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 23 

Abstract 24 

Snow avalanches impose a considerable threat to infrastructure and human safety in snow bound 25 

mountain areas. Nevertheless, the spatial prediction of snow avalanches has received little research 26 

attention in many vulnerable parts of the world, particularly in developing countries. The present study 27 

investigates the applicability of a stand-alone convolutional neural network (CNN) model, as a deep-28 
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learning approach, along with two metaheuristic algorithms including grey wolf optimization (CNN-29 

GWO) and imperialist competitive algorithm (CNN-ICA) in snow avalanche modeling in the Darvan 30 

watershed, Iran. The analysis was based on thirteen potential drivers of avalanche occurrence and an 31 

inventory map of previously documented avalanche occurrences. The efficiency of models’ performance 32 

was evaluated by Area Under the Receiver Operating Characteristic curve (AUC) and the Root Mean 33 

Square Error (RMSE). The CNN-ICA model yielded the highest accuracy in both training (AUC= 0.982, 34 

RMSE=0.067) and validation (AUC= 0.972, RMSE=0.125) steps, followed by the CNN-GWO model 35 

(AUC of 0.975 for training, RMSE of 0.18 for training, AUC of 0.968 for validation, RMSE of 0.157 for 36 

validation). However, the standalone CNN model showed lower goodness-of-fit (AUC= 0.864, 37 

RMSE=0.22) and predictive performance (AUC= 0.811, RMSE=0.330). The approach utilized in this 38 

study is broadly applicable for identifying areas where avalanche hazard is likely to be high and where 39 

mitigation measures or corresponding land use planning should be prioritized. 40 

Keywords: snow avalanche, artificial intelligence, GIS, natural disasters 41 

 42 

1. Introduction 43 

Snow avalanches are a natural hazard defined by the fast mass movement of snow along a slope that 44 

can also encompass rocks, soil, vegetation, or ice (McClung and Schaerer, 2006). This potentially deadly 45 

phenomenon in mountainous areas can threaten infrastructure, settlements, communication, utility 46 

disruptions, agricultural loses as well as human safety (Fuchs and Bründl, 2005; Stethem et al., 2003; 47 

Bühler et al., 2009; Sen Nag, 2018). In addition, snow avalanches have significant effects on ecosystem 48 

dynamics and diversity of fauna and flora (Kulakowski et al., 2006; Rixen et al., 2007; Bebi et al., 2009). 49 

Therefore, accurate prediction of this disturbance type is critically important, yet difficult due to its 50 
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numerous contributing factors (McClung and Schaerer, 2006). According to Maggioni (2005), the first 51 

snow avalanche hazard map was prepared in Switzerland after the winter of 1951, which saw 98 52 

avalanche-related fatalities and destruction of nearly 1400 buildings. Since then, avalanche hazard 53 

mapping has been an important tool in land-use planning and risk assessment (Maggioni, 2005; 54 

Voiculescu and Popescu, 2011) as avalanche hazard areas need to be identified and delineated for 55 

appropriate land use planning in vulnerable regions (Aydin and Eker, 2017). Nowadays, in countries with 56 

avalanche hazard, reasonably precise snow avalanche susceptibility mapping is a key tool and one of the 57 

priorities for land management. Avalanche susceptibility maps are especially important in areas where 58 

there is no detailed avalanche cadaster to support safe landscape planning (Suk and Klimánek, 2011). 59 

Because of the high variability of topo-hydrological and geo-environmental properties and their 60 

complex interactions, spatial modeling of the snow avalanche is a difficult task. Different approaches 61 

have been used to map snow avalanche susceptibility. For example, the analytic hierarchy process (AHP) 62 

method, has been widely applied for assessment of natural mass-movement problems and delineation of 63 

avalanche-prone areas (Kumar et al., 2016; Kumar and Srivastava, 2018). However, as an important 64 

drawback, such expert opinion-based methods involve a relatively high degree of subjectivity and have 65 

a substantial degree of uncertainty. In last few years, Kumar et al. (2017), in an attempt to map the snow 66 

avalanche risk of the western Himalayas region using probabilistic models, used a frequency ratio model 67 

in their study and illustrated the good performance of this applied method in detecting hazardous areas. 68 

Physical models (also termed dynamical models) are appropriate at the scale of a single path (i.e., single 69 

avalanche track) and require considerable data input of dynamic parameters such as pressure, flow 70 

velocity, snow texture, run-out distance, deposition depth; hence this approach is expensive in terms of 71 

costs and time (Cappabianca et al., 2008; Barbolini et al., 2011). While in some regions (e.g., Switzerland 72 

and some other areas in the European Alps) data exist to make predictions based on physical models 73 
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feasible over large areas, in most areas of the world, data with adequately fine spatial resolution do not 74 

exist, and yet, the danger of avalanches is real and present and needs to be assessed and predicted. Due 75 

to relatively limited data snow pack and other key variables in mountainous areas of developing 76 

countries, a regional approach is required for avalanche susceptibility mapping based on data that are 77 

available, e.g., on past snow avalanche events.  78 

Advances in computer science have promoted the use of machine learning (ML) procedures with 79 

higher accuracy in comparison with traditional approaches (Ghimire et al., 2012; Rogan et al., 2003). 80 

ML approaches can model non-linear problems with complex and inadequate data (Recknagel et al, 2000; 81 

Knudby et al., 2010). Hence, a large number of investigators around the world have utilized ML modeling 82 

in different environmentally related studies (e.g., Tien Bui et al. 2018; Falah et al., 2016). Recently, 83 

Choubin et al. (2019) successfully adopted machine learning approaches in snow avalanche mapping by 84 

applying multivariate discriminant analysis (MDA) and support vector machines (SVM) and 85 

demonstrated excellent predictive capacity of those models. In another study, Rahmati et al. (2019) 86 

successfully spatially modeled snow avalanches using four machine learning approaches in two mountain 87 

regions of Iran and with good prediction of snow avalanches within the study areas. They also reported 88 

that the complex interactions between snowpack, terrain (e.g., topography and bed surface 89 

characteristics), land use/cover, and meteorological conditions leading to snow avalanche release require 90 

powerful artificial intelligence systems to analyze snow avalanche formation. 91 

The deep learning (DL) approach, part of a new generation of machine learning techniques, has been 92 

broadly applied in other natural hazard modeling such as those of landslides (Can et al., 2019; Wang et 93 

al., 2019; Fang et al., 2020; Ji et al., 2020; Sameen et al., 2020) and floods (Gebrehiwot et al., 2019; Li 94 

et al., 2019; Wang et al., 2020; Zhao et al., 2020). However, to our knowledge, the capability of DL in 95 

snow avalanche hazard mapping has not yet been investigated in any published study. Hence, the current 96 

https://www.tandfonline.com/doi/full/10.1080/01431161.2018.1433343?src=recsys
https://www.tandfonline.com/doi/full/10.1080/01431161.2018.1433343?src=recsys
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study is a pioneer, aimed to apply the convolutional neural network (CNN) as a deep neural network to 97 

spatial modelling of snow avalanches and to scrutinize and compare the performance of the results of the 98 

CNN model with two metaheuristic optimization algorithms including grey wolf optimization (GWO) 99 

and imperialist competitive algorithm (ICA). In doing so, we present a method for assessing avalanche 100 

hazard that can be utilized in various settings, including in developing countries, where data may be 101 

limited. This research is based in the Darvan watershed in the west part of Kurdistan Province (Iran), 102 

where avalanches are a widespread and important natural hazard. This study explicitly evaluates a novel 103 

approach for snow avalanche hazard zoning, which can contribute to easier and faster planning for safe 104 

human activities in snow covered regions. The main goals of the research are: 1) develop a novel 105 

framework based on deep learning models and metaheuristic algorithms for snow avalanche 106 

susceptibility mapping, and 2) compare efficiency of hybridized models. 107 

 108 

2. Material and methods 109 

2.1. Study area 110 

As a mountainous region, Kurdistan province (with an area about 28817 km2 located in western 111 

Iran), has moderate weather during the spring and summer, while winters are very cold with heavy 112 

snowfalls (Jad et al., 2017). Darvan watershed, with an approximate area of 9384.11 km2, is in the west 113 

part of Kurdistan province (Fig. 1). The average annual precipitation is about 545 mm, 2/3 of which falls 114 

as snow during winter and spring. This amount of snowfall has made this mountainous region highly 115 

susceptible to snow avalanche occurrence. In addition to danger for those recreationists who go there for 116 

skiing and enjoying the scenery, snow has been a vital threat to road networks in both rural and urban 117 

cites. In some part of the Darvan watershed, the population has been growing lately, and space for safe 118 



6 
 

construction and human activities is becoming scarce, which together increase the risk to property and 119 

life associated with snow avalanches. In addition to important cities (Marivan, Sarabad, Sannandaj, and 120 

Mouches), there is also a number of villages in the region with mountainous roads that are affected by 121 

avalanche during winter. In the Darvan watershed, snow avalanches cause more casualties than any other 122 

natural disasters (Rahmati et al., 2019) and impede travel during the winter. During the past decade, 82 123 

people died due to snow avalanches hazard within the study area. Moreover, each year a significant 124 

number of cars are trapped by avalanches that further contributes to loss of lives and property (Fig. 2). 125 

In addition to providing value to local populations, an accurate snow avalanche susceptibility map is 126 

necessary due to increasing tourist activities of the Darvan watershed in the winter. 127 

Fig. 1 HERE 128 

Fig. 2 HERE 129 

2.2. Methodology 130 

The methodology implemented in this work is illustrated in Figure 3 and includes:  131 

1) visualizing the contributing factor layers of 15 snow avalanches  132 

2) generating a snow-avalanche inventory dataset and gathering information around relevant 133 

characteristics  134 

3) random dividing of snow avalanche points into two clusters of learning and testing 135 

4) generation of snow avalanche susceptibility maps using CNN, CNN-GW and CNN-ICA models 136 

5) accuracy assessment of prepared maps using AUC and RMSE metrics 137 

6) conducting sensitivity analysis and determining the importance of the predictor variables 138 

 139 

Fig. 3 HERE 140 
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2.3. Snow avalanche inventory 141 

The spatial behavior of historical snow avalanche events and the analysis of areas affected during those 142 

events provides useful information for modeling (Barbolini et al., 2011). In fact, to analyze snow 143 

avalanche hazard in mountain areas, the existence of snow avalanche databases with historical records 144 

of past avalanche events related to the triggering factors, extent and volume, regular observations are 145 

very important (Bourova et al., 2016). Hence, a database of snow avalanche occurrences (in situ point 146 

observations) and their characteristics was gathered for the years 2012–2020. 50 points (Nt=50, 70%) for 147 

training phases were randomly chosen from the total number of 72 snow avalanche locations and the 148 

other 22 points (Nv=22, 30%) were set aside for the validation phase (Fig. 4). The distribution of mapped 149 

avalanches shows a higher density of avalanches on northern hill slopes, as compared to the southern 150 

ones, and mostly channelized along existing avalanche tracks. The analysis of the inventoried events 151 

showed that avalanches are almost in totally small and middle size events with only a few cases that are 152 

considered extreme, most of the events causing damages to forest, road infrastructure and generating 153 

injuries and fatalities. 154 

Fig. 4 HERE 155 

2.4. Snow-avalanche influential factors 156 

Since for selecting the topo-hydrological and geo-environmental factors there was no standard guidelines 157 

for determining the snow avalanche influential factors, it has not yet been documented (Kumar and 158 

Srivastava, 2018). An accurate database on factors contributing to snow avalanche triggering is therefore 159 

essential for spatial modeling of snow avalanche hazard (Christophe et al., 2010). In the Darvan 160 

watershed, an almost systematic lack of spatio-temporal data also has limited long-term monitoring and 161 

investigations focusing on factors contributing to snow avalanches events in remote areas of the 162 
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mountainous parts. As illuminated in the following paragraphs, a total number of fifteen environmental 163 

factors (elevation, slope aspect, distance from stream, slope degree, profile curvature, planform 164 

curvature, standard curvature, relative slope position (RSP), terrain ruggedness index (TRI), topographic 165 

position index (TPI), topographic wetness index (TWI), wind exposition index (WEI), slope length (LS), 166 

land use, lithology) were selected according to the literatures and field surveying (Kumar et al., 2017; 167 

Choubin et al., 2019; Parshad et al., 2019; Rahmati et al., 2019; Akay, 2021). The data source and scale 168 

of the predictor variables can be seen in Table 1. 169 

Table 1 HERE 170 

Elevation 171 

Elevation has an important role in the frequency of avalanche start zone (Gleason, 1994). Hence, in order 172 

to grasp any relationship between elevation and danger of avalanche occurrence, this map was obtained 173 

from the Iranian Department of Water Resources Management (IDWRM). Shuttle Radar Topography 174 

Mission (SRTM) DEM (http://hydrosheds.cr.usgs.gov/) was the source of elevation data. For the study 175 

area, the elevations map is shown in figure 5a and ranges from 703 to 3328 m. 176 

Slope aspect 177 

As a terrain parameter, slope aspect affects the snow cover and depths by the different conditions due to 178 

the sun radiation and solar energy in the different slope aspect directions (Mcclung and Schaerer, 2006). 179 

Radiation can reduce snow stability and considerably results in occurring snow avalanche. The slopes 180 

aspect direction regarding the solar energy has an important role on snowpack stability (Benedikt, 2002). 181 

Information indicated that most avalanche events occur in north-facing slope aspects (Mcclung and 182 

Schaerer, 2006). The slop aspect map of Darvan watershed was extracted from DEM layer and is 183 

illustrated in figure 5b. 184 

http://hydrosheds.cr.usgs.gov/
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Distance from stream 185 

Water movement in the river networks is considered as the key component of the terrestrial hydrological 186 

process. River basins and watersheds as the main units of land, can construct individual differences in 187 

hydroclimate, geology and soil properties, and topography (Balasubramanian and Nagaraju, 2017). 188 

Hence the influence of rivers on the subject of the present study was considered by considering distance 189 

from stream (Fig. 5c) factor into account and was obtained via Euclidian Distance method in ArcGIS 190 

10.2. 191 

Slope degree 192 

Slope acts as a substantial terrain element in snow avalanche evaluation (Schweizer et al., 2003; 193 

Cappabianca et al., 2008). Statistically, it has been proved that avalanches are more likely to occur in 194 

areas with a slope angle greater than 30 (Ancey, 2009). Slope degree map has been plotted in ArcGIS 195 

10.2 from the DEM layer. As shown in figure 5d. The slope of Darvan watershed varies from 0◦ to 78.1◦.  196 

Curvatures 197 

The curvature factors describe the shape of the slope. There are three curvature types: profile, planform, 198 

and standard. Profile curvature, which is also regarded as slope curvature, is defined as a parallel flow 199 

line to the slope (Thommeret et al., 2010). Positive values of the convex areas show a downhill decrease 200 

in slope angle. Concave areas also downward increase in slope angle, and values around 0 indicate plain 201 

slope (Teich et al., 2012). The profile curvature map was extracted from the DEM layer and is 202 

demonstrated in Figure 5e. The planform curvature (also called plan curvature) relates to the divergence 203 

and convergence of flow across a surface and defines as perpendicular to the direction of the maximum 204 

slope. The planform curvature map was produced in ArcGIS 10.3 (Figure 5f). A positive value in the 205 

planform curvature map means that the surface is laterally convex at that cell, whereas a negative plan 206 

https://link.springer.com/article/10.1186/s13717-016-0057-1#ref-CR98
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shows that the surface is laterally concave at that cell. When the surface is linear, the planform curvature 207 

has a value of zero. The standard curvature simultaneously considers both the planform and profile 208 

curvatures. The standard curvature map was generated using ArcGIS 10.3 (Figure 5g). 209 

Relative slope position (RSP) 210 

RSP is also used in natural hazard analysis as a topographic characteristic identifier and can zone an area 211 

as foot-slopes, ridge tops, flat surface, mid-slopes, and upper slopes. RSP ranges from 0 to 1. Values near 212 

0 indicate flat surface and valleys, while values near 1 represent upper-slopes and ridge tops (Choubin et 213 

al., 2019). RSP map of Darvan watershed is illustrated in Figure 5h. 214 

Topographic position index (TPI) 215 

The difference between elevation at the central point of a neighborhood and the average elevation around 216 

it is calculated through TPI (Weiss, 2001). As a significant indicator of local low-lying areas and 217 

depressions, TPI shows local topographic conditions (Laamrani et al., 2015). TPI map of study areas 218 

(Figure 5i) produced in SAGA-GIS using equation 1 and ranges from −97 to 95.1 m. 219 

𝑇𝑃𝐼 =
𝐸𝑝𝑖𝑥𝑒𝑙

𝐸𝑠𝑢𝑟𝑟𝑜𝑢𝑛𝑑𝑖𝑛𝑔
                                                        (1) 220 

where Epixel is the elevation of the cell (in meter) and Esurrounding is the mean elevation of the neighboring 221 

pixels (in meter), respectively (Kavzohlu et al., 2014). 222 

Terrain ruggedness index (TRI) 223 

The mean difference between a central pixel and its surrounding cells is measured by TRI. TRI is defined 224 

as equation 2 (Conrad et al., 2015): 225 

𝑇𝑅𝐼 = √|𝑥|(𝑚𝑎𝑥2 − 𝑚𝑖𝑛2)                                                 (2) 226 
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which x refers to the elevation (0,0) (in meter); Min represents the minimum and max shows the 227 

maximum elevation of the neighbor pixels (in meter) (Chlogl et al., 2018). In the Darvan Watershed, TRI 228 

values range from 0 to 98.1 m (Fig. 5j). 229 

Topographic wetness index (TWI) 230 

The TWI is a static condition of the wetness index, which is universally employed to analyze the 231 

hydrological processes and topographic conditions (Sorenson et al., 2006). In a given watershed, TWI 232 

represents the water trend accumulating at a specific location, and the local slope shows the impact of 233 

gravitational forces on water movement (Pourali et al., 2014). This parameter is calculated through the 234 

following equations: 235 

𝑇𝑊𝐼 = 𝑙𝑛 (
𝛼

𝑡𝑎𝑛𝛽
)                                            (3) 236 

𝛼 =
𝐴

𝐿
                                                                 (4) 237 

in which α refers to a specific catchment area (A= catchment area) and L is contour length along with the 238 

flow pathway. β is the slope angle at the pixel (Beven and Kirkby, 1979). TWI map of the study area is 239 

illustrated in Figure 5k and ranges from 1.9 to 25. 240 

Wind exposition index (WEI) 241 

Strong winds tend to an inhomogeneous snow distribution over terrain hence can lead to excessive snow 242 

accumulation and therefore avalanche danger in specific locations. The WEI in this study was mapped 243 

using SAGA-GIS (Fig. 5l). 244 

Slope length  245 

https://en.wikipedia.org/wiki/Hydrology
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The combination effect of slope length (LS) and its steepness is measured by LS factor. This parameter 246 

has a direct impact on the potential transportation of an area (Vijith and Dodge-Wan, 2018). LS map of 247 

the present study was calculated in SAGA-GIS. As shown in Figure 5m, the LS value of study area varies 248 

from 0 to 183.7 m. 249 

Land use 250 

Land use plays a key role in geomorphological and hydrological response of watersheds (Mao and 251 

Cherkauer, 2009; Elfert et al., 2010). Hence, many factors such as soil moisture content, surface and 252 

subsurface flow regimes, surface roughness as well as soil erosion are affected by land use (Costa et al., 253 

2003, Tu, 2009, Feddema et al., 2005). The land use map at 1:50,000 scale was obtained from the Iranian 254 

Department of Water Resources Management (IDWRM) for the study area. IDWRM produced the land 255 

use map using Landsat-8 in 2019. This map was then scrutinized through field investigations. As shown 256 

in Figure 5n and Table 2, the predominant land uses of Darvan watershed is Rangeland (39.59%), 257 

followed by forested land (20.6) and agricultural lands (17.73). 258 

Table 2 HERE 259 

Lithology 260 

Rocky outcrops affect surface characteristics and play an important role in occurring snow avalanche 261 

(Butler and Walsh, 1990). Lithology map provides vital information about them. The role of lithological 262 

units is crucial in comprehending the place of transport and redistribution of eroded materials. Hence 263 

such information will help us to understand the process of landscapes develop (Gasparini et al., 2004; 264 

Sklar and Dietrich, 2004). Hence, to detect any probable downslope movement on snow, the lithology 265 

maps of Darvan watershed was derived from geology map of Kurdistan Province at a scale of 1:50,000 266 

(Figure 5o; in the appendix see Table S1). 267 
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Fig. 5 HERE 268 

The format of the snow-avalanche influential factors (spatial resolution 30m) was converted to ASCII in 269 

ArcGIS 10.3. The extent and grid size of these layers are the same and can be easily entered to the models. 270 

In the conceptual of models, the snow-avalanche influential factors are independent variables and snow 271 

avalanche occurrences are the dependent variable (target variable). The dependent variable should be 272 

prepared in a shapefile format. Both dependent and independent variables were entered to Matlab 273 

software to perform models. The model can make a relationship between these variables to learn and 274 

then predict snow avalanche susceptibility in whole study area.  275 

  276 

2.5. Application of models 277 

2.5.1. Convolutional Neural Networks (CNN) 278 

In recent years, remarkable attention to deep learning models has appeared (LeCun et al., 2015). CNN is 279 

a well- known algorithm among numerous deep learning models (Russakovsky et al., 2015; Krizhevsky 280 

et al., 2012). The function of the neural network is based on a feed-forward approach, in which 281 

parameters are trained on the basis of a back propagation algorithm through a classic stochastic gradient 282 

descent (Hu et al., 2015). In comparison with artificial neural network (ANN) whose necessities are 283 

infeasible in large-scale problems, CNN is capable of massive parallelization recognition and can learn 284 

complex problems (Pan and Yang, 2010). Large learning capacity of CNN as well as its highly 285 

hierarchical structure lead to an admired performance in classification and prediction (Oquab et al., 286 

2014). Hence, this network can escalate the probability of correct classifications by large data sets 287 

(Canziani et al., 2016). A typical structure of CNN is displayed in Fig. 6. As the figure illustrates, basic 288 

layers of the model are input, convolutional, max pooling, fully connected and output. A m×n matrix, is 289 

https://link.springer.com/article/10.1007/s13753-019-00233-1#ref-CR23
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considered as the input layer for every element, several convolutional units creates a convolutional layer 290 

(Sharif Razavian et al., 2014). Pooling is a crucial operation in the CNN and Max pooling is the common 291 

operation. To decrease the loss of feature information, the linked layer restructures obtained 292 

representations and the output layer produces classification results (Szegedy et al., 2015). The main 293 

operations performed in any CNN can be summarized as following equation (Eq. 5): 294 

𝑂𝑙 = 𝑃(𝜎(𝑂𝑙−1 × 𝑊𝑙 + 𝑏𝑙))                                           (5) 295 

which 𝑂𝑙−1 is the output map from the previous layer of the l-th layer, 𝑊𝑙 donates the weights of layer, 296 

𝑏𝑙 indicates the biases of the layer, the σ(·) represents the non-linearity function outside the convolutional 297 

layer (Zhang et al., 2018). 298 

Fig. 6 HERE 299 

2.5.2. CNN-GWO (Grey wolf optimization) 300 

GWO, as a deep learning algorithm can be utilized for optimally determining weights and topological 301 

configurations in a concurrent manner (Lim et al., 2014; Zhang et al., 2016). This algorithm has been 302 

effectively implemented in different fields of study (Sankara Babu et al., 2018), human actions (Kumaran 303 

et al., 2018), landslide Susceptibility Assessment (Chen et al., 2019; Moayedi et al., 2019). In the current 304 

study, also GWO algorithm was adjusted to CNN to improve the efficiency of the CNN avalanche 305 

forecasting system. Mirjalili et al. (2014) have initially established the GWO algorithm as the inspired 306 

leadership hierarchy of grey wolves that are defined by searching for prey and hunting. GWO has 307 

confirmed cheap results with compare to other famous evolutionary methods such as particle swarm 308 

optimization (PSO). Three optimum solutions named alpha, beta and delta have been considered for 309 

GWO and based on the locations of these solutions, the omegas (remaining candidates or ω) can update 310 
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their positions (Tien Bui et al., 2018). In process of the optimization, the locations of wolves are updated 311 

using following equations (Eqs. 6 to 9):  312 

𝐷⃗⃗ = |𝐶 . 𝑋𝑝
⃗⃗ ⃗⃗ (𝑡) − 𝑋 (𝑡)|                                         (6) 313 

𝑋 (𝑡 + 1) = 𝑋𝑝
⃗⃗ ⃗⃗ (𝑡) − 𝐴 . 𝐷⃗⃗                                      (7) 314 

𝐴 = 2𝑎. 𝑟1⃗⃗⃗   − 𝑎                                                      (8) 315 

𝐶 = 2. 𝑟2⃗⃗  ⃗                                                                (9) 316 

where, t or iteration has been considered as t-th, 𝐴  and 𝐶  are considered as coefficient vector, position 317 

vector of prey is considered for  𝑋𝑝
⃗⃗ ⃗⃗ , X   indicates position of the wolf. The 𝑎  coefficient decreases 318 

linearly from 2 to 0 with the increasing in number of iterations, 𝑟1⃗⃗⃗    and   𝑟2⃗⃗  ⃗   are indicators of random 319 

vector [0, 1]. 320 

 321 

2.5.3. CNN-ICA (imperialist competitive algorithm)  322 

ICA is also a new analysis technique which is developed from the blind signal separation problem. ICA 323 

has been effectively used in different fields of study such as bio engineering, communication, speech 324 

recognition and fault diagnosis (Barros and Cichocki, 2001; Puntonet and Lang, 2006; Barros et al., 2007; 325 

Žvokelj et al., 2016). The important idea of ICA is minimizing the relationship between all the signal 326 

sources (Comon, 1994; Hyvrinen, 2010). The ICA algorithm divides the mixed signals, the sorting of the 327 

signal separated by the ICA is individually linked to the non-Gaussian of the signal source (Yu and Hu, 328 

2014), therefore, the selection of the target, background and interference signals cannot directly carry out 329 
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(Hyvrinen, 2010). The process of the ICA optimization is well-defined as following equations 330 

(Calabrese, 2019) (Eqs. 10 and 11): 331 

𝑋 = 𝐴𝑆                                (10) 332 

𝑆 = 𝑊𝑋                                   (11) 333 

where the input data considered as X with dimension n and p which refer to the number of samples and 334 

measured variables, A and S indicate the mixing matrix and independent components respectively, which 335 

are linearly merged to build X. The aim of the ICA algorithm is to recognize the original signals from the 336 

explanations and accordingly, the ICA algorithm is desired to hypothesis an unmixing matrix (W) which 337 

is the opposite of the mixing matrix (Calabrese, 2019).  338 

 339 

2.6. Accuracy assessment 340 

Validation is the crucial part in any modelling process that is used to comprehend whether the applied 341 

model works properly for the modeler aim or not (Robinson, 2014). According to Douglas-Smith et al., 342 

(2020), the power of a model depends on its capability to diminish misclassification. In this investigation, 343 

two performance assessment approaches, namely the area under the receiver operating characteristic 344 

curve (AUC) and the root mean square error (RMSE) were implemented.  345 

• AUC metric 346 

ROC curve defines the excellence of a prediction condition through explanation its ability in precise 347 

anticipation of occurrence or nonoccurrence of predefined ‘‘event’’ (Mason and Graham, 2002). This 348 

method has the advantage of being independent from the considered thresholds for calculations as well 349 

as their intervals (Fawcett, 2006). The main profit of ROC as an independent method is independency of 350 

https://www.sciencedirect.com/science/article/pii/B9780128096338204603#!
https://www.sciencedirect.com/science/article/pii/B9780128096338204603#!
https://www.tandfonline.com/doi/full/10.1080/19475705.2018.1424043
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the ROC from the thresholds, which considered for calculations. A ROC curve is a two-dimensional 351 

methodology (the success proportion of detection signals (y-axis) to the false identifying rate of noise 352 

events (x-axis) in which the true-positive rate of detection (Chen and Li, 2020; Chen et al., 2020a, 2020b), 353 

(TP) is plotted against the false-positive rate of error (FP) (Maxion and Roberts, 2004; Chen and Chen, 354 

2021; Zhao and Chen, 2020): 355 

X = 1 − 𝑠𝑝𝑒𝑠𝑖𝑓𝑖𝑡𝑦                                                (12) 356 

Y = sensitivity                                                      (13) 357 

Specifity =
TN

FP+TN
                                                  (14) 358 

Sensitivity =
TP

TP+FN
                                              (15) 359 

As stated by Yesilnacar (2005), the AUC values near to 1 show excellent performance of applied models 360 

(0.9-1 excellent, 0.8-0.9, very good, 0.7-0.8 good, 0.6-0.7 moderate, 0.5-0.6 poor). 361 

 362 

• Root Mean Square Error (RMSE) metric 363 

Generally, the estimator precision rises with the square root of the sampling effort (Marriott1, 1990). The 364 

MSE measures the average of the square’s deviation between the fitted values with the actual data 365 

observation (Pham, 2006). The RMSE is the square root of the variance of the residuals or the square 366 

root of MSE (Li and Pham, 2017; Chen et al., 2021). The RMSE is commonly applied to identify 367 

differences between predicted (by a model) and observed values (Yndman et al., 2006). The RMSE is 368 

given by equation 16: 369 

RMSE = √
∑ (𝑦𝑖−𝑦)2𝑛

𝑖=1

n
                                               (16) 370 

here yi is the ith observation of y and ŷ the predicted y value given the model. A value of zero would 371 

indicate a perfect fit to the data. 372 
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 373 

2.7. Sensitivity analysis 374 

A removal sensitivity analysis was conducted to determine the influence of predictor variables on the 375 

model output. Considering the spatial modeling approach in this study, the proposed method by Oh et al. 376 

(2011) was performed. In this method, the accuracy of the model should be evaluated when all predictor 377 

variables are integrated. Next, each predictor variable is extracted from the modeling process and the 378 

accuracy of the model will be correspondingly assessed. This technique allows not only to estimate the 379 

effect of a predictor variable on the model prediction, but also to rank the importance of predictor 380 

variables. 381 

 382 

3. Results  383 

3.1. Snow avalanche susceptibility 384 

All three snow avalanche susceptibility maps of the Darvan Watershed that were generated by the CNN, 385 

CNN-GWO, and CNN-ICA models were categorized into five classes: very low (0–0.2), low (0.2–0.4), 386 

medium (0.4–0.6), high (0.6–0.8) and very high (0.8–1.0) susceptibility (Figure 7).  As demonstrated in 387 

the figure below, the same spatial distribution was detected in CNN-GWO and CNN-ICA with some 388 

subtle differences. The CNN model seems to reveal a slightly different pattern with larger areas 389 

categorized as low susceptibility zones. Areas of very high susceptibility are more obvious in the CNN-390 

GWO and CNN-ICA rather than in the CNN avalanche map. All in all, the outcome of the study has 391 

shown that about 40 percent of areas are highly susceptible to avalanche occurrence, with the high 392 

susceptible zones covering an approximate area of 12, 10.5 and 8 percent respectively in the CNN-GWO, 393 

CNN-ICA and CNN models. 394 
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Fig. 7 HERE 395 

3.2. Performance of the models 396 

To quantify the reliability and accuracy of the applied models, historical snow avalanche events were 397 

used as ground reference and statistical evaluation metrics including AUC and RMSE were calculated. 398 

In the case of the AUC metric, as shown in Table 3, values of 0.982, 0.978, and 0.988 were observed in 399 

the training phases for CNN, CNN-GWO and CNN-ICA, respectively. Corresponding values of 0.202, 400 

0.054, and 0.1140 resulted from RMSE analysis results for CNN, CNN-GWO and CNN-ICA, 401 

respectively (Fig. 8). 402 

It is well-known that accuracy in the training stage does not indicate the predictability of the model 403 

because training data are always used in model construction. Consequently, we determine the accuracy 404 

of model performance in the validation phase using the excluded 30% of the snow avalanche inventory 405 

(Table 3). According to the validation results, the CNN-ICA had the highest predictive performance 406 

(AUC= 0.979), followed by the CNN-GWO (0.971) and the standalone CNN model (AUC= 0.863). 407 

Importantly, the RMSE metric confirmed this finding as CNN-ICA outperformed other models 408 

(RMSE=0.1048). The CNN-GWO was the second-best model (RMSE=0.1378), while the standalone 409 

CNN gave the lowest predictive performance (RMSE=0.228). As mentioned previously, AUC values 410 

more than 0.8 indicate very good performance, while AUC values higher than 0.9 show excellent 411 

predictive performance. Thus, it can be concluded that all applied models can satisfactorily predict 412 

avalanche susceptibility of the study area, with CNN-ICA performing best, having 0.988 and 0.979 413 

values in both training and validation phases, illustrating an excellent goodness-of-fit and predictive skill. 414 

Table 3 HERE 415 

Fig. 8 HERE 416 
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3.3. Sensitivity analysis 417 

The results of sensitivity analysis were shown in Figure 9. TRI (23.4%) and slope (21.5%) had the 418 

greatest impact on snow avalanche prediction, followed by slope length (19.2%). In addition, aspect 419 

(17.6%), RSP (15.1%), profile curvature (12.2%), and elevation (11.8%) played key important roles in 420 

the snow avalanche occurrence. WEI, TPI, planform curvature, and standard curvature showed a 421 

moderate contribution to the snow avalanche modeling with a variable importance value of 8.6%, 7.5%, 422 

6.5%, and 6.3%, respectively. Other factors including distance from stream, TWI, land use, and lithology 423 

had low importance value (<10%) in the sensitivity analysis. It is worth mentioning the most important 424 

six variables were all categorized as geometric factors.  425 

Fig. 9 HERE 426 

4. Discussion 427 

4.1. Snow-avalanche susceptibility mapping 428 

In this study, snow avalanche susceptibility maps were prepared for the Darvan watershed of Kurdistan 429 

province in order to evaluate and test a novel modeling approach and to provide useful information to 430 

policy makers and land use planners. The overall spatial pattern of snow avalanche susceptibility based 431 

on different approaches presented herein was the same, while the details of model outputs differed in 432 

some instances. These differences stem from the structure and optimization processes of the various 433 

models, which can be combined to further improve overall output. Specifically, we note that coupling 434 

metaheuristic algorithms with the CNN model have improved the validity of the output maps. We have 435 

demonstrated that the approach presented here could be widely promoted as a first-pass filter that can be 436 

used over large areas to identify priorities for avalanche hazard mitigation measures, particularly in 437 

mountainous regions of the world in which human populations are at risk of avalanches, but in which 438 
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fine-scale data on the determinants of avalanche risk are not widely available. We suggest that such 439 

broad-scale analysis should be followed with detailed site-specific analysis, in the event that any 440 

infrastructure exists or development were planned in areas of high risk. 441 

Our results indicated that in the Darvan watershed, the areas with high and very high susceptibility to 442 

avalanches cover approximately 40 percent of the region, and are concentrated in the central parts of the 443 

region and in a line stretched from south to west. Many roads are located in the high and very high 444 

susceptibility classes, implying an existing and thus far unmitigated threat to transportation infrastructure 445 

and human safety. Hence management plans and snow avalanche control measurements should be 446 

prioritized in those areas. Avalanche control and avalanche defense activities at these sites will reduce 447 

the hazard to human life, activity, and property. Further, we suggest avoiding or minimizing human travel 448 

or new constructions in high-risk areas. As discussed by Jamieson and Stethem (2002), land use planning 449 

can affect the likelihood of snow avalanches initiation, hence planners and managers can protect human 450 

community and infrastructure by scenario-based management and efficient land use patterns. For 451 

example, Bebi et al. (2009) emphasized that forests significantly decrease the likelihood of snow 452 

avalanche probability in mountain areas and also influence the magnitude and frequency of snow 453 

avalanche events. As explained by Bocchiola et al. (2006), land use planning in mountain ecosystems 454 

requires accurate investigation of snow avalanche hazard. In this regard, Mainieri et al. (2020) indicated 455 

that forest management and the development of afforestation projects in upstream zones have the 456 

potential to control snow avalanche occurrence. 457 

The general tenets of development in avalanche prone regions hold that construction in high-risk areas 458 

should be prohibited, and any necessary buildings in less danger areas should to be strengthened, 459 

reinforced, or otherwise protected. Further research would benefit from robust collecting of spatial data 460 

and modelling the various aspects of avalanche predictions to develop instruments of sufficient 461 
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robustness to withstand the extreme conditions encountered in the starting zones of avalanches. More 462 

generally, the models presented in this study can be applied to gain information about snow avalanche 463 

probability within inaccessible and remote regions. This information can refine decision-making and 464 

forecasting. 465 

 466 

4.2. Application of artificial intelligence-based models 467 

Machine learning and artificial intelligence models have been widely employed in different 468 

branches of natural hazard modeling. However, to the best of our knowledge, the current study is the first 469 

to investigate the applicability and effectiveness of CNN model in snow avalanche hazard modeling. 470 

Snow avalanches are complex phenomena that are influenced by many geo-environmental and topo-471 

hydrological factors; thus, snow avalanche modeling requires powerful modeling systems. By applying 472 

the CNN and its hybridized models, progress has been made in understanding how historical snow 473 

avalanche events can provide information for model building and prediction of future susceptibility of 474 

snow avalanche. There are several reasons for the efficacy of the CNN model. The proposed approach 475 

based on the CNN model does not require manual designation of the classifier and other variables (Yu 476 

et al., 2017). In addition, the CNN model can reduce the dimensions of neural network parameters during 477 

the calibration phase which promotes the generalizability of this model (Zhao et al., 2020). This feature 478 

allows the CNN to deal with big data and complicated classification problems (Amin et al., 2018). As 479 

Ren et al. (2015) and Wang et al. (2019) explained, among the different machine learning and artificial 480 

intelligence techniques, CNN models have powerful skill and strong adaptive capability for addressing 481 

pattern recognition problems. Regarding the structure of the CNN model and its robust performance, 482 

Weimer et al. (2016) suggested that the convolution layer allows the model to extract effective and 483 

sophisticated features from the original dataset as it includes several convolution kernels iteratively. 484 
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Furthermore, as an additional advantage, Chen et al. (2016) inferred that the pooling phase in the CNN 485 

model avoid overfitting and minimize computational cost through reducing the dimensionality of feature 486 

maps. 487 

In this study, GWO and ICA were added to the CNN model to test for any associated improvement 488 

in results. After optimizations, the CNN model successfully identified the relationships between snow 489 

avalanche occurrences and explanatory factors. In addition, the corresponding results of this study 490 

revealed that adding GWO and ICA algorithm can further improve the performance of the CNN model 491 

through optimizing parameters. The optimization process of the ICA algorithm also outperformed GWO 492 

algorithm, which indicates better performance of CNN-ICA rather than CNN-GWO in snow avalanche 493 

modeling. In fact, hybridized CNN models show considerable promise for spatial modeling of snow 494 

avalanche susceptibility in data-scarce regions. The improvement of the hybridized models using 495 

metaheuristic algorithms is quite satisfactory in this work. Our study clearly indicated that parameter 496 

setting play an important role in the predictive performance of the CNN model. This can be also 497 

considered as a marked improvement over previous models conducted in this study area, including 498 

support vector machine, naïve Bayes, random forest, and generalized additive model (GAM) as evaluated 499 

in our previous study (Rahmati et al., 2019). In that study, ensemble model showed the highest accuracy 500 

with an AUC value of 0.966 whereas both hybridized CNN models CNN-ICA (AUC=0.979) and CNN-501 

GWO (AUC=0.971) had higher accuracy in this study. This direct and fair comparison clearly indicated 502 

that the hybridized CNN models outperformed the state-of-the-art learning-based models including RF, 503 

SVM, NB, and GAM, as well as their ensembles. In this regard, Fang et al. (2020) compared the 504 

capability of CNN and common machine learning and statistical models including RF, SVM, and logistic 505 

regression (LR) for landslide susceptibility analysis and they concluded that RF, SVM, and LR models 506 

have difficulty fully exploring the inherent relationship of predictive factors and target variable as well 507 
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as capturing hidden useful information. Bochinski et al. (2017) indicated that although CNN models have 508 

shown superior performance in a variety of scientific fields, the optimal choice of hyper-parameters still 509 

remains challenging but the use of metaheuristic algorithms can cope with this problem.  510 

 511 

4.3. Limitations of the proposed methodology 512 

The applicability of both the standalone CNN and hybridized models depends on the number of snow 513 

avalanche events in the inventory database. When recorded snow avalanche locations are insufficient 514 

because of restricted accessibility and/or avalanche danger. The training of the models requires enough 515 

data of past snow avalanches to recognize their relationships with predictive factors and then generalize 516 

the extracted equations to the whole study area. Fang et al. (2020) showed that CNN is sensitive to the 517 

amount of training data and can achieve worse predictive capability when data are insufficient. In fact, 518 

records and observations from experts in the field sometimes provide isolated information with limited 519 

coverage and they may ignore snow avalanches in remote or inaccessible regions. To overcome this 520 

problem, remote sensing data of high spatial and radiometric resolution can map snow avalanche 521 

locations and extents. Merging databases of historical snow avalanche events recorded in field surveys 522 

and ones produced by remote sensing techniques can provide comprehensive data for spatial modeling. 523 

The second limitation in this study was related to a lack of information about snow regime characteristics 524 

such as snow cover depth and snow cover duration that allow better spatial modeling of snow avalanches. 525 

 526 

4.4. Importance of snow-avalanche influential factors 527 

Despite substantial research on snow avalanche processes, there is still inadequate understanding of the 528 

role of causative factors and their importance. This study aimed to investigate the importance of different 529 

geo-environmental and topographic factors for snow avalanche release. One robust method for 530 
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determining the contribution of predictive variables to the modeling is sensitivity analysis (Zhang, 2019). 531 

The variable importance value can indicate which factors are the least relevant to the target and which 532 

factors may be most relevant. The contribution of predictor variables can improve modeling since 533 

planners can delete variables with the lowest scores (termed dimensionality reduction), and consequently, 534 

speed up the modeling process. Results of the sensitivity analysis demonstrated that TRI, slope degree, 535 

LS, slope aspect, and RSP played the key role in the snow avalanche occurrence. TRI as a major 536 

topographic relief and secondary geomorphometric factor with values computed from the elevation is 537 

defined as the mean difference between a central pixel and its eight neighboring pixels. Since TRI 538 

measures the roughness and presents local topographic conditions, it provides better information than 539 

elevation alone and, therefore, it has been widely employed in past research related to spatial distributing 540 

modeling (Veitinger et al., 2014; Rahmati et al., 2019; Yousefi et al., 2020). Differences in elevation and 541 

roughness affect the probability of snow avalanches through shear strength such that the higher the 542 

roughness and the differences in elevation of a specific slope, the lower the shear strength and the higher 543 

the probability of avalanche occurrence. The role of relief in snow avalanche occurrence as 544 

geomorphological impacts was discussed in depth by Decaulne and Saemundsson (2006). In the current 545 

research, snow avalanches have been affected by the slope steepness as the second most important factor. 546 

As the slope steepness increases, shear stress increases, which increases probability of avalanche. In other 547 

words, the steeper the slope, the lower the shear strength compared to the driving force and the greater 548 

the probability of a snow avalanche. This result is in line with Wever et al. (2016), who assessed snow 549 

avalanche activity in three different climate regimes using physics-based snowpack simulations. 550 

Adequate slope steepness is considered as a prerequisite for occurring snow avalanches. In addition, 551 

snow avalanches were affected by the LS as the third important factor. The longer slope length, the lower 552 

the shear strength and as result, the higher probability of the snow avalanche; also, longer slope lengths 553 
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decrease cohesion of the snow pack and thus increase probability of avalanche. Terrain with high LS 554 

value are often characterized by long runout distances and more gravity energy. Slope aspect plays an 555 

important role in snow avalanche occurrences by the different solar radiation and energy, which drives 556 

the thermodynamic processes and which is one of the main factors for determining snow avalanche 557 

occurrence and patterns. The results of Peitzsch et al. (2015) also confirm the role of terrain parameters, 558 

especially slope aspect, in snow avalanche release. In fact, slope aspects that receive more solar energy 559 

are more likely to have snow avalanches associated with melting snow and correspondingly increasing 560 

weight of the snowpack, thereby reducing the shear strength. Yariyan et al. (2020) also confirmed that 561 

slope aspect factor can provide critical information for analyzing snow avalanche events. 562 

 563 

5. Conclusion 564 

Due to the complexity of snow avalanche phenomena, multi-criteria decision approaches cannot 565 

completely characterize the relationships between snow avalanche events and geo-environmental 566 

variables; hence, snow avalanche susceptibility mapping over a regional scale can benefit from the 567 

application of artificial intelligence techniques that allow spatial analyses and modeling. This study is 568 

the first attempt to develop an innovative methodology for snow-avalanche susceptibility mapping using 569 

a convolutional Neural Networks (CNN) model. In addition, two hybridized models were developed 570 

based on the CNN model and metaheuristic optimization algorithms (CNN-GWO and CNN-ICA). This 571 

research makes a novel scientific contribution towards the evaluation of the capability of models to spatial 572 

prediction of snow avalanche susceptibility using historical snow avalanche events. Importantly, the 573 

approach presented herein is likely to be widely applicable to protecting human life and infrastructure in 574 

areas that lack high-resolution data over extensive areas. We can draw the following conclusions from 575 

this study: 576 
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• Based on the results of the accuracy assessment, CNN-ICA showed the highest goodness-of-fit 577 

(AUC=0.988, RMSE=0.054) and outstanding predictive performance (AUC=0.979, 578 

RMSE=0.1048). It was followed by CNN-GWO, which had an AUC of 0.978 and a RMSE of 579 

0.1140 in the training step and an AUC value of 0.968 and a RMSE value of 0.157 in the validation 580 

step. The standalone CNN model also performed well (AUC=0.892 and RMSE=0.202 in the 581 

training and AUC=0.863 and RMSE=0.228 in the validation) but not as well as the hybridized 582 

models. In the other word, hybridized models enhanced the training skill and predictive 583 

performance of the standalone CNN model and they seem to be the most promising models to 584 

tackle the snow avalanche prediction problem. The CNN model was most improved by using an 585 

ICA metaheuristic algorithm. The proposed hybridized models in this study can support decision 586 

making for snow avalanche hazard management and preparedness. Furthermore, this study 587 

highlighted that snow avalanche systems are complicated and their modeling requires a knowledge 588 

of the interrelationships among topo-hydrological and geo-environmental processes. Essentially, 589 

non-linear relationships need to be understood within a context of natural disaster management. 590 

Meeting these demands is the substance of a snow avalanche modeling that utilize deep-learning 591 

approaches to spatial analyses and interpretations. 592 

• This study demonstrated that historical snow avalanche records provide unique information for 593 

spatial modeling of snow avalanche hazard. Therefore, researchers should pay particular attention 594 

to past snow avalanche data in their studies. The proposed approach can be applied in other areas 595 

where snow avalanche inventory is available. 596 

• Results of sensitivity analysis indicated that TRI (23.4%) and slope (21.5%) had the greatest 597 

impact on snow avalanche prediction, followed by slope length (19.2%). In addition, aspect 598 
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(17.6%), RSP (15.1%), profile curvature (12.2%), and elevation (11.8%) played key roles in the 599 

snow avalanche occurrence. 600 

• Models demonstrated that there is a significant potential for snow avalanche events in the west 601 

part of the study area, resulting from the interactions of the topo-hydrological and geo-602 

environmental factors that initiate and promote snow avalanche. In addition, some mountains in 603 

the central portion of the study area were highly and very highly susceptible to snow avalanches. 604 

Some areas with substantial presence of roads and residential areas were recognized as prone to 605 

snow avalanches, highlighting the urgent need to adequately protect these areas. A range of 606 

mitigation and preventive measures needs to be applied to mitigate the risk level. Our 607 

understanding of snow avalanche susceptible areas and the spatial variability of snow avalanche 608 

probability has significantly increased, which will pave the way for efficient watershed 609 

management. 610 
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Fig. 1 Geographical location of the Darvan watershed in Kurdistan province, Iran. 875 
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Fig. 2 Photographs showing snow-avalanche occurred in Darvan watershed in 2017-2019 885 
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Fig. 3 Summary of the processing steps presented in the study. 890 
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 896 

Fig. 4 a) snow avalanche inventory, and b) training and validation groups. 897 
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Fig. 5 Snow-avalanche influential factors: a) elevation, b) slope aspect, c) distance from stream, d) 905 

slope degree, e) profile curvature, f) planform curvature, g) standard curvature, h) RSP, i) TPI, j) TRI, 906 

k) TWI, l) WEI, m) LS, n) land use, and o) lithology. 907 
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Fig. 5 (continued) 912 
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Fig. 6 Generalized CNN architecture. 917 
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Fig. 7 Snow avalanche susceptibility maps using: a) CNN model, b) CNN-GWO, and c) CNN-ICA 924 
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 929 

Fig. 8 Performance of models using RMSE metric: a) CNN (training), b) CNN-ICA (training), c) 930 

CNN-GWO (training), d) CNN (validation), e) CNN-ICA (validation), f) CNN-GWO (validation) 931 
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Fig. 9 Results of sensitivity analysis of snow-avalanche influential factors 937 
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