
ARTICLE TEMPLATE

Automatic computation of bending sequences for wire bending

machines

Andrea Baraldoa, Luca Bascettab, Fabrizio Caprottia, Sumit Chourasiyab, Gianni
Ferrettib, Angelo Pontia and Basak Sakcakc

aBLM SPA - BLM GROUP, via Selvaregina 30, 22063 Cantù (CO), Italia
bPolitecnico di Milano, Dipartimento di Elettronica, Informazione e Bioingegneria, Piazza
Leonardo da Vinci 32, 20133 Milano, Italia
cCenter of Ubiquitous Computing, Faculty of Information Technology and Electrical
Engineering, University of Oulu, Finland

ARTICLE HISTORY

Compiled September 26, 2022

ABSTRACT
Determining a feasible bending sequence, i.e., ensuring absence of wire self-collisions
and wire-machine collisions, or even an optimal bending sequence, i.e., minimising
time or energy required to perform it, can be a difficult and time consuming task for
complex workpieces, even for an expert operator. The introduction of algorithms for
the computation of wire bending sequences is thus crucial to increase productivity
and production flexibility, and to decrease production costs. To this aim, this work
proposes an algorithm to automatically determine an appropriate bending sequence
for a given workpiece, bending tool, and machine 3D CAD model, that leverages on
a representation of the wire as a robotic manipulator and of a bending sequence as
a tree, and on the adoption of A? as graph search algorithm. A cost and a heuristic
function, suitable for the wire bending problem, and an approach to parallelise
the execution of A? are introduced, as well. In this way, a computationally simple
and efficient wire bending sequence computation algorithm can be devised, able
to determine a solution in an amount of time less or equal to the time used by
an expert operator, without the need of high computational power. Finally, the
effectiveness of this algorithm is assessed on two different test cases, relevant to
industrial workpieces.

KEYWORDS
Bending sequence computation; bending sequence optimisation; wire bending
sequence

1. Introduction

A bending machine is a forming machine tool that allows to manufacture a workpiece
by using a bending tool and an ordered sequence of linear and rotational motions. The
shape of the manufactured workpiece depends on the characteristics of each motion,
i.e., position and velocity profiles, and on the sequence in which motions are executed.
In the case of complex workpieces, an expert operator and a significant amount of
time may be required to determine a sequence that allows to manufacture the work-
piece, i.e., not all the sequences are always feasible, without causing self-collisions,

CONTACT Luca Bascetta. Email: luca.bascetta@polimi.it



or collisions with the machine or the bending tool, without introducing deformations
in the workpiece shape due to material elasticity, and without generating too much
vibrations, as they force to slow down the bending process.
For these reasons, devising an algorithm whose computational complexity is limited,
so that it can be executed in a reasonable amount of time (i.e., an amount of time
that should be less or equal to the time used by an expert operator to determine a so-
lution) without the need of high computational power, that automatically determines
an appropriate bending sequence for a given workpiece, bending tool, and machine 3D
CAD model, allows to increase the productivity and the production flexibility, and to
decrease the production costs.

The problem of automatic computation of feasible or optimal bending sequences
has been already considered in the literature, in particular with reference to the sheet
metal bending problem (Hoffmann, Geiler, and Geiger 1992; Shpitalni and Saddan
1994; De Vin et al. 1994).
In this context, different approaches based on a tree representation of the bending
sequence and on the application of A?, or the travelling salesman problem algorithm,
have been proposed (Faraz et al. 2017; Zhao, Zhang, and Shi 2014; Duflou, Kruth, and
Van Oudheusden 1999; Duflou et al. 1999; Gupta et al. 1998). In particular, (Gupta
et al. 1998) introduces a distributed planning architecture, composed of a central op-
eration planner and three domain-specific planners; the operational planner is based
on A? and leverages on domain-specific knowledges that are strictly related to the
sheet metal bending problem. In (Zhao, Zhang, and Shi 2014), instead, the sequence
planning is converted to a generalised shortest path problem, and an A? search is per-
formed, whose distinguished element is a heuristic based on bending feasibility, dimen-
sional accuracy and processing efficiency. Following a similar philosophy, in (Duflou,
Kruth, and Van Oudheusden 1999; Duflou et al. 1999) and (Faraz et al. 2017) bend-
ing sequences are represented as a tree, consequently the best sequence computation
is formulated as a travelling salesman problem and solved using a branch-and-bound
technique based on manufacturing knowledge that is specific to sheet metal bending.
Two more approaches, based on a graph search algorithm, must be mentioned. The
first one, presented in (Raj Prasanth and Shunmugam 2020), introduces a two-stage
algorithm, in which the second stage is based on a best-first search algorithm. The
second one, reported in (Markus, Váncza, and Kovács 2002), solves the bending se-
quence planning problem using a constraint-based planning approach.
Graph search is not the only technique considered in the literature relevant to sheet
metal bending planning, but a number of different approaches based on stochastic
search (Kannan and Shunmugam 2008) have been proposed, as well. In particular,
in (Ong et al. 1997) an algorithm based on fuzzy set theory is presented, while
in (Thanapandi, Walairacht, and Ohara 2001a,b) and (Kannan and Shunmugam 2008)
optimal and near optimal bending solutions, based on the application of genetic algo-
rithms, are proposed.
A further and last approach, presented in (Lin and Chen 2014; Lin and Sheu 2012;
Rico et al. 2003), is based on the decomposition of the bending sequence into a series
of basic predefined bending patterns, i.e., basic shapes like channels of spirals, each
one with an associated operation rule.
To complete the state of the art on the automatic computation of bending sequences,
it must be noticed that a simulation based bending sequence planning has been pro-
posed in (Inui and Terakado 1998, 1999), while (Koguchi, Aomura, and Igoshi 2000;
Koguchi and Aomura 2002; Aomura and Koguchi 2002) focused on the bending se-
quencing problem considering a robotised bending solution.

2



The analysis of the state of the art reveals that

• many works can be found in the literature focusing on the automatic computation
of bending sequences for the specific application of sheet metal bending;
• a relevant number of these approaches leverages on a graph or tree representation

of the bending sequence and on graph search algorithms, like A?, supported by
a suitable heuristic function;
• almost all the approaches in the literature exploit domain specific knowledge,

e.g., in the formulation of the heuristic, related to sheet metal bending.

Furthermore, considering that sheet metal bending and wire bending are two different
processes, each one characterised by its own peculiarities – e.g., sheet metal bending
is mainly a 2D, while wire bending is a 3D process; wire is bent clockwise and
counter-clockwise; wire has always one free and one constrained end, while metal
sheet can be bent on both ends, etc. –, the approaches previously mentioned cannot
be directly applied or easily adapted to the wire bending problem.

This paper introduces a novel approach for the automatic computation of bending
sequences for wire bending machines, based on a tree representation of the bending
operations and exploiting A? as graph search algorithm, whose main distinguished
features are:

• wire is represented as a manipulator, where each bend is a rotational joint;
• bending sequences are represented in reverse order in a straightening tree;
• a simple cost and a heuristic function, that allow to efficiently search the tree

using A?;
• a divide-et-impera approach to parallelise and speed up the execution of A?.

To appreciate the advantage of this approach, one has to consider that in industrial
practice optimal bending sequences are determined case-by-case by expert machine op-
erators, following a very time-consuming procedure. In fact, the operator starts from
the bending sequence suggested by the CAD/CAM software, and follows an iterative
trial-and-error process to determine the optimal bending sequence, using a suitable
kinematic simulation environment to verify each attempt.
The proposed algorithm, instead, automatically determines an optimized solution,
starting from a description of the workpiece geometry and a mathematical representa-
tion of the concept of “best bending sequence”, in terms of a suitable cost function. It
thus allows to avoid the case-by-case trial-and-error procedure, significantly reducing
the time required to setup the machine for the production of a new workpiece (Baraldo
et al. 2021) (consider that, according to industrial practice, the time required by an
expert operator to determine a good bending sequence for a complex workpiece can
vary from hours to half a day).

The paper is organised as follows. Section 2 introduces the bending process using a
single-head bending machine. In Sections 3 and 4 the approach adopted in this work to
model the wire and a bending sequence is presented. Section 5 proposes a methodology
to compute a set of ordered feasible bending sequences, based on a novel heuristic
function and an approach that allows to simplify and parallelise the computation,
speeding up the process. In Section 6 two different case studies, based on industrial
workpieces, are presented to demonstrate the effectiveness of the algorithm.

3



(a) (b)

Figure 1. An example of single-head bending machine.

2. Single-head bending machine

A wire bending machine is a forming machine tool that allows to manufacture a
workpiece by using a bending tool and an ordered sequence of linear and rotational
motions. The shape of the manufactured workpiece depends on the characteristics of
each motion, i.e., position and velocity profiles, and on the sequence in which motions
are executed. The machine consists of many functional subsystems (Figure 1) that
enable turret rotation, workpiece rotation, wire feeding, wire bending, and so on. In
particular, bending is performed by rotating a bending arm that pushes the wire to
the desired bend angle around a pivot pin.
Bending machines can be mainly classified into two types: single-head machines, that
can execute only one bend at a time, even if they have more than one turret; double-
head machines, that can execute two bends simultaneously, using two different turrets.
This work considers only the case of single-head bending machines.

The single-head wire bending machine considered here as a case study is configured
with two bending turrets (Figure 1(a)), which can rotate around an axis parallel to the
bending axis. Moreover, the whole head can rotate around an axis parallel to the wire
feeder axis (Figure 1(b)), thus allowing for 3D bends. Wires up to 10 mm in diameter
can be processed.
Note that, though the case study concerns a wire bending machine, the methodology
presented here is general, and can be applied either to wire or pipe bending.

Five different types of wire bending are considered:

• flexion bending, is realised by the folding roller (Figure 2(a), no. 1), rotating by
a given angle with respect to the central peg (Figure 2(a), no. 2), with the wire
fixed, folding roller and central peg form the folding arm;
• generated bending (variable radius), is obtained pushing the wire through the

folding arm, the bending radius can be modified by simultaneously varying the
angle of the folding arm (Figure 2(b), no. 1) and the displacement of the wire
(Figure 2(b), no. 2);
• strike bending, allows to obtain a variable radius (Figure 2(c)) through a se-

quence of repeated flexion bendings, each one with an incremental displacement
of the wire (Figure 2(c), no. 1) and a different folding arm angle (Figure 2(c),
no. 2);
• interpolated bending, is similar to generated bending, but with a fixed folding

arm angle (Figure 2(d));

4



(a) flexion bending (b) generated bending

(c) strike bending

(d) interpolated bending (e) edge bending

Figure 2. Types of bends.

5



• edge bending, is realised by pushing the wire against the central peg, while using
the folding roller to curve the wire, without passing between them (Figure 2(e)).

The choice of the type of bend depends on many factors, like operator experience,
mechanical strength, and geometry of the workpiece. To simplify the modelling oper-
ation, all different bend types are here approximated through one or a group of more
than one flexion bends, as it will be clarified in Section 3.

3. Bending wire modelling

The first step to introduce a sequence planning algorithm concerns the technique
adopted to represent the bending sequence. One possible indirect solution is to describe
the configuration of the workpiece, as it were a manipulator with cylindrical links
and rotational joints, using Denavit-Hartenberg (D-H) parameters (Figure 3 shows
notation, joint variables and parameters, as they are introduced in the standard D-H
convention (Siciliano et al. 2009) for a generic manipulator).
Note that joints are numbered in reverse order with respect to the classical D-H
notation, each joint corresponds to a bend, and each bend is denoted by an integer
b that represents the number associated to the bend in the sequence generated by a
CAD/CAM software neglecting collisions and feasibility, parameters di are always set
to zero, parameters ai represent the displacement of the wire between bending bi−1

and bi, and αi denotes the rotation of the bending axis. Furthermore, as the wire can
rotate about its longitudinal axis, a rotational joint, characterised by di = ai = αi = 0,
is added as first joint of the chain, directly connected to the fixed base. Therefore, any
workpiece characterised by N bends is represented by a configuration vector of N + 1
elements1. Figure 4 exemplifies the procedure just described for the derivation of D-H
parameters, in the case of a simple hook workpiece. The corresponding parameters
are reported in Table 1. Note that, being the workpiece planar all αi are equal to
zero, i.e., all z-axis are perpendicular to the workpiece plane, and all di are equal to
zero, i.e., all the frame origins lay on the workpiece plane. Finally, parameters ai and
θi represent the length of the wire between two consecutive bends and the bending
angles, respectively.
Thanks to this reformulation of the problem, checking wire self-collisions and collisions
between wire and machine components can easily be traced back to a planning problem
in the presence of constraints, which can be tackled modelling the wire as a group of
cylinders, and using algorithms consolidated in the literature, e.g., Gilber-Johnson-
Keerthi (GJK) algorithm (Gilbert, Johnson, and Keerthi 1988) or octrees (Garcia and
Le Corre 1989).

Some technological issues must be considered, regarding the elastic behaviour of the
wire, and the cases of high values of the bending angle and variable radius bending.
First of all, bending angles θi, defining desired workpiece processing (Figure 4), may be

different from those actually performed by the machine, i.e., θ̂i. In fact, due to material
elasticity, the bending performed by the machine has to compensate for the elastic
motion of the metal wire after bending (spring back). This compensation is calculated
upstream of the calculation of the possible sequences through specific corrections,
accounting for material properties. For this reason, in the following only the values of
angles θ̂i are reported.

1This additional joint, whose D-H parameters are straightforward and always constant, is not reported in D-H

parameter tables.

6



Figure 3. Notation, joint variables and parameters in D-H convention (Siciliano et al. 2009).

Figure 4. Hook workpiece configuration.

ai αi di θi

25 0 0 −55
22 0 0 −90
40 0 0 −90
22 0 0 −55
26 0 0 55

Table 1. Hook workpiece D-H parameters (dis-
placements are in mm, angles in degrees).

(a) (b)

Figure 5. High bending angle.

7



Figure 6. Clip example (green areas indicate bending operations to be performed).

1 2 3 4 5 6 7 8 9 10
ai 3 3 63 3 3 3 71 3 3 100
θi 28 −48 19 24 −48 −180 18 28 −48 19

θ̂i 27 −54 27 27 −34 −200 27 27 −54 27

Table 2. D-H parameters of the clip (displacements are in mm, angles in degrees).

Secondly, in the model each bend is represented by a single rotational joint. However,
for bending angles higher than a specified threshold, that here is assumed equal to 160
degrees, the diameter of the pivoting peg must be taken into account (Figure 5(a)).
This can be done by splitting the bending into two consecutive operations, both with
a value of the bending angle, e.g., θi and θi+1, equal to half of the overall angle, and
with ai+1 equal to the diameter of the peg (Figure 5(b)). Clearly, this approximation
does not reproduce the exact curvature, however, it is sufficient for collision detection,
hence for verifying the feasibility of a bending sequence.
Finally, a variable radius bending can be included in this framework by modelling it
as a strike bending, thus dividing the overall curve into a sequence of flexion bendings.
The stroke division can be calculated upstream of the calculation of the sequences,
such that the graph search algorithm treats it as a single bending, i.e., the sequence
of approximating flexion bendings is respected.

As an example, Tables 2 and 3 report the D-H parameters for the clip in Figure 6
before (Table 2) and after (Table 3) the splitting operation previously mentioned,

considering both final and executed bending angles, θi and θ̂i, respectively (being the
clip a planar workpiece, parameters αi and di are all equal to zero and have been
thus neglected). Displacements and angles are expressed in millimetres and degrees,
respectively. Note that a11 in Table 2 (while it is a14 in Table 3) defines the last
displacement of the wire before cutting.
Finally, Figure 7 shows a sketch of the manipulator used to represent the clip together
with the corresponding D-H parameters reported in Table 3.

1 2 3 4 5 6 7 8 9 10 11 12 13
ai 3 3 63 3 3 3 3 3 3 71 3 3 100

θ̂i 27 −54 27 27 −34 −60 −20 −60 −60 27 27 −54 27

Table 3. D-H parameters of the clip after splitting bending angles higher than 160 degrees (displacements

are in mm, angles in degrees).

8



Figure 7. Sketch of the manipulator used to represent the clip (drawing proportions were modified to increase

readability).

(a) (b)

Figure 8. Examples of unreachable bends.

4. Bending sequence modelling

As already mentioned, the shape of a workpiece depends on the characteristics of each
bend, and on the sequence with which bends are executed.
In the following, a sequence composed by N bends is denoted by

BN = {bi, i = 1, . . . , N}

Note that, a sequence BN is admissible if all the relevant bends bi, i = 1, . . . , N , are
reachable and collision-free (see next section for a definition of these two properties).

Considering now a workpiece to be manufactured through a sequence of N bends,
the Ns ≤ N ! admissible sequences BN

k , k = 1, . . . , Ns, can be arranged in a tree
structure, such that each path from the root of the tree to a leaf represents a possible
sequence. The whole set of admissible bending sequences can be then determined by a
depth-first-search over a tree. For example, one admissible bending sequence applicable
for the workpiece in Figure 4 is 1, 2, 3, 4, 5, obtained by cascading the bending angles
(θ1, θ2, θ3, θ4, θ5).

9



4

2

1

3

(a)

4

2

1

3

(b)

Figure 9. Geometric model of the machine body.

4.1. Reachability

A bending bi is reachable from a bending bi−1 if the Cartesian position of joint bi,
computable from the forward kinematics of the equivalent manipulator, can be made
to coincide with the center of one of the two bending forks, by translating the wire and
rotating the bending head. Considering the fact that the paths performed by the two
bending forks are semicircular in the plane normal to the bending axis, the conditions
for a bending to be reachable are that:

(1) there exists an intersection between a straight line, parallel to the translation
axis of the wire and passing through the current position of joint bi, and one of
the two semicircular trajectories;

(2) the current distance between the position of joint bi and this intersection is lower
than the current length of the unworked wire coming out of the feeder.

Figure 8(a) shows an example in which bending bi = 6 is not reachable from bi−1 = 9,
because there is no intersection between the blue line, parallel to the wire translation
axis, and both the trajectories of the bending tools. Figure 8(b), instead, shows an
example in which the same bending is not reachable from bi−1 = 10, because the
distance of the current position of joint bi with respect to both intersections A and B
is greater than the length of the unprocessed wire, denoted by the black line.

4.2. Collision checking

Another important property to guarantee that a bending sequence is admissible is
related to the absence of collisions among links of the equivalent manipulator describing
the wire configuration, as well as among the said links and the machine body.

The geometry of the wire can be approximated as a sequence of cylinders. The 3D
pose of each cylinder is computed through the forward kinematics of the equivalent
manipulator, whose joint positions evolve according to the sequence of bends.
The length of the workpieces prevents collisions with static parts of the bending ma-
chine. Therefore, it was decided to check collisions only between the wire and the
moving parts of the machine. The geometric model of the machine is shown in Fig-
ure 9, and it is composed of four bodies, corresponding to:

(1) bending turrets;
(2) motor housing;
(3) rotating support;
(4) wire feeder.

10



b0

b1

b2

b3

b3

b2

b2

b1

b3

b3

b1

b3

b1

b2

b2

b1Level 4

Level 3

Level 2

Level 1

Figure 10. Bending sequences tree.

Each part of the geometric model is therefore defined as a box that envelopes the real
component, so that it can be described using only the coordinates of the eight vertices,
slightly overestimating the occupied space.

Collisions cannot be checked only for the start and end configurations associated
to each bend, but along the entire trajectory covered by the wire. To this aim, each
bending angle θi is divided into Ii intervals, so that Ii + 1 configurations are checked
for collisions, each one corresponding to an increment of θi/Ii. In order to limit the
number of collision checks, the number of intervals is decided on the basis of a heuristic:
if the length of the portion of processed wire, i.e., the portion of wire that came out
the feeder, is less than 100 mm, 10 intervals are considered, otherwise 20.

4.3. Bending sequences tree

In order to enumerate Ns admissible permutations of N bends, a tree representation
is adopted2 (Bhattacharya 1994) (Figure 10 shows an example for 4 bends), where:

• each node corresponds to a bend, and is represented by the number associated
to the bend in the sequence generated by a CAD/CAM software neglecting
collisions and feasibility;
• each node has a number of children equal to the difference between the number

of bends in the sequence and the node level;
• all child nodes correspond to bends not already considered in parent nodes;
• each path from the root to one leaf must include all bends in the sequence.

Once the bending sequences tree has been computed, the set of admissible bending
sequences could be determined through a depth-first-search algorithm, though, as it
is explained in the following, the dimensionality of the problem advises against this
approach. When exploring each node the admissibility checks for the corresponding
bend are performed and, in the case they yield a positive result, the bend is added to
the sequence, otherwise not only the current node but all its child nodes are pruned
from the tree.
As proposed by Inui and Terkado (Inui and Terakado 1999), rejection of certain nodes
and therefore paths are more likely to occur if bending sequence is traversed in a
reverse manner. Reverse tree traversal means that the wire is assumed to be at its
final shape and bends are straightened one-by-one, thus transforming the process into

2Note that, using a tree to represent all the permutations of a set of N bends is an intuitive and convenient
way to convey the algorithm for the automatic computation of bending sequences. As far as the algorithm

implementation is concerned, however, different techniques can be adopted to determine and store the permu-
tations, e.g., (Fisher and Yates 1948; Sedgewick 1977; Heap 1963), aiming at reducing computational time or

memory consumption.

11



1 2 3 4 5 6 7 8 9
ai 11 13 60 30 10 25 25 100 50
αi 0 0 45 90 0 0 0 0 0

θ̂i −245 40 90 −45 45 90 90 90 90

Table 4. D-H parameters of the 3D eyelet (displacements are in mm, angles in degrees).

1 2 3 4 5 6 7 8 9 10 11
ai 8 8 10 13 60 30 10 25 25 100 50
αi 0 0 0 0 45 90 0 0 0 0 0

θ̂i −65 −90 −90 40 90 −45 45 90 90 90 90

Table 5. D-H parameters of the 3D eyelet after splitting bending angles higher than 160 degrees (displace-

ments are in mm, angles in degrees).

a straightening instead of a bending.
The dimensionality of the problem can be also largely reduced when rotations of

the bending axis are required. In fact, assume that for bend bi angle αi is different
from zero, in this case all bends bj , with j < i, in the sequence must be performed
before bend bi, as the wire cannot be retracted after bend bi.
For example, the eyelet in Figure 11, whose D-H parameters are reported in Tables 4
and 5 (before and after the splitting of bending angles higher than 160 degrees, respec-
tively) and shown in the manipulator sketch of Figure 12, is a non-planar workpiece.
In fact, after the first two bends (with reference to Table 4) the bending plane changes
twice its orientation of 45 and 90 degrees, respectively, as reported by the values of
parameters α3 and α4. As a consequence of the rotation of the bending axis required
by bends 3 and 4, bends 1 and 2 must be executed first ({b1, b2} = {1, 2}), then bends
3 and 4 sequentially, and then a permutation of the remaining 5 bends must be ex-
plored. The total number of nodes is therefore 2 · 5! = 240, while the total number of
sequences with 9 bends is 9! = 362880.

As it is clear from the previous example, the tree is usually characterised by a
very high number of possible sequences, and thus the computational effort required to
evaluate the feasibility of each sequence is huge. However, if a cost can be associated
to each edge of the tree, a graph search algorithm, e.g., A?, can be adopted to focus

Figure 11. A 3D eyelet (green areas indicate bending operations to be performed).

12



(a) complete manipulator

(b) close-up of the first five joints

Figure 12. Sketch of the manipulator used to represent the 3D eyelet (drawing proportions were modified to
increase readability)

13



the computational effort towards only a few good sequences in terms of the overall
path cost. Collision checking is then performed on this small set of optimal sequences
only, in order to further improve computational efficiency.

5. Bending sequence computation

As already mentioned, a graph search algorithm like A? can be adopted to determine
a few good sequences in terms of the overall path cost.
A? is a search algorithm (Hart, Nilsson, and Raphael 1968) that determines the short-
est path between a start and a goal node in a graph. It is one of the most popular
technique used in graph traversals, due to its completeness, optimality, and efficiency.
A? algorithm, unlike other traversal techniques, is a smart algorithm that determines
the successive node based not only on the cost to reach the current node, but also
anticipating the cost to reach the goal from thereon, by way of a problem-dependent
heuristic function.

Though A? is a well-known algorithm, however, its application to the bending se-
quence computation problem requires the definition of an appropriate heuristic func-
tion and a way to estimate bending cost, as it will be clarified in the following.

5.1. Bending cost estimation

The cost of an edge in a bending tree can represent the energy or time required to
execute a particular bend in a given wire configuration. In particular, between the two
main operations required to perform a bend, i.e., motion of wire and turret to desired
bending position (alignment) and bending execution (execution), only the first one is
considered in the cost computation, as the execution effort is the same independently
of the sequence.

The bending machine (see Figure 1) is composed of a base and a wire feeder that
are fixed, and a turret sub-assembly that is mounted on a rotating support and can
rotate about the wire.
The alignment motion for the execution of a generic bend bi requires a translation ti
of wire outside the feeder, a wire rotation of an angle αi, and a turret sub-assembly
rotation of an angle βi. As a consequence, assuming each bend has a minimum cost
of one unit, the alignment change required to make bend bi+1 after bend bi, i.e., the
cost of the edge ei,i+1, is given by

Cost
(
ebi,bi+1

)
= 1 + w1

tbi+1
− tbi

∆tmax
+ w2

αbi+1
− αbi

∆αmax
+ w3

βbi+1
− βbi

∆βmax
(1)

where w1, w2, and w3 are suitable weights accounting for the fact that some move-
ments, like wire rotation, may be faster or less energy consuming than others, ∆tmax,
∆αmax, and ∆βmax are the maximum ranges of wire translation, turret sub-assembly
rotation, and wire rotation, respectively.
Weights can be further scaled, based on relative time or energy consumption, and
normalised such that w1 + w2 + w3 = 1.

14



5.2. Heuristic function

Setting up an A? search requires to appropriately define the heuristic function h(·)
and the actual cost g(·). The heuristic function estimates the cost of the shortest path
from a node to the leaves, and must be admissible to guarantee optimality, i.e., it
should never overestimate the cost to the target. Function g(·), instead, computes the
actual cost of the shortest path from the root of the tree to a node, i.e., assuming an
additive cost, the sum of the individual costs of each edge along the path.

From equation (1) and the cost additivity assumption, it follows that

g(bi+1) = g(bi) + ebi,bi+1

where bi is the parent node of bi+1, and

h(bi) = N − depth(bi)

where N is the depth of the tree, i.e., the total number of bends in the workpiece,
being thus constant for a given workpiece, and depth(bi) computes the depth of node
bi in the tree, which is equal to the number of bends already straightened. In other
words, h(·) simply computes the number of bends remaining to be straightened at any
given instant.
The definitions of h(·) and g(·) guarantee that the heuristic function is admissible. In
fact, it considers each bend taking only a unitary cost, while the actual cost is always
greater than the unitary cost.

5.3. A divide-et-impera approach

In the case of workpieces with high number of bends, i.e., more than 10 bends, A? can
run into memory issues, as the allocated memory for the OPEN list grows factorially
with the number of bends in the workpiece.
To overcome this issue, the problem can be broken down into smaller sub-problems,
introducing an alternative implementation of A?, based on a path matrix approach,
and splitting the bending tree into individual branches, each one corresponding to a
possible bending sequence. Differently from the classical A? implementation, where a
function allows to find successor nodes without storing the entire tree, with the path
matrix approach each branch of the tree is stored as a row of a matrix (Figure 13),
and the successor of any node can be found from the row corresponding to the current
path.
Note that for a workpiece with N bends, the path matrix approach needs to allocate
memory for a matrix of N ! rows, and, in the worst case, the cardinality of the OPEN
list set can be at most N · N !. Consequently, the path matrix approach is definitely
worse in terms of required memory, but its major advantage is the possibility of easily
breaking a large problem into smaller ones.

The number of sub-problems is determined by the maximum memory that can be
allocated for the OPEN list. Let r be the maximum number of rows allowed for the
OPEN list, a workpiece characterised by N bends can be analysed braking down the
problem into r/N sub-problems. Moreover, if a multi-processor system is available, A?

search associated to each sub-problem can be run in parallel on different processors,
thus significantly reducing the run time.

This divide-et-impera approach not only avoids memory allocation issues, but it also

15



b0

b1

b2

b3
Path 1

b3

b2
Path 2

b2

b1

b3
Path 3

b3

b1
Path 4

b3

b1

b2
Path 5

b2

b1
Path 6

(a) Tree Approach

b0

b1

b2

b3
Path 1

b1

b3

b2
Path 2

b2

b1

b3
Path 3

b2

b3

b1
Path 4

b3

b1

b2
Path 5

b3

b2

b1
Path 6

Path 1 1 2 3
Path 2 1 3 2
Path 3 2 1 3
Path 4 2 3 1
Path 5 3 1 2
Path 6 3 2 1

Path matrix

(b) Path Matrix Approach

Figure 13. The path matrix approach.

allows rejecting more sequences during successive runs. In fact, considering that the
f -value of a node, i.e., the sum of the values of the actual cost g (·) and the heuristic
function h (·), increases going down in the tree, if m feasible sequences ordered in
increasing cost are stored during the first sub-problem run, then any node (and its
corresponding branch) with f -value greater than the cost of the m-th stored sequence
can be closed.

6. Case studies

This section reports the results of two different test cases, constituted by two examples
of industrial workpieces: the first one being more simple, as it is constituted by only
5 bends, the second one, characterised by 8 bends, more complex. The test cases
were run on an Intel Core i5 processor with a frequency of 1.60 GHz, a total physical
memory of 8 GB, an available physical memory of 2.4 GB, and the bending sequence
computation algorithm has been implemented as a MATLAB™ script.

6.1. A workpiece with 5 bends

Figure 4 and Table 1 show the industrial workpiece considered as the first test case –
a planar workpiece characterised by 5 bends, with all bend axes parallel to each other
–, along with its D-H parameters.

For this workpiece, only 5! = 120 possible bending sequences exist, and, in the worst
case, the cardinality of the OPEN list set can be at most 5 · 5! = 600. No memory
allocation issue is foreseen, and thus all paths can be evaluated in a single run.
Out of the 120 possible sequences, some of them may not be acceptable due to machine

16



∆tmax 135 w1 0.4
∆αmax π/2 w2 0.3
∆βmax π w3 0.3

Table 6. 5-bend test case bending cost parameters (displacements are in mm, angles in degrees).

Sequence number Bending sequence Path cost

1 {5, 4, 3, 2, 1} 5.0529
2 {5, 4, 2, 3, 1} 5.0592
3 {4, 5, 3, 2, 1} 5.0606
4 {4, 5, 2, 3, 1} 5.0669
5 {4, 3, 2, 5, 1} 5.0719
6 {4, 2, 3, 5, 1} 5.0719
7 {2, 3, 4, 5, 1} 5.0783
...

...
...

22 {2, 4, 3, 5, 1} 5.2624
23 {1, 4, 5, 2, 3} 5.2636
24 {1, 4, 5, 3, 2} 5.2636
...

...
...

Table 7. 5-bend test case results.

limitations or collisions. By running an A? search with the bending cost characterised
by the parameters reported in Table 63 on the straightening tree of this workpiece, 30
feasible sequences arranged in increasing cost order have been found in 1.1 seconds.
Some of the feasible sequences determined by the algorithm are shown, in increasing
cost order, in Table 7, where the first column stands for the position of the sequence
in the cost ordered list.
Note that, thanks to the heuristic, only 497 nodes out of a maximum of 600 nodes
have been evaluated in order to find the first 30 feasible sequences, thus avoiding the
reachability check and cost computation for 103 nodes.

A collision check, using GJK algorithm, is then run on each of the sequences in
Table 7, as described in Section 4.2. Note that, though including collision checking
in the graph search algorithm guarantees that A? would visit the minimal number of
nodes, this requires a tight heuristic. As the heuristic here considered is, instead, a
coarse approximation of the cost of the shortest path from a node to the leaves, more
nodes have to be visited. Therefore, number of collision checks required by finding
the minimum cost admissible sequence is always less than or equal to the number of
collision checks that would have been performed by A?. Furthermore, the computation
time required by collision checking can be further reduced by distributing the operation
over multiple processors.
For the 5-bend workpiece here considered, a GJK collision check on average requires 45

3Note that, cost function (1) is a translation into a mathematical form of the concept of “best bending

sequence”. Weight selection is thus application specific, and it represents an important task where the operator
experience in the bending process plays a crucial role. In the case studies here reported, weight values have

been selected, for the sake of example, to represent a situation in which the linear motion of the wire is faster,
or less energy consuming, with respect to turret and wire rotations (see Tables 6 and 10).

17



Figure 14. 8-bend test case.

ai αi di θ̂i

54 0 0 90
380 0 0 −87
16 0 0 −90
16 0 0 180
83 0 0 −90
16 0 0 −90
36 0 0 180
13 0 0 90

Table 8. D-H parameters of the 8-bend work-

piece (displacements are in millimetres, angles in
degrees).

1 2 3 4 5 6 7 8 9 10
ai 54 380 16 24 16 83 16 24 36 13

θ̂i 90 −87 −90 90 90 −90 −90 90 90 90

Table 9. D-H parameters of the 8-bend workpiece after splitting bending angles higher than 160 degrees

(displacements are in mm, angles in degrees).

seconds per sequence, as a consequence integrating A? with the collision check function
would extend the time required to compute the first 30 sequences from approximately
one second to 20 minutes.
As a result of the GJK algorithm, it was found that the 23rd sequence in Table 7, i.e.,
{1, 4, 5, 2, 3}, is the first that does not have collision issues, as almost all bends are
made on the outer turret.

6.2. A workpiece with 8 bends

To assess the algorithm performance for workpieces with higher number of bends, a
planar industrial workpiece with 8-bends (Figure 14) was considered as the second test
case. The workpiece geometry is described by the D-H parameters, before and after
the splitting of bending angles higher than 160 degrees, reported in Tables 8 and 9,
respectively. Figure 15, instead, shows a sketch of the manipulator used to represent
the workpiece together with the corresponding D-H parameters.
This workpiece was chosen as

• it allows to assess the algorithm in cases where there is a higher probability of
wire self-collision and/or wire-machine collision;
• it has two 180 degree bends, each one split into two 90 deg bends that are re-

garded as grouped bends.

For this workpiece there are 8! = 40320 possible bending sequences, and, in the worst
case, the cardinality of the OPEN list set can be at most 8·8! = 322560. As MATLAB™
allows to allocate memory for so many rows, the code was run first without dividing
the problem, and then by splitting it into smaller sub-problems. Table 11 shows the
comparison of the average run time.
Clearly, as the number of sub-problems increases, the time required to set up each A?

18



Figure 15. Sketch of the manipulator used to represent the 8-bend workpiece (drawing proportions were

modified to increase readability).

∆tmax 614 w1 0.4
∆αmax π/2 w2 0.3
∆βmax π w3 0.3

Table 10. 8-bend test case bending cost parameters (displacements are in mm, angles in degrees).

search increases as well, frustrating the time reduction gained by higher path rejection.
However, the results do not depend on the way the problem is decomposed, but only in
the number of sub-problems in which the problem is divided. Consequently, an optimal
number of sub-problems can be easily derived.

By running an A? search with the bending cost characterised by the parameters
reported in Table 10, some feasible sequences have been determined, and are reported,
in increasing cost order, in Table 12. Note that, bends {5, 4} and {9, 8} are always
consecutive bends in all bending sequences, as they are regarded as grouped bends.
As in the first test case, GJK collision check algorithm has been run on the sequences
reported in Table 12, showing that the execution of bends {5, 4} results in wire self-
collision, as well as wire-machine collision, and that such collision occurs unless bend
6 is done before bends 5 and 4. At the end, the algorithm reveals that sequence 21 is
the first that executes bend 6 before bends 5 and 4, and indeed it does not have any
collision.

Number of sub-problems Run time

1 6.7
4 5.4
33 20.8

Table 11. Run time comparison (time are expressed in seconds).

19



Sequence number Bending sequence Path cost

1 {10, 9, 8, 5, 4, 7, 6, 3, 2, 1} 10.0800
2 {9, 8, 10, 5, 4, 7, 6, 3, 2, 1} 10.0800
3 {10, 5, 4, 9, 8, 7, 6, 3, 2, 1} 10.0800
4 {5, 4, 10, 9, 8, 7, 6, 3, 2, 1} 10.0800
5 {9, 8, 5, 4, 10, 7, 6, 3, 2, 1} 10.0800
...

...
...

20 {5, 4, 9, 8, 10, 6, 7, 3, 2, 1} 10.1110
21 {7, 6, 5, 4, 9, 8, 10, 3, 2, 1} 10.1115
22 {7, 9, 8, 5, 4, 10, 6, 3, 2, 1} 10.1127
...

...
...

Table 12. 8-bend test case results.

7. Conclusions

As determining a bending sequence that allows to manufacture a complex workpiece,
without causing self-collisions or collisions with the machine, requires a significant
amount of time, even to an expert operator, this paper addresses the problem of the
automatic computation of a set of feasible bending sequences, ordered according to a
given cost function.
The algorithm here proposed leverages on a representation of the wire as a robotic
manipulator, and of a bending sequence as a tree. It adopts A? as graph search algo-
rithm, introducing a cost and a heuristic function that are particularly suitable for the
wire bending problem, and an approach to parallelise the execution the graph search.
The proposed algorithm is thus characterised by a limited computational complexity,
so that it can be executed in an amount of time that is less or equal to the times
needed by an expert operator to devise a solution, using a standard hardware.
Two test cases, considering a simple and a complex industrial workpiece, are presented
to assess the effectiveness of the proposal. In particular, in the case of the workpiece
with 5 bends, that is characterised by 120 possible bending sequences, the algorithm
finds the best collision-free sequence after 15 minutes. Instead, for the workpiece with
8 bends, that is characterised by 40320 possible bending sequences, the algorithm finds
the best collision-free sequence after 18 minutes. A comparison between the time re-
quired to determine the two solutions, considering that they correspond to the 23rd
and 21st bending sequence found by the algorithm, reveals that the bottleneck is
mainly in the collision checking procedure. In fact, the time required to perform 23
or 21 times collision checking dominates the time needed by the algorithm to find the
best 23 or 21 sequences, even when the total number of possible sequences increases
from 120 to 40320.
Nowadays, double head bending machines, that allow to machine more complex and
longer workpieces, significantly increasing the flexibility and, thanks to a parallelisa-
tion of the bending operation, the throughput, are on the market. The presence of two
independent heads, however, together with a moving gripper that can translate and
rotate the wire independently from the bending heads, makes the problem of deter-
mining a good collision-free bending sequence rather hard, even for an expert operator.

20



Unfortunately, as in this case the number of possible bending sequences dramatically
increases, the approach here described is no more able to find a suitable number of
good sequences in a reasonable amount of time. Devising an algorithm for the auto-
matic computation of bending sequences for double head wire bending machines is
thus the most important topic of a future research in this field.

References

Aomura, S., and A. Koguchi. 2002. “Optimized bending sequences of sheet metal bending by
robot.” Robotics and Computer-Integrated Manufacturing 18 (1): 29–39.

Baraldo, Andrea, Luca Bascetta, Fabrizio Caprotti, Gianni Ferretti, and Angelo Ponti. 2021.
“Procedimento di piegatura e macchina di piegatura per eseguire un procedimento di pie-
gatura.” Italian Patent.

Bhattacharya, P. 1994. “The representation of permutations by trees.” Computers & Mathe-
matics with Applications 28 (9): 67–71.

De Vin, L.J., J. De Vries, A.H. Streppel, E.J.W. Klaassen, and H.J.J. Kals. 1994. “The gen-
eration of bending sequences in a CAPP system for sheet-metal components.” Journal of
Materials Processing Technology 41 (3): 331–339.

Duflou, J., J. Kruth, and D. Van Oudheusden. 1999. “Algorithms for the design verification
and automatic process planning for bent sheet metal parts.” CIRP Annals - Manufacturing
Technology 48 (1): 405–408.

Duflou, J.R., D. Van Oudheusden, J. Kruth, and D. Cattrysse. 1999. “Methods for the se-
quencing of sheet metal bending operations.” International Journal of Production Research
37 (14): 3185–3202.

Faraz, Z., S. W. Ul Haq, L. Ali, K. Mahmood, W. A. Tarar, A. A. Baqai, M. Khan, and
S. H. Imran. 2017. “Sheet-metal bend sequence planning subjected to process and material
variations.” International Journal of Advanced Manufacturing Technology 88 (1-4): 815–826.

Fisher, Ronald Aylmer, and Frank Yates. 1948. Statistical tables for biological, agricultural and
medical research. London: Oliver and Boyd.

Garcia, G., and J. F. Le Corre. 1989. “A New Collision Detection Algorithm Using Octree
Models.” In IEEE/RSJ International Workshop on Intelligent Robots and Systems, 93–98.

Gilbert, E. G., D. W. Johnson, and S. S. Keerthi. 1988. “A fast procedure for computing the
distance between complex objects in three-dimensional space.” IEEE Journal on Robotics
and Automation 4 (2): 193–203.

Gupta, S. K., D. A. Bourne, K. H. Kim, and S. S. Krishnan. 1998. “Automated Process
Planning for Sheet Metal Bending Operations.” Journal of Manufacturing Systems 17 (5):
338–360.

Hart, P.E., N.J. Nilsson, and B. Raphael. 1968. “A Formal Basis for the Heuristic Determina-
tion of Minimum Cost Paths.” IEEE Transactions on Systems Science and Cybernetics 4
(2): 100–107.

Heap, B. R. 1963. “Permutations by Interchanges.” The Computer Journal 6 (3): 293–298.
Hoffmann, M., U. Geiler, and M. Geiger. 1992. “Computer-aided generation of bending se-

quences for die-bending machines.” Journal of Materials Processing Technology 30 (1): 1–
12.

Inui, M., and H. Terakado. 1998. “Fast evaluation of geometric constraints for bending sequence
planning.” In IEEE International Conference on Robotics and Automation, Vol. 3, 2446–
2451.

Inui, M., and H. Terakado. 1999. “Fast bending sequence planning for progressive press-
working.” In IEEE International Symposium on Assembly and Task Planning, 344–349.

Kannan, T. R., and M. S. Shunmugam. 2008. “Planner for sheet metal components to ob-
tain optimal bend sequence using a genetic algorithm.” International Journal of Computer
Integrated Manufacturing 21 (7): 790–802.

21



Koguchi, A., and S. Aomura. 2002. “Automated process planning for sheet metal bending by
handling robot process planning method by taking critical dimension into account.” Seimitsu
Kogaku Kaishi/Journal of the Japan Society for Precision Engineering 68 (4): 602–607.

Koguchi, A., S. Aomura, and M. Igoshi. 2000. “The Automated Process Planning for Sheet
Metal Bending by Handling Robot.” Nihon Kikai Gakkai Ronbunshu, C Hen/Transactions
of the Japan Society of Mechanical Engineers, Part C 66 (646): 2060–2067.

Lin, A. C., and C. Chen. 2014. “Sequence planning and tool selection for bending processes of
2.5D sheet metals.” Advances in Mechanical Engineering 2014.

Lin, A. C., and D. K. Sheu. 2012. “Sequence planning for bending operations in progressive
dies.” International Journal of Production Research 50 (24): 7493–7521.

Markus, A., J. Váncza, and A. Kovács. 2002. “Constraint-based process planning in sheet
metal bending.” CIRP Annals - Manufacturing Technology 51 (1): 425–428.

Ong, S.K., L.J. De Vin, A.Y.C. Nee, and H.J.J. Kals. 1997. “Fuzzy set theory applied to bend
sequencing for sheet metal bending.” Journal of Materials Processing Technology 69 (1-3):
29–36.

Raj Prasanth, D., and M. S. Shunmugam. 2020. “Geometry-based Bend Feasibility Matrix for
bend sequence planning of sheet metal parts.” International Journal of Computer Integrated
Manufacturing 33 (5): 515–530.

Rico, J. C., J. M. González, S. Mateos, E. Cuesta, and G. Valiño. 2003. “Automatic determina-
tion of bending sequences for sheet metal parts with parallel bends.” International Journal
of Production Research 41 (14): 3273–3299.

Sedgewick, Robert. 1977. “Permutation Generation Methods.” ACM Computing Surveys 9
(2): 137—-164.

Shpitalni, M., and D. Saddan. 1994. “Automatic Determination of Bending Sequence in Sheet
Metal Products.” CIRP Annals 43 (1): 23–26.

Siciliano, Bruno, Lorenzo Sciavicco, Luigi Villani, and Giuseppe Oriolo. 2009. Robotics – Mod-
elling, Planning and Control. Springer.

Thanapandi, C. M., A. Walairacht, and S. Ohara. 2001a. “Genetic algorithm for bending
process in sheet metal industry.” In Canadian Conference on Electrical and Computer En-
gineering, Vol. 2, 957–962.

Thanapandi, C. M., A. Walairacht, and S. Ohara. 2001b. “Multi-component genetic algorithm
for generating best bending sequence and tool selection in sheet metal parts.” In IEEE
International Conference on Robotics and Automation, Vol. 1, 830–835.

Zhao, Z. Y., L. C. Zhang, and Y. S. Shi. 2014. “A bending sequence planning algorithm based
on multiple-constraint model.” In International Conference on Key Engineering Materials
and Computer Science, Vol. 1042 of Advanced Materials Research, 26–31.

22


