynamical
system implies zero entropy of the system induced on theespiaad| probability Borel
measures on the phase space). For the case of interval lesthrigsults were done in
[12].

In order to prove the mentioned results we study the dynawificGs subcontinuum
of a tree under action of a tree map. First, in Sec®pnve consider the situation
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when the subcontinuum contains a periodic point of the map[7]lit was proved
that if a subinterval of an interval contains a periodic pahan interval map, then
it is asymptotically periodic with respect to this map. Wevyw (see Theorerh) the
generalization of this result for tree maps, i.e. we prow dach subcontinuum of a
tree containing a periodic point of a tree map is asymptifigeeriodic with respect
to the map. Unfortunately, our method does not provide a gmbidhate of period of
the asymptotically periodic set. For the case of intervahsan estimate is known;
namely, the period of the set is a divisor of doubled perio@ath periodic point it
contains 7].

Next, in Section3, we consider in some sense the opposite situation, whentoaly
endpoints of a tree are permitted to be periodic. Recall byathe fixed point property,

it must have at least one of them. It turns out that in thisrggtthere is a unique
attracting fixed point which attracts everything which does$ eventually glue to a
periodic orbit (see Lemmakand5). As a consequence, we get that any subcontinuum
of the tree converges to the attracting fixed point, provitted it does not glue to a
periodic orbit; and if it does, then, by previous resultss asymptotically periodic (see
Theorem2 and the proof).

Finally, in Sectiond, we prove that any subcontinuum of a tree when it is iterated
under a tree map is either asymptotically periodic or aspiigatlly degenerate, or
both (see Theorem). For interval maps such a characterization was known (see
for instance 12]) and for transitive graph maps similar result was receptlyved in
[11]. Still for general graph maps the situation is unclear. Wieshi the paper with
the above-mentioned result that zero entropy of a tree digausystem implies zero
entropy of its functional envelope. We remark that this mmeenon is essentially
due to dimension one. There are quite simple examples ofezgropy maps on the
square for which the functional envelope has infinite entr@ag. f(x,y) = (X,y?),

(x,y) € [0, 1]? works). So, the following open question seems to be quiterabhere.

Question.Does Theorend remain true for a) graphs with loops, b) dendrites?

2 The dynamics of a subcontinuum of a tree containing a
periodic point.

First, let us recall some definitions and fix notations. Byimerval we mean any
space homeomorphic to [0] C R. A treeis a uniquely arcwise connected space
that is either a point or a union of finitely many intervals. niRgk that any tree is a
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continuum. Any continuous function from a tree into itssltialled aree map If T is
atree ank € T, we define theralenceof x to be the number of connected components
of T\ {x}. Each point of valence one will be called andpointof T and the set
of such points will be denoted by ERY. A point of valence greater than one will be
called acut-pointand the set of cut-points of will be denoted by Cuf{). A point

of valence different from two will be calledsertexof T, and the set of vertices df

will be denoted by(T). The closure of each connected component §fV(T) will

be called aredgeof T.

If (X,f) is a dynamical system ande X then thew-limit setof x underf is the set
wt(X) of all limit points of the trajectoryx, f(x),f2(x), ... regarding it as a sequence.
Given a subsed of a topological space, we denote AyInt(A) anddA the closure, the
interior and the boundary ok, respectively. Moreover, fox € X we will denote by
Comp @A, X) the (connected) component Afcontainingx if x € A, and the singleton
{x} if x ¢ A. For a finite seB we will denote its cardinality byB|.

Let us summarize some simple topological facts we will need.T be a treeM be a
subcontinuum ofl andA, Ay, n > 0 be connected subsets Bf Then the following
holds.

e M is atree. Also the factor spade/y (i.e. we just identify all points within
M) is atree.
e The setoA is finite.
e Each pointinA\ A is an endpoint ofA.
e The setComp (T \ A, X) NAis a singleton for eacl € T.
o If AyNAn1 # 0 for eachn > 0, thenU (A, is again a connected set.
e The setny2 A, is either connected or empty.
Given a treeT, a sequencex,}p>, C T is said to beconsistent with xc T if

Xm € Comp (T \ {*%},X) wheneverm > n > 0. Of course, a sequencen}n,

which is consistent with somedoes not need to be convergent; consider the example
n+1 o
T=[-1,1], x= 0 andx, = (—1)"- ;] , N> 1. However, as it is in the example,

one can always split the sequence into a finite number of cgeme (and, in some
sense, monotone) subsequences.

Lemmal LetT be atreex € T and{x};2, C T be a sequence consistent with
X. Then there is a finite partition of the set of nonnegativegets into the sets
L1, Lo, ..., Lk such thatix,xm] C [X,X.] wheneverm > n andm,n € L; for some

1 <i < k. In particular, each subsequenfg }nc1,, 1 < i < k is convergent.
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Proof The proof is straightforward. We just exprebsas the uniom}‘zl[x, yi] where
V1, V2, ..., Yk isan enumeration of all endpoints ®f and then define eadh to be the
set of those indices for which x, € [X, yi] but X, ¢ [x,y;] foranyj <. O

Given a metric spac&, we denote by CorX) the space of all subcontinua of
endowed with the following topology. For a sequerd@g }>° , C Con(X) we define:

liminf A, ={ xe& X:if Uisanopen subset of with U > x,
thenU N A # ( for all but finitely manyn};

limsupA, ={ xe X:if Uisan open subset &fwith U > x,
thenU N A # 0 for infinitely manyn}.

In fact, liminf A, limsupA, € Con(X) and liminfA, C limsupA,. If liminf A,

= A = limsupA,, then we say tha{A,}>°, converges to A as R+ oo, written

A, — A, n — ~o. Itis well known that this convergence defines a topology on
Con(X), and ConK) endowed with this topology is a compact metrizable topicialg
space. In fact, this topology is given by the Hausdorff neetwhich we will define
later when we need it explicitly.

The following easy lemma shows that, given a tfeandM € Con(T), convergence
in the space Cofd() is given by convergence in the spaces @dnand Con(/w).
Denote bymry the canonical projectiom — T/ .

Lemma?2 LetT be atree and,,n > 1, M € Con(T). Suppose thdil N A, # O for
eachn and both the sequencé®nNA,}->° , € ConM) and{mm(An)}r2o € Con(T/m)

converge in the corresponding spaces. Then the sequghge, converges in
Con(T).

Proof If x € T\ M, then one can take an open &t x such thatU "M = (). So,
eachx € T\ M belongs to liminfA, (resp. limsupA,) iff x belongs to lim infry (An)
(resp. limsuprm(An)). Next, we are going to proviel Nliminf A, = liminf(M N A,)
andM N lim supA, = limsupM N A,). To achieve this, it suffices to show that, given
X € M and a connected open sub&étof T with U > x, if U intersectsA, then it
intersectsM N A,, for eachn. Let x andU be as above and assume that A, # (.
We takey e UN A, ze MN A, andu € [zy] C A, such that £, u] = [z y] " M.
Thenu € M N A,, and so it is enough to show € U. To this end, observe that
u € Comp T \ M,y), and henceComp T\ M,y) "M = {u}. Letv e [x,y] C U
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be such that{,v] = [x,y] "M. Thenve MNU andv € Comp (T \ M,y). Thus
{v} =Comp T\ M,y) "M = {u} which leadstau=v € U.

To sum it up, we have proved that (M) N liminf Ay = (liminf my(An)) \ 7m(M) and

M N liminf Ay = liminf(M N A,), and also the same with liminf replaced by lim sup.
Therefore, liminfA, = lim supA, = (A" \ my(M)) UA”, whereA’ andA” denote the
limits of the sequence$mu(An) }o2 o and {M N An 2, respectively. O

Given a dynamical systenX(f), a setM C X is calledinvariant (resp. strongly
invariant) if f(M) € M (resp. f(M) = M). For a subseA C X, we denote by
Ls(f, A) the set-theoretical limit superior of the sequeRE&(A)}° ,, i.e. Lsf,A) =

Mo URzm f(A).

Lemma3 Letf: T — T be atree map anll € Con(T) contains a fixed point of
f. ThenLs(f, A) is strongly invariant connected subseftlotontainingXx.

Proof Let A =Ls(f,A) = N¥ oAm, whereAp = U2, f"(A) for anym > 0. First,
A is a connected set containing because eact'(A) is. Next, sincef (An) = Amyi1
for eachm > 0 and A, decreases om, the setA is invariant as intersection of
a family of invariant sets. On the other hand, fix axy= A and let us show that
x = f(y) for somey € A. Whatever them > 0, fromx € A1 = f(Am) we get
X = f(ym) for someyn € Apn. Consider the sequendgim}iy . Let mg = 0. If
Ym ¢ Comp ([ \ {Ym, },X) for infinitely manym > my, thenyn, € [X,ym] € A for
infinitely many m > mg, and soym, € A. Otherwise, there isny > mg such that
Ym € Comp [T\ {Ym, },X) forallm > my. Onthe nextstep, ¥m ¢ Comp [T\ {Ym, },X)
for infinitely manym > my, thenym, € [X,ym] € Am for infinitely manym > my, and
SOYm, € A. Otherwise, there is, > my such thaty, € Comp (T \ {ym, },X) for all
m > mp. Repeating this procedure, we either get that f(ym ), Ym € A for some
r > 0 or get the subsequendgm, }°°, which is consistent wittx (see the definition
of consistent sequence before Lemfaand such thak = f(yn ), Ym € Am for
eachr > 0. In the former case we get exactly what we need to complet@ribof
of strong invariance ofA. In the latter case, applying Lemmawe get a convergent
subsequencéyn, }reL (herel is an infinite subset of the set of nonnegative integers)
such that X, ym] € [X, Ym ] Whenevers > r ands,r € L. Therefore, ify denotes the
limit of {ym }reL, theny € Nrel[X, Ym] € Nret Am = A and, by continuityx = f(y).
So, we have showed that the getis strongly invariant. O

Given a dynamical systenX(f) and a nonempty, closed and invariant B&tC X,
one can consider subsystem(M, f|y), wheref|y is the restriction off to M. In
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the same setting, one can definfaetor-system(X,f)/m := (X/m, /M), whereX/y
is the factor space anff/y : X/m — X/m is given byf/y = my of o 7Tn_/|l where
mv @ X — X/m Is the canonical projection.

Letf : T — T be a tree map. A continuurA € Con(T) is calledasymptotically
periodicunderf if the sequencéP"(A),n > 0 converges for somp > 1.

Theorem 1 Letf : T — T be a tree map anél € Con(T) contains a periodic point
of f. ThenA is asymptotically periodic undér.

Proof Letx € A be a periodic point. In the sequel we will freely replacevith X
andA with f™(A) for some positive integells m, because it is enough to prove that the
sequencdPK™M(A) n > 0 converges for somp > 1. Thus, at first, it is convenient
to assume that is a just fixed point.

Let A = Ls(f,A). By Lemma3, the setA is a connected strongly invariant set
containingx. If it happens thatA = {x} then we are done, because we easily get
f"(A) — {x},n — oco. Otherwise, we expresA as the unionu}‘zl[x,xi] where
k= |En(Q) \ {x}| and {x, %2, ..., X} is an enumeration of all endpoints &f but
possiblyx (if x € En(A)). Here some ok;’s belong toA, while the others belong to
A\ A. Next, passing to subsystems and factor-systems, we wiledse the number
of x’'s.

First, we consider the case when &lls belong to A, i.e. A is closed. Since
f(A) = A and A = U};l[x,xi], for each 1< i < k there is 1< j < k such that
f[x,x] 2 [x,x]. Hence, there are K i,j < k such thatfi[x,x] 2 [x,x]. By
definition of A, there is a positive integen such thatg € f™(A). ReplacingA with
fM(A) andf with fi, we can assume that € A andf[x,x] 2 [x, x]. Now, we are
going to prove thafP"(A) converges a® — oo, for somep > 1. To this end, we
are going to use Lemmnafor M = Un>of "[x, X ] and for the sequencA,, = f"P(A),
n > 0. Since clearlyM N A, — M, n — oo, all we need is to prove thaty (Apn)
converges a® — oo, for somep > 1. We remark thatry(f"(A)) = ¢"(B), n > 0
whereg = f/m and B = my(A). Thus we consider the factor-syster/(s, g)
and continuumB = mu(A) € T/m which contains the fixed pointy(x) of g.
Therefore, we have reduced the proving of asymptoticalbperity of A underf to
the proving of asymptotical periodicity @ underg. The set Ls§, B) = mu(4) is
again, by Lemma, a strongly invariant continuum containing the fixed poltt now
En(Ls@,B)) \ {mm(X)} has at mosk — 1 elements, becauseu[x,x] = {mTm(X)}.
By repeating this procedure we will eventually get tiat= {x}, and so the proof is
complete for the case of closen.
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Now, assume thah is not closed. Sincd\ is strongly invariantA\ A is also strongly
invariant. MoreoverA \ A is finite as it is contained in the boundary of connected
subset of a tree. Replacirfigwith fI*\Al' we can assume that all points 6f \ A
are fixed undeff. Letx € A\ A, f(x) = x. Let us show thatA,, contains only
one preimage ok; for eachm which is large enough, wherA,, = U2 f"(A). In
order to see this, note thdk € A : f(x) = x} is just a singleton{x; }, for the set
A is invariant and each point ifh \ A is fixed. Choosem' such thatx; ¢ Apy.
Thenx € Ay \ Any, in particular, x; is endpoint ofA,y. Consider the closed set
{xe€ Ay :f(X) = x}. As we remarked above, it intersecisat exactly one poink; .
Moreover,x; is isolated inAy, for x; is an endpoint for botd\,y and A. Therefore,
{x € Am:f(¥) = x} = {x} for eachm > m’ which is large enough. So, replacing
(T, f) with the subsystemﬂ,fu—m), we can assume that is an endpoint ofl and
F=06) = {xi}.

Sincex ¢ Am 2 fM(A), there is a small enough neighbourhoad ) of x; such that
T\ [X,y) 2 f™(A). It follows that if a closed invariant set contaifis\ [, Y), it must
coincide with wholeA,, = T. Sincef~1(x) = {x}, we can take a neighbourhood
[X,2 C [%,y) of x such thatT \ [x,2) 2 f(T \ [x,Y)). Thenf[x,2 > [x,2], for
otherwise the sef \[x, 2) = (T\[X,Y))U[X, Z would be proper closed invariant subset
of T which containsT \ [x;,y). Similarly we getUn>of"[X,Z > X, for otherwise the
set T\ [X,y)) U (Unzof”[x, z]) would be proper closed invariant subsetTofwvhich
containsT \ [x,y). Now, we using Lemma pass to the factor-systenT (u,f/m),
whereM = Unp>of [, Z]. Putting A, = f"(A), n > mwe getM N A, =+ M, n — oo,
so we need only to show that,(Apn) converges as — oo, for somep > 1. Since
™ (Antm) = 9"(B) whereg = f/, and B = mu(f™(A)), we need only to prove that
the continuumB, which contains the fixed pointy(X), is asymptotically periodic
under the tree mag. We remark that Lg(,B) = mu(A), andLs(g, B) \ Ls(g,B) =
am(A) \ m™m(A) consist of at mostA \ A| — 1 points, formyu (%) = mm(X) € Tm(A).
Thus step by step we reduce the general case to the caseAwheénis empty, i.e. A

is closed (this case was considered earlier). O

3 The dynamics of a tree system without periodic cut-points.

Recall that, given a map: X — X, a pointx € X is called arattracting fixed point
(AFP, for short) if for any open sdl 5> x there is an open séf O V > x such that
f(V) C V. Letf : T — T be a tree map such that no cut-pointTofs fixed underf .

Then one can easily see thaie EnT such thatf (y) € [x,y) for somey within the
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edge of T containingx, thenx is AFP. On the other hand, ¥ € EnT is AFP, then
f(y) € [xy) for eachy within the edge ofl containingx.

Lemma4 Letf : T — T be a tree map such that no cut-pointTofis fixed. Then
there is unique AFP df in T (which is, of course, an endpoint @f).

Proof Existence We will say that a poiny € Cut(T) moves towards x En(T) if
f(y) € Comp (T \ {y},X) (equivalent condition iy ¢ [x,f(y)]).

Claim. For eachl < k < | En(T)| — 1 there is a cut-point y and an endpoint x such
that y moves towards x ardomp (T \ {y}, X) contains at most k endpoints of T.

Fork = |En(T)| — 1 our claim is clear, because we can take arbitsaeyCut(T) and
then any endpoint from Comp [ \ {y}, f(y)), So one can see that our claim holds for
the choserx andy. By induction, assume we have proved the claim for sénaad

let us prove it fork — 1.

So, suppose that a cut-poigtmoves towards an endpointand Comp T \ {y},X)
contains at mosk endpoints ofT. We takey; close enough tx so thaty; belongs
to the edge ofT containingx and [, y;1] C [x,y). If x is AFP, then we are done,
otherwise we gef(y:) ¢ [X,y1). The latter is equivalent tg; € [x,f(y1)). Letus
define a continuous mag: [y1,y] — [y1,Y] by g = Pryy,.yj o fly..y7, wherePry, v
denotes the "projection” onto the sef [y], i.e. Pryy, yj(2) is the unique point in
Comp (T \ [y1,¥],2 N [y1,y]. By the fixed point property, there ¥ < [y1,y] such
that g(y2) = y2. Therefore,y, = Pryy, yi(f(y2)), and so Y2, f(y2)] N [y1,¥] = {y2}-
Moreovery, € [y1,Y), becausey; € [x,y) andy moves towardx. So,y ¢ [X, Y]
which leads toy, € Comp (T \ {y},x). This means that all the components of
T\ {y2} but Comp T\ {y2},y) are subsets of Com (\ {y},X). On the other hand,
Y2 € [y, f(y2)], which means that Com@ (\ {y-}, f(y2)) is subset of CompT(\ {y},X),
while it does not contain all the endpoints Bfwhich are within CompT \ {y},X)
(namely, it does not contair). Thus, CompT \ {y2},f(y2)) contains at mosk — 1
endpoints ofT, and the claim follows.

In particular, ifk = 1 in the claim above, we get that there is a cut-pgimhoving
towards an endpoint and such that Com@(\ {y}, x) is just the semi-open interval
[x,y). So,xis AFP.

Unigueness On the contrary, suppose that there are two distinct AKPand X .
Consider the set
W = {y € (x,X) : y moves towards}

By continuity, both the set#/ and &, x') \ W are nonempty and open i, '), which
contradicts connectedness afX). O
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Remark 1 Ifatree mad : T — T is free of periodic cut-points, then for each iterate
f" the unique AFP is well defined and coincides with that ofT he reason for that is
the following. Ifs € En(T) is the AFP off , then for each neighbourhood of the form
[s,y) we havef[sy) C [s)y). Thusf"[s,y) C [s,y) for eachn > 0, and sos is the
AFP of each".

Remark 2 One can show, in the same way as in the proof of uniquenese athat
each cut-point o moves towards the AFP. Thus, taking into account Reriavike
seethatik € T, then eithef"(x) € En(T) for somen > 0 or the sequenc&"(x)}>°

is consistent with the AFP.

Next, we describe the dynamics of points and subcontinu&ensystem on a tree
without periodic cut-points.

Lemmab5 Letf : T — T be a tree map such that no cut-pointiofs periodic. Let
s e En(T) be its unique AFP. Then for eache T either

(a) t"(x) is a periodic cut-point for some > 0, or

(b) f"(X) — SN — oco.

Proof Let us suppose that no iteraft®&(x), n > 0 is periodic and prove thdf'(x) —
s,n — oo. According to Remark? after Lemmad4, the sequencgf"(x)}>°, is
consistent withs. Therefore, by Lemma, the w-limit set of x is a finite subset of
Cut(T) U {s}. Once( is finite, it must contain a periodic point, fé? is an invariant
set. Once2 C Cut(T) U {s}, the only periodic point it may contain & Sos € (.
Then we immediately geft"(x) — s,n — oo, becauses is an AFP. O

Letf : T — T be a tree map which is free of periodic cut-poiate En(T) be its
unique AFP anddy] be the edge off containings. By theimmediate basin of
attraction of s we mean the open set I1§(= Comp (U2 ,f ~"[s,y),9). Itis not hard
to see that both IBj and 9 I1B(s) are invariant sets. Clearly, & € Con(T) is a subset
of the immediate basin of attraction ef thenf"(A) — {s},n — oo. Of course, the
immediate basin of attraction afdoes not need to contain all cut-point Bf in other
words, f"(A) does not need to converge {8} even if A C Cut(T). However, as we
will see, the only way to escape convergingstis to 'cling’ to some of other periodic
end-points ofT .

Theorem 2 Letf : T — T be atree map such that no cut-poinflois periodic. Then
eachA € Con(T) is asymptotically periodic unddr.
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Proof Fix any A € Con(T). Then, by Lemmab, either f™(A) contains a periodic
point for somem, or f™(A) intersects the immediate basin of attraction §Bfor
somem. In the former case\ is asymptotically periodic in view of Theoref In
the latter one we consider two subcasd§}(A) C IB(s) and f™(A) ¢ IB(s), but
fMA) NIB(s) # 0. If fM(A) C IB(s), then we getf"(A) — {s},n — co. If
fM(A) € 1B(s), but f™(A) N 1B(s) # 0, thenf™(A) intersectsd IB(s). As we remarked
above,dIB(9) is an invariant set. Moreover, it is finite as boundary of arerted
subset of a tree. SB™X(A) contains a periodic point for someand we, using again
Theoreml, deduce asymptotical periodicity &f. O

4 Entropy of induced systems for tree maps

In this section, using our previous results, we will compihie topological entropy of
connected envelope and functional envelope of a dynamjstdis on a tree. Through-
out the section we will regard a tree as a metric, rather tbpolbgical, space.

First, we give the following description of the dynamics absontinua of a tree (cf.
Proposition in 12]). The proof just mixes Theoremk and 2. Given a tree map
f: T — T, an elementA € Con(T) is calledasymptotically degeneratenderf if
diamf(A) — 0,n — oo, wherediam stands for diameter of the set.

Theorem 3 Letf : T — T be a tree map. Then eagh € Con(T) is either
asymptotically periodic or asymptotically degenerateaurid(or both).

Proof Fix A € Con(T). If all iteratesf"(A) are pairwise disjoint, then obvioush is
asymptotically degenerate. So, we assumeftf{@)nf™(A) # 0 for somem > k > 0.
ReplacingA with fK(A) and f with f™* we can assume th& N f(A) # (. Then
the setUn>of"(A) is an invariant connected subsetf Passing to the subspace we
can assume thal = Un>of"(A). Now, if there is a periodic cut-point iff, then it
belongs to somé&"(A), and thus by Theorerh A is asymptotically periodic. On the
other hand, if no cut-point of is periodic, then by Theorer A is asymptotically
periodic, too. O

The notion oftopological entropyof a system on a compact topological space was
introduced by Adler, Konheim and McAndrew ii][as a measure of chaotic character
of a dynamical system. In this paper we will use the Bowenabing's definitions of
the topological entropy (see e.df])for systems on compact metric spaces, which agree
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with Adler-Konheim-McAndrew’s one for systems on topoloali metrizable spaces.
Let (X, p) be a compact metric space andfet X — X be a map. Fixn > 1 and

e > 0. Consider another metrjg” which takes into account the distance between the
respectiven initial iterates of points, namely pyt™(x,y) = maxo<j<n p(f'(x), 1 (y)).

A subsetE of X is called ,f, e)—separatedf for every two different pointsx,y € E

it holds p™(x,y) > . We say that a subsét c X (n,f,s)—spans X if for every

x € X there isy € F for which p™(x,y) < .

We by sep(n, f, ) denote the maximal possible cardinality of anf( )-separated set
in X, and byspan(n, f, ) the minimal possible cardinality of a set whiah {, £)-spans
X.

Then the topological entropy dfis defined by
- 1
h(f) = llinohm supﬁ

n—o00

logsep(n,f,e) = F!iLnolirr]n sup% logspan(n,f, ¢)
— OO

The following well-known lemma (see for exampl8)[shows a way of computation
of entropy when a system can be divided into the smaller sties)s.

Lemma 6 If X = (J,caXo Where eachX,, is closed and invariant set thé(f) =
sup,ea h(f|x,)-

Recall that ConX) denotes the space of all subcontinua>fendowed with the
Hausdorff metric. Given a dynamical systeid, {), by its connected envelopee
mean the system (Caxy, F), whereF : Con(X) — Con(X) is given by F(A) = f(A),
where, as usuaf(A) denotes the set of dl(x), x € A. Clearly, the system (CoKj, F)
contains a copy of the original systerX, ) (consider the subspace of all singletons
{x}, x € X). In[12] it was proved that topological entropy of an interval dyneanh
system is equal to that of its connected envelope. 1if] fhe same was proved
for transitive systems on graphs. Our next theorem eskeddishis equality for any
dynamical system on a tree.

Theorem 4 Let(T,f) be dynamical system on a tree §&bn(T), F) be its connected
envelope. Theim(F) = h(f).

Proof The proof is based on Theore3rand Lemmas. Consider the family of closed
invariant set§ Na }acconr) WhereNa = {f"(A) : n > 0}. Since eaclh € Na, Con(T)
is the union of allNa. Now, we can apply Lemmé&

h(F) = sup h(F|n,)-
AeCon(T)
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Let A € Con(T) is given. If A is asymptotically periodic, then it can be derived
directly from the definition of the topological entropy thatF|n,) = 0. Otherwise,
by Theorem3, A is asymptotically degenerate. So, thelimit set wr(A) is a subset
Of Tsing := {{X} : x € T}. Thush(F|n,) = h(f|.-a) < h(Flrg,e) = h(f).

We see thah(F|n,) < h(f) for everyA € Con(T). In view of Lemma6 this implies
inequality h(F) < h(f). The converse inequality holds, becausef] is a subsystem
of (Con(T), F). O

Recall that theHausdorff distancdetween two setéd; and A, in a metric space is
given by dy (A1, A) = inf{e > 0 : Ay C B(Az,e)andA; C B(Ag, )} whereB(A, )
denotes the union of all closed balls of radius- 0 whose centres run ovér. This is
a metric on the family of all bounded, nonempty closed sihsEX. As we remarked
above, the Hausdorff metric generates the same topologyomXT as that given by
liminf and limsup.

Recall the definition of a functional envelope of a dynamgyatem (seed]). For the
general references sel)] 13, 14, 15]. Given a metric spaceX( p), denote the set of
all continuous mapX — X by §X). We endow the spac§X) with the Hausdorff
metric pyy (derived from the metrigmad (X1, 1), (X2, ¥2)) = max{p(x1, X2), p(y1,y2)}

in X x X) applied to the graphs of maps. Denote the correspondingarsgace
by $4(X). Given a dynamical systenX(f), consider the uniformly continuous map
F: S (X) — S4(X) defined byF(p) = f o ¢ (first apply ) for any ¢ € S4(X). The
spaceS4(X) is not compact (because it is not complete). However, if we vEuX)
as a subset of the space of all closed subsets »fX endowed with the Hausdorff
metric, then the closur&;(X) will be compact. The uniformly continuous mdp
can be uniquely extended to a continuous selfmap of a conmpeiric space§;(X).
We will denote this map by the same lettéras well; that isF : §4(X) — $(X).
The system % (X), F) is called afunctional envelopef (X,f). Again, as in the case
of connected envelope, the syste8y (X), F) contains a copy of the original system
(X, T) (consider the subspace of all constant maps).

If X = T is atree, then the extensién: S4(T) — S{(T) can be described precisely in
the following way. Recall that a set-valued misp: T — T is upper semicontinuous
if for every pointx € T and every open subs&t of T such thatyV O M(x) the set
{y € T : M(y) C V} contains a neighbourhood of One can prove tha§;(T)
consists of graphs of all set-valued maps— T which have nonempty connected,
compact values and are upper semicontinuous, and the extdhs S4(T) — S(T)

is given byF(p) = F o ¢ for any ¢ € S4(T).
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In [12] it was proved that if an interval dynamical system has zepological entropy,

then so does its functional envelope. Now, we are going tegotioe generalization of
this result for dynamical systems on trees. To do this, we tiee following estimates
on the numbers used in the definitions of topological entropy

Lemma 7 Let (T,f) be dynamical system on a tre&on(T), F) be its connected
envelope andS4(T), F) be its functional envelope. Then for aay> 0, n > 1 it
holds

sep(n, f,e)M© < sep(n, F, <) < span(n, F,/2)"" |

for some numbersly >(¢) which do not depend on andNy >(¢) — +o00,e — 0+.

Proof Fix e > 0 andn > 1. First, let us prove the right-hand inequality. {ak}} ;
be a cover ofl with continua of diameter less than Then for each paip, ) € S4(T)
the inequalitypn (0, ¥) > ¢ impliesdy (©(Tk), ¥(Tk)) > e for somek (heredy denotes
the Hausdorff metric on the space Coh@nd py denotes the Hausdorff metric on
the spaces,(T)). Moreover,pﬂ‘)(gp,z/)) > ¢ implies dg‘)(gp(Tk),qp(Tk)) > ¢ for some
k. Now, suppose that there is an, F,¢)-separated seEy of cardinality MN + 1
whereM is minimal possible cardinality of a set in Cdn(which (0, F,s/2)-spans
Con(T). Consecutively, for each £ k < N, by Dirichlet’s box principle, we take
a subsetEyx C Ex_1 of cardinality MN—K 4+ 1 such thatd,(j‘)(go(Tk),zp(Tk)) <e. On
the last step we get a sBly C Eg which contains two different elemenis ¢» such
that d (o(Tk), ¥(Tk)) <  for each 1< k < N. This implies p{P (¢, %) < ¢, a
contradiction to the fact thdfg is (n, F, €)-separated set. Thus the maximal possible
cardinality of an 0, F, ¢)-separated set is less than or equa¥if. We putN,(e) = N.

Now, we are going to prove the left-hand inequality. Let T be an edge ii. For
convenience, we assume that [0, 1]. Letx = %,O < k < K whereK = [2_15] -1.
(It suffices to prove the inequality for small enoughso we can assume thigt> 1.)
Let F be an 0,f,¢)-separated set i of the maximal possible cardinality. For
any K-tupley = (y1, Y2, ...,Yk) of elements ofF we define the (multivalued) map
¢y € S4(T) by

o oy(¥) ={y},if xe (X-1,%) C I, forsome 1<j <K,

o py(X)=T,if x=x forsome 0<j <K,orxe T\I.

One can see that collectiofpy }ycex forms an , F, ¢)-separated set i64(T). Thus
sep(n,F,e) > |F|X = sep(n, f,e)K. We putNy(e) = K. O

Theorem 5 Let(T,f) be dynamical system on a tree ai&i(T), F) be its functional
envelope.
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(1) If h(f) = 0, thenh(F) = 0.
(2) If h(f) > 0, thenh(F) = +oc.

Proof Let h(f) = 0. Let (Con(),.F) be connected envelope of (f). Then, by
Theoremd, h(F) = 0. By right-hand inequality in Lemmawe get
lim sup} logsep(n, F, <) < Np(e) lim sup% logspan(n, F,e/2) ,

n—oo N n— oo

for everye > 0. Sinceh(F) = 0, the right-hand side of the last inequality equals 0
foranye > 0. So,h(F) = 0.

Let h(f) > 0. Then, by left-hand inequality in LemnTawe get
lim sup} logsep(n, F,e) > Ni(e) lim sup} logsep(n,f,e),
n—o0 n n— oo n
for everye > 0. SinceNi(e) — +o0,e — 04, we see thah(F) > Ch(f) for any

positive C. So,h(F) = +oo0. O
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