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Abstract 

Chronotype is the temporal preference for activity and sleep during the 24h day and is linked 

to mental and physical health, quality of life, and mortality. Later chronotypes, so called 

“night owls”, consistently display poorer health outcomes than “larks”. Previous studies have 

suggested that preterm birth (<37 weeks of gestation) is associated with an earlier chronotype 

in children, adolescents, and young adults, but studies beyond this age are absent. Our aim 

was to determine if adults born preterm at very low birth weight (VLBW, ≤1500 grams) 

display different chronotypes than their siblings. We studied VLBW adults, aged 29.9 years 

(SD 2.8), matched with same-sex term-born siblings as controls. A total of 123 participants, 

consisting of 53 sibling pairs and 17 unmatched participants, provided actigraphy-derived 

data on the timing, duration, and quality of sleep from 1640 nights (mean 13.3 per participant, 

SD 2.7). Mixed effects models provided estimates and significance tests. Compared to their 

siblings, VLBW adults displayed 27 min earlier sleep midpoint during free days (95% CI: 3 to 

51 min, p = .029). This was also reflected in timing of falling asleep, waking up, and sleep-

debt corrected sleep midpoint. The findings were emphasized in VLBW participants born 

small for gestational age. VLBW adults displayed an earlier chronotype than their siblings 

still at age 30, which suggests that the earlier chronotype is an enduring individual trait not 

explained by shared family factors. This preference could provide protection from risks 

associated with preterm birth. 

 

Keywords: actigraphy, sleep midpoint, midsleep, MSFsc, VLBW, very low birth weight, 

preterm, prematurity 
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Introduction  

Preterm birth is globally the main cause of death in children under five years (Liu et al. 2016). 

Although most prematurely born children survive without severe disabilities (March of Dimes 

et al. 2012), a disruptive start to life may leave long-lasting effects. Decades-long follow-up 

studies on preterm survivors with very or extremely low birth weight (VLBW ≤ 1500 grams, 

ELBW ≤1000 grams) show increased blood pressure (Hovi et al. 2016), dysglycaemia (Hovi 

et al. 2007; Morrison et al. 2016), less exercise (Kajantie et al. 2010), more anxiety 

(Mathewson et al. 2017), and more internalizing (Pyhälä et al. 2017). Interestingly, in the 

field of chronobiology, some of these vulnerabilities are displayed by people with late 

chronotypes, so called night owls (Anothaisintawee et al. 2017; Merikanto et al. 2013; Hisler 

et al. 2017; Taylor and Hasler 2018). Chronotype is the partly heritable (37-50%, Koskenvuo 

et al. 2007; Watson et al. 2013) preference in timing for activity or sleep; it is a behavioral 

manifestation of the internal circadian clock, and it impacts most aspects of human life, from 

DNA repair (Sancar et al. 2010) and physiology (Pilorz et al. 2018) to personality and 

behavior (Adan et al. 2012; Fabbian et al. 2016). The resemblance in outcomes of preterm 

survivors and night owls has generated studies investigating whether chronotype contributes 

to prematurity-related morbidity. Counterintuitively, studies have suggested an earlier 

chronotype in extremely preterm children (Stangenes et al. 2017), preterm adolescents (Hibbs 

et al. 2014), and VLBW preterm adults in their early twenties (Strang-Karlsson et al. 2010; 

Björkqvist et al. 2014), but not in a young adult cohort with subjects from all degrees of 

prematurity (Björkqvist, Pesonen, et al. 2018). Thus, current evidence is inconclusive whether 

the reported earlier chronotype of preterm survivors persists into adulthood. 

We investigated whether adult VLBW survivors, aged on average 30 years, 

display an earlier chronotype in a sibling design, which allows better control for heritability 

and familial environment than case-control studies. This is important because VLBW young 
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adults initiate independent lives later than term-born controls (Kajantie et al. 2008), and report 

more protective upbringing (Pyhälä et al. 2011), which can affect sleep-wake patterns 

(Randler et al. 2009). To answer these questions, we measured sleep patterns of VLBW 

survivors and their siblings with actigraphy for two weeks. 

 

Materials and methods 

Recruitment 

We recruited VLBW subjects from the Helsinki Study of Very Low Birth Weight Adults 

(HeSVA, Hovi et al. 2007), the ESTER Preterm Birth Study (Sipola-Leppänen et al. 2015), 

and through the Finnish Medical Birth Registry (FMBR). HeSVA includes 166 VLBW 

survivors treated 1978-85 at the neonatal intensive care unit of the Children’s Hospital at 

Helsinki University Central Hospital (Figure 1, map, supplemental), who underwent clinical 

examinations 2004-05. ESTER includes 376 preterm subjects (55 VLBW) either from the 

Northern Finland Birth Cohort 1986 (NFBC1986, born 1985–86) or identified through the 

Finnish Medical Birth Register (FMBR; born 1987–89), who underwent clinical examinations 

2009-11. Subjects in NFBC1986 undergo regular assessments, so to avoid participation 

fatigue we only recruited subjects born 1987-89. After recruitments from HeSVA and 

ESTER, we identified through the FMBR VLBW survivors from live births between 

1.1.1987-30.9.1990 in hospitals serving the provinces of Uusimaa, Varsinais-Suomi, and 

Northern Häme/Pirkanmaa, and physicians from these birth hospitals contacted the subjects. 

The aim was to recruit 80 sibling pairs for three-day testing, including MRI 

scans, metabolic tests, tissue biopsies, exercise tests, neurocognitive assessment, and 

accelerometry. In power calculations 80 pairs, given 1-β = .8 and α = .05, allow detection of 

effect sizes of 0.32 in two-way comparisons (Faul et al. 2007). 
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Between July 2014 and February 2017, we successfully contacted 186 VLBW 

adults (Figure 2) whose population records indicated having a same-sex sibling born within 

10 years. If records indicated a multiple birth, we randomly contacted one survivor. If willing 

to participate, each VLBW adult sought participation of a sibling with the least age difference. 

The term-born, same-sex sibling had to be 18 years of age or older, with less than 10 years 

age difference. If either potential participant presented with pregnancy, cerebral palsy, mental 

retardation, motor or sensory impairment, or endocrine disorder, we excluded both. Sixty-four 

potential pairs (34.4% of contacted) declined participation and 43 (23.1%) warranted 

exclusion, so the recruitment process netted 79 sibling pairs (42.5%): 22 via HeSVA, 6 via 

ESTER and 51 via FMBR. Participation analysis was possible with pseudonymized registry 

data (FMBR, ESTER) and previously collected data from HeSVA. For all variables in Table 2 

and three-tiered parental education (lower secondary or less or unknown, upper secondary, 

tertiary) the 79 participants differed from the 175 non-participants only in less maternal 

smoking during pregnancy (p = 0.009) and more highly educated fathers (p = 0.004, Table 1, 

supplemental). 

Three sibling-controls dropped out of the clinical studies, performed 2014-17, 

and 8 subjects declined actigraphy participation (Figure 3). One VLBW subject’s exclusion 

criterion became apparent at the clinical visit, and scrutiny of birth records revealed 4 siblings 

born preterm, which warranted their exclusion. Of the 142 actigraphy participants, 19 (13.4%) 

returned invalid measurements due to technical errors or non-compliance, leaving 123 

participants with analyzable data (53 pairs, 17 unmatched participants). These participants did 

not differ significantly from the 27 study participants without actigraphy data regarding sex 

distribution, age, gestational age, birth weight, or relative birth weight. 

Perinatal data for HeSVA and ESTER participants has been previously collected 

from hospital or maternity clinic records (Hovi et al. 2007; Sipola-Leppänen et al. 2015). For 
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their siblings and all new subjects we similarly collected data about birth weight, gestational 

age, parity, mother’s age, maternal smoking during pregnancy, and multiple pregnancy. Our 

primary source for gestational age was the noted weeks on birth certificate or records. If it 

differed by over two weeks from gestational age derived from last menstrual period we 

checked whether it was due to ultrasonography correction, which it was in all cases. Based on 

gestational age, Pihkala et al.’s (1989) standards converted birth weight into standard 

deviation units, with small for gestational age (SGA) defined as ≤ -2 SD.  

The study followed accepted ethical practices (Portaluppi et al. 2010), the ethics 

committee of the Hospital District of Helsinki and Uusimaa approved the study, and all 

participants provided informed signed consent. Participants completing the study received 

~84 EUR reimbursement per visit, plus travel costs and overnight lodging if required.  

 

Sleep measurement 

Wrist-worn accelerometers called actigraphs (Actiwatch2, Philips-Respironics, Murrysville, 

PA) measured sleep with 1-minute epochs and medium sensitivity setting.  Both siblings 

received instructions to wear the device simultaneously for at least 14 days and to report in a 

diary sleep times, work hours, use of alcohol or sleeping medication, temporary removals of 

the device, and abnormal occurrences like illnesses or travel. To help recognize these 

situations the participants kept sleep logs and pressed an event marker on the device, which 

showed up on the recording. 

Actigraphy is the most appropriate tool for objectively measuring sleep-wake 

patterns in non-laboratory settings due to its minimal invasiveness, good validity, and ease of 

use (Van De Water et al. 2011). Actigraphs measure sleep timing and duration accurately, but 

tend to misclassify wake (Pesonen and Kuula 2018). The technology in Actiwatch2 is based 

on piezo-electric sensors that detect movement, which the device stores as activity counts. 
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Based on these counts, an algorithm (Respironics Actiware v5.59) analyzed the data and 

scored each minute as wake or sleep. 

The 123 participants recorded 1726 nights, of which 86 (5.0%) had to be 

excluded based on technical criteria: (a) the actigraph was not used; (b) bedtime information 

was missing; (c) sleep data indicated the participant was already asleep at the self-reported 

time; or (d) self-reported awakening time was missing and the activity pattern was 

ambiguous. The final accepted nights numbered 1640 (participant mean 13.3, SD 2.7). 

Participants reported use of alcohol in 272 cases, sleeping medication in 37, and daytime naps 

in 49. Parents reported being woken up by children during 74 nights. Three participants 

reported ailments more disruptive than the common cold, which was our cut-off point for 

labelling illness. Self-reported free- or workday status for next morning was available for 

1396 nights (85.1%), and we assumed free weekend mornings for 242 nights (14.9%). We 

excluded 11 nights with shift work. Free day comparisons were available for 51 pairs (VLBW 

n = 59, control = 60), and work day comparisons for 47 pairs (VLBW n = 61, control = 56). 

The main outcome for chronotype was free day sleep midpoint, because sleep is 

constrained during workdays. Sleep midpoint is the half-way time between falling asleep and 

waking up, and it serves as proxy for dim light melatonin onset (Terman et al. 2001), the gold 

standard of circadian markers (Klerman et al. 2002). A further refinement is free day sleep 

midpoint corrected for sleep debt, MSFsc = free day sleep midpoint – 0.5*(free day sleep 

duration – average weekly sleep duration) (Roenneberg et al. 2004), because sleep deprivation 

accrued during work days manifests itself on free days as longer sleep duration and later sleep 

midpoint. 

We also report: sleep start, when the participant fell asleep; sleep end, when the 

participant woke up; duration, time between sleep start and end; actual sleep time, time spent 

asleep after sleep start; wake after sleep onset, time spent awake after sleep start; wake 
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percentage, proportion of duration that is awake; catch-up sleep, difference in sleep duration 

between free and work days, indicating possible sleep debt; and social jet lag, difference in 

sleep midpoint between free and work days (Wittmann et al. 2006) or difference in sleep start 

between free and work days (Jankowski 2017). 

 

Statistical analysis 

We assessed background variables on a group level with independent samples t-tests and χ2, 

and pairs with paired t-tests and McNemar’s test. We used linear mixed effects models to 

study if VLBW status explained potential group differences in sleep outcomes, with repeated 

measurements nested within subjects, and subjects nested within families. The following 

variables were fixed effects: model 1 included the minimal chronobiological variables, age, 

and sex (Roenneberg et al. 2007), and model 2 further adjusted for use of alcohol and sleep 

medication, naps, child-related awakenings, and illness. Unmatched subjects remained in the 

analysis to improve model accuracy.  

Calculation of MSFsc, catch-up sleep, and social jet lag involves mean values 

from work and free days. For these outcomes, we 1) excluded nights with preceding naps, 

alcohol use, or sleep medication use to omit their effect, 2) calculated mean values separately 

for free-and work days, 3) computed MSFsc, catch-up sleep, and social jet lag, and 4) 

compared outcomes with paired t-test. This exclusion process caused attrition, leaving 41 

pairs for comparisons of MSFsc, catch-up sleep, and social jet lag.  

We performed different post hoc mixed effects analyses to the free day sleep 

midpoint (model 2). To test for possible effect of relative birth weight on sleep outcomes we 

compared separately VLBW small for gestational age (SGA) and appropriate for gestational 

age (AGA) subgroups to their AGA siblings. We also examined possible sex interaction with 

a sex*VLBW interaction term and ran the analysis separately according to sex. Further, we 
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examined if birth or testing season (Vollmer et al. 2012; Didikoglu et al. 2019) influenced the 

VLBW-control difference in free day sleep midpoint. This was done by introducing 

photoperiod variables to model 2 (spring [Feb-April], summer [May-July], autumn [Aug-

Oct], and winter [Nov-Jan]). Finally, as a sensitivity analysis we excluded subjects who had 

participated in the earlier HeSVA (n = 19) and ESTER (n = 3) studies. 

We performed all statistical analyses using SPSS (IBM SPSS Statistics for 

Windows, version 22.0. Armonk, NY: IBM Corp). We rounded time differences to minutes in 

the text for brevity, but the tables also display seconds.
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Results  

The VLBW subjects (n = 63) were on average 29.9 (SD 2.8) years old, and the siblings 29.7 

years (SD 5.2, n = 60, Table 2). Men comprised 50.8% of VLBW and 48.3% of control 

participants. Of the 53 whole sibling pairs 26 were men (49.1%). Besides having a lower birth 

weight, a larger proportion of VLBW subjects were born SGA (36.5% vs 3.3%), and from a 

multiple pregnancy (11.1% vs 1.7%). No differences emerged between groups for mother’s 

age at delivery, maternal smoking during pregnancy, or being firstborn. 

On free days the VLBW subjects displayed significantly earlier chronotype than 

their siblings, as evidenced by the earlier sleep midpoint (-27 min, p = .029, Table 3, model 

2), sleep start (-25 min, p = .040), and sleep end (-28 min, p = .043). No differences in sleep 

duration, actual sleep time, wake after sleep onset, or wake percentage emerged on free days.  

On work days sleep timing did not differ between groups. Although not 

statistically significant, the VLBW subjects displayed 22 min earlier sleep start (p = .108), 18 

min longer duration (p = .068), and 11 min longer actual sleep time (p = .197). The VLBW 

subjects displayed more nocturnal wake after sleep onset (6 min, p = .023), for a wake 

percentage difference of 1.06 % (p = .05).  

VLBW subjects displayed 41 min earlier MSFsc than their siblings (95% CI: -

78 to -5 minutes, p = .029, not in tables). No difference emerged for catch-up sleep (0 min, 

95% CI: -31 to 31 min) or social jet lag (sleep midpoint difference -20 min, 95% CI: -51 to 10 

min, sleep start difference -20 min, 95% CI: -52 min to 12 min). 

For post hoc analysis we separately compared free day sleep midpoint of VLBW 

SGA (n = 21) and VLBW AGA (n = 38) subjects to their siblings born AGA (n = 58, 50 

complete pairs [19 SGA, 31 AGA]). This revealed a stronger tendency for earlier chronotype 

in the VLBW SGA group (-48 min, 95% CI: -75 to -21 min, p = .001, model 2, Figure 4) than 

in the VLBW AGA group (-21 min, 95% CI: -52 to 10 min, p = .18). The sex interaction term 
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introduced to free day sleep midpoint model 2 was not statistically significant, but analysis by 

sex revealed that free day sleep midpoint in the VLBW group was more pronounced among 

women (-41 min, 95% CI: -6 to -76 min, p = 0.023) than among men (-15 min earlier, 95% 

CI: -49 to 21 min, p = 0.4). Addition of birth or testing season shifted the free day sleep 

midpoint difference by less than a minute, so our results remained. Exclusion of previous 

HeSVA and ESTER participants from the analysis did not meaningfully impact our finding. 

 

Discussion  

Our study is the first to compare VLBW subjects’ chronotype and sleep to that of their term-

born siblings. The analysis revealed clear differences in sleep timing on free days, and subtle 

differences on work days. First, on free mornings the earlier sleep start, midpoint, sleep end, 

and the earlier sleep-debt-corrected midpoint MSFsc suggest that VLBW adults displayed an 

earlier chronotype than their term-born siblings. Second, on work mornings with more forced 

schedules both groups woke up at similar times, but VLBW subjects possibly went to bed 

earlier (sleep start -22 min, p = .108, sleep duration 18 min, p = .068). This anticipation of a 

scheduled early morning might explain why VLBW subjects displayed 6 min more wake after 

sleep onset during work nights. 

Our findings align well with previous studies in children, adolescents, and 

younger adults. However, direct comparisons are often difficult due to diversity of subject age 

and outcomes; only few studies have reported sleep midpoints or MSFsc. The strongest 

support comes from a large actigraphy study of preterm adolescents (mean birth weight 1514 

grams, gestational age 31 weeks), which showed 24 min earlier sleep midpoint during 

weekends (Hibbs et al. 2014), compared to 27 min in the current study. Other actigraphy 

studies also show earlier sleep start  or sleep end among VLBW young adults and toddlers 

(Strang-Karlsson et al. 2007; Asaka and Takada 2010; Björkqvist et al. 2014). One overnight 
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polysomnography study on very preterm (<32 weeks) school-aged children showed 13 min 

earlier sleep onset (Maurer et al. 2016), but in an earlier study by the same team found sleep 

onset was non-significantly (6 min) earlier (Perkinson-Gloor et al. 2015). The current findings 

were in disagreement with a study of only 33 VLBW subjects covering the entire preterm 

range ,which did not discover difference in chronotype between preterm and term-born 

groups (Björkqvist, Pesonen, et al. 2018). The phenomenon of an earlier chronotype may, 

therefore, be restricted to those born smallest, i.e., SGA.  

Supporting this notion, a post hoc analysis by relative birth weight revealed 

much earlier chronotype (free day sleep midpoint -48 min, p = 0.001) in VLBW subjects born 

SGA. Possible developmental programming would arguably be strongest among those most 

exposed to impaired intrauterine environments, and the combined pathology of prematurity 

and SGA is stronger than either condition alone (Katz et al. 2013). However, the association 

between intrauterine growth and chronotype remains inconclusive: Strang-Karlsson et al. 

(2010) found pronounced self-evaluated morningness in VLBW young adults born AGA 

rather than SGA. Although the sex interaction was not statistically significant, we found a 

more pronounced difference among women than among men. While this is an interesting 

finding, it is post hoc and should be confirmed in further studies. 

Compared to night owls, larks display better mental and physical health (Adan 

et al. 2012; Fabbian et al. 2016), higher academic achievement (Tonetti et al. 2015) and 

quality of life (Prieto et al. 2012; Suh et al. 2017), and reduced mortality (Knutson and von 

Schantz 2018). Thus, a natural assumption is that earlier chronotype might be a protective 

factor. Paradoxically, the reported difference could also be a consequence of developmental 

programming due to fetal distress. Several animal studies indicate that early life exposure to 

stress (Koehl et al. 1997; Koehl et al. 1999), hypoxia (Joseph et al. 2002), malnutrition (Durán 

et al. 2005), alcohol (Handa et al. 2007), or postnatal continuous lighting (Brooks et al. 2014) 
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also might advance the internal clock, so confirming possible protective effects requires 

further study. It is possible the chronotype of the mother may be transferred through an 

imprinting signal caused by maternal circadian melatonin pattern in utero (Serón-Ferré et al. 

2012) and during breastfeeding (McKenna and Reiss 2018). If so, preterm birth could disrupt 

this transfer. 

Our study had several strengths. Using siblings as controls not only increased 

statistical power but allowed circumvention of unmeasured family-based confounders.  Also, 

the mean recording period of almost two weeks is, to our knowledge, unparalleled in this 

field. Furthermore, the detailed information about free and work days allowed determination 

of unforced circadian rhythms. As weaknesses we note that over 13% of participants failed to 

return valid measurements, which is unfortunate because minimal drop-out was important due 

to the delicate study setting. Also, the family environment might have changed during the 

decade that we allowed as age difference between siblings, and we lacked detailed 

information about family composition and changes in living conditions and location. We 

placed strong emphasis in recruiting whole sibling pairs, which may lead to selective 

participation of behaviorally similar sibling pairs. This would, if anything, lead to more 

conservative findings.  

Adults born preterm at VLBW display an earlier chronotype than their siblings 

at almost 30 years of age. This indicates that the phenomenon persists with age and more 

independent living and seems most pronounced after disruptive perinatal conditions, such as 

VLBW and SGA. Although this study reports robust results, the actual explanation of this 

phenomenon remains elusive. We suggest future studies investigate possible mechanisms, 

such as differences in light exposure, personality type, length of the internal day, or possible 

genetic variation or epigenetic modification of clock genes. Our findings should also be 

replicated in other parts of the world in order to determine whether regional or cultural 
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differences in sleep timing play any part in explaining these results. These mechanisms may 

shed light to early life programming of chronotype and to potential protective factors in 

children and adults born preterm. 
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Figure legends 

Figure 1. Map of recruitment areas 

Figure 2. Flowchart of participant recruitment 

Figure 3. Flowchart of actigraphy participants 

Figure 4. Mean difference and 95% confidence interval of free day sleep midpoint of very low birth 

weight (VLBW) adults born small for gestation age (SGA, n = 21) and appropriate for gestational age 

(AGA, n = 38) compared to term siblings born appropriate for gestational age (AGA , n = 58). 

Complete pairs numbered n = 50 (19 SGA, 31 AGA). 


