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Abstract
The Generalized Pareto Distribution (GPD) plays a central role in modelling heavy tail phenomena
in many applications. Applying the GPD to actual datasets however is a non-trivial task. One
common way suggested in the literature to investigate the tail behaviour is to take logarithm to the
original dataset in order to reduce the sample variability. Inspired by this, we propose and study the
Exponentiated Generalized Pareto Distribution (exGPD), which is created via log-transform of the
GPD variable. After introducing the exGPD we derive various distributional quantities, including
the moment generating function, tail risk measures. As an application we also develop a plot as an
alternative to the Hill plot to identify the tail index of heavy tailed datasets, based on the moment
matching for the exGPD. Various numerical analyses with both simulated and actual datasets show
that the proposed plot works well.

Key Words: Extreme Value Theory; Generalized Pareto Distribution (GPD); Exponentiated Gen-
eralized Pareto Distribution; Hill plot

1. Introduction

The Generalized Pareto Distribution (GPD) has recently emerged as an influential distri-
bution in modelling heavy tailed datasets in various applications in finance, operational
risk, insurance and environmental studies. In particular, it is widely used to model sample
exceedances beyond some large threshold, a procedure commonly known as the peaks-over-
threshold (POT) method in the Extreme Value Theory (EVT) literature; see, e.g., Embrechts
et al. (1997) and Beirlant et al. (2006). The heavy tail phenomenon and the GPD are linked
through the famous Pickands-Balkema-de Hann theorem (Balkema and De Haan (1974)
and Pickands III (1975)) which states that, for an arbitrary distribution of which the sample
maximum tends to a non-degenerate distribution after suitable standardization, the distribu-
tion function of its exceedances over a large threshold converges to the GPD. To this extent,
extensive research has been carried out in the literature to characterize the GPD and apply
it to the EVT framework; see, for example, de Zea Bermudez and Kotz (2010) for a com-
prehensive survey on various estimation procedures for the GPD parameter.

In this paper we introduce a two-parameter exponentiated Generalized Pareto Distribu-
tion (exGPD in short) and study its distributional properties, which is the first contribution
of the present paper. The term ‘exponentiated’ is used because this new distribution is ob-
tained via log-transform of the GPD random variable. There are ample examples where a
new distribution is constructed through logarithm or exponential transformation of an ex-
isting one. Such examples include normal and log-normal, gamma and log-gamma, and
Pareto and shifted exponential distributions. Thus introducing the exGPD is interesting
on its own right from statistical viewpoint, but we have further motivations of considering
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such a distribution in connection to EVT. In various graphical tools offered by EVT one
frequently investigates the tail behaviour with log-transformed data rather than the original
data, as seen in, for example, Hill (1975) plot and the estimator of Pickands III (1975). As
log transformation greatly reduces the variability of extreme quantiles, this practice natu-
rally allows one to investigate the tail behaviour in a more stable manner. Therefore, given
that the GPD is the central distribution in EVT modelling, it makes sense to create an alter-
native plotting tool using the exGPD directly. This is our second contribution to this paper.
In particular, we develop a new plot as an alternative to the Hill plot to identify the tail index
of heavy tailed datasets. The proposed Log Variance (LV) plot is based on the idea of the
sample variance of log exceedances to be matched to the variance of the exGPD. Through
various numerical illustrations with both simulated and actual datasets, it is shown that the
LV plot works reasonably well compared to the Hill plot, elucidating the usefulness of the
exGPD.

This article is organized as follows. In Section 2 we define the exGPD and investigate
its distributional quantities including the moment generating function, from which the mo-
ments can be obtained. We show that the moment of all orders are finite for the exGPD,
unlike the GPD. Section 3 derives popular risk measures, including the Value-at-Risk and
the conditional tail expectation. In Section 4 we develop the LV plot that is derived from
the exGPD variance. We use both simulated and actual datasets to illustrate the proposed
plot and compare it to the Hill plot. Section 5 concludes the article.

2. Exponentiated Generalized Pareto Distribution

2.1 Definition

The distribution function (df) of the two-parameter GPD with parameter (σ, ξ) is defined as

GX(x) = 1−
(

1 +
ξx

σ

)−1/ξ
; ξ 6= 0 (1)

where the support is x ≥ 0 for ξ > 0 and 0 ≤ x ≤ −σ/ξ for ξ < 0. Here, σ and ξ are
called the scale and shape parameter, respectively. For the case of ξ = 0, the df is defined
as

GX(x) = 1− e−x/σ; ξ = 0, (2)

an exponential distribution defined on x ≥ 0 with scale parameter σ. The density function
is then

gX(x) =


1

σ

(
1 +

ξx

σ

)−1/ξ−1
, ξ 6= 0

1

σ
e−x/σ, ξ = 0.

(3)

The GPD is contains three distributions. When ξ > 0 the GPD is an Pareto distribution
of the second kind (or Lomax distribution in the insurance literature) with a heavy tail de-
caying at a polynomial speed; when ξ = 0 the GPD is an exponential distribution with a
medium tail decaying exponentially; for ξ < 0, the GPD becomes a short-tailed distribution
the upper bound of the distribution support is finite. The kth moment of the GPD is existent
for ξ < 1/k; for instance, the mean and variance are finite only when ξ < 1 and ξ < 0.5,



respectively.

Now we define the exponentiated GPD (exGPD) as the logarithm of the GPD random
variable. That is, when X is GPD distributed, random variable Y = logX is said to be an
exGPD random variable. A simple algebra gives its df as

FY (y) = P (Y ≤ y) = P (logX ≤ y) = P (X ≤ ey)

= GX(ey) = 1−
(

1 +
ξey

σ

)−1/ξ
; ξ 6= 0, (4)

of which the support is −∞ < y < ∞ for ξ > 0, and −∞ < y ≤ log(−σ/ξ) for ξ < 0.
When ξ = 0, we have

FY (y) = 1− e−ey/σ = 1− exp(−ey−log σ); ξ = 0, −∞ < y <∞, (5)

which is the Type III extreme value distribution (or the distribution of−Y is that of Gumbel)
with location parameter log σ. Combining these, we can write the density of the exGPD as

fY (y) =


ey

σ

(
1 +

ξey

σ

)−1/ξ−1
, ξ 6= 0

1

σ
ey−e

y/σ, ξ = 0.

(6)

We note that the role of σ changes from a scale parameter under the GPD to a location
parameter under the exGPD, as seen from ey/σ = ey−log σ in (6) for all ξ. In what follows
we denote X and to be the GPD variable, and Y for the exGPD to avoid confusion.

An alternative way to create the exGPD is to define Y through Y = log(W − d)
conditional on W > d, where W is the Pareto random variable with df FW (w) = 1 −
(w/β)−α, w > β. The survival function of Y is then given by

P (Y > y) = P (log(W − d) > y|W > d) =
P (W − d > ey|W > d)

P (W > d)

=
P (W > d+ ey)

P (W > d)
=

(
d+ey

β

)−α(
d
β

)−α =
(

1 +
ey

d

)−α
, (7)

which corresponds to exGPD(d/α, 1/α).

In Figure 1 we compare the densities of the GPD and exGPD side by side for selected
parameter choices for ξ ≥ 0. The most dramatic change is the shape itself, where the GPD is
always decreasing on its support (0,∞) whereas the exGPD, defined on the entire real line,
has a peak in the middle of the distribution. Obviously, all the realized GPD values between
0 and 1 are mapped to negative numbers under the exGPD. Also, as seen from the densities
(3) and (6), the polynomial right tail of the GPD changes to an exponentially decaying
tail under the exGPD through log transformation. Later we will prove the moments of all
orders are actually finite for the exGPD. From the figure, we have the following additional
comments:



• As σ increases the density of the exGPD shifts to the right because log σ is the lo-
cation parameter. In fact, the mode can be shown to be log σ, provided it exists; the
proof will be given shortly. As σ is strictly positive, the mode can take any real values
with σ = 1 being the boundary of the sign of the mode.

• As ξ increases the exGPD density becomes less peaked and shows larger dispersion
or variance. This implies that the shape parameter ξ of the GPD roughly plays the
role of a scale parameter under the exGPD. This is also hinted from the density (6);
if the constant 1 is removed from the density function, ξ becomes a scale parameter.

• The visual advantage of the exGPD over the GPD is clear from the figure. The exGPD
expresses the tail thickness, represented by ξ, in a much clearer way in that the tail
decaying angle becomes steeper as ξ gets smaller. Thus one can quickly investigate
how heavy the tail is by looking at, e.g., the histogram of the log data, which is less
straightforward with the GPD densities.
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Figure 1: Density comparison: GPD vs. exGPD for ξ ≥ 0

In Figure 2, the densities of the GPD and exGPD are compared for ξ < 0. Again, the
shape of the density changes substantially by log-transform. Note that there is an upper
limit in the support of both distributions in this case. However, when ξ is a small negative
value, the shape looks not that different from ξ ≥ 0 case in that its right tail gradually
decays as if there is no upper limit to our eyes. As |ξ| gets larger, but not greater than 1,
there is no smooth landing around the upper limit of the support; the right tail abruptly drops
to zero without hesitation. When ξ = −1, the exGPD density takes a drastically different
shape, by shooting upside at its upper limit. Thus, when the shape parameter is negative,
its magnitude can completely change the shape of the exGPD density, as is the case for the
GPD distribution. We note that the role of σ is two-fold when ξ < 0; it acts as the location
parameter and also controls the upper limit of the distribution support.
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Figure 2: Density comparison: GPD vs. exGPD for ξ < 0

The following result formally shows how the shape parameter of the exGPD relates to
its density shape, which is also linked to the existence of the mode.

Lemma 1. The density of the exGPD(σ, ξ) in (6) is bounded only for ξ ≥ −1, in which
case there is a unique mode at log σ.

Proof: To find the mode, a simple algebra yields that

f ′Y (y) =
ey

σ

(
1 +

ξey

σ

)−1/ξ−1

+
ey

σ

(
− 1

ξ
− 1

)(
1 +

ξey

σ

)−1/ξ−2

· ξe
y

σ

=
ey

σ

(
1 +

ξey

σ

)−1/ξ−1[
1 +

(
− 1

ξ
− 1

)(
1 +

ξey

σ

)−1 ξey

σ

]
= fY (y)

1− ey/σ
1 + ξey/σ

. (8)

Note that in the last expression, both fY (y) and 1 + ξey/σ are non-negative regardless of
the sign of ξ. We now investigate whether f ′Y (y) = 0 gives a sensible solution for different
ranges of ξ.
(1) ξ < −1 case: Using the distribution support −∞ < y ≤ log(−σ/ξ) for negative ξ, we
see that the numerator of the second term in (8) is bounded by

1 + 1/ξ ≤ 1− ey/σ < 1. (9)

When ξ < −1, the lower bound of this inequality becomes a strictly positive number,
so f ′Y (y) = 0 has no solution as seen in (8). In fact, the density value in this case gets



indefinitely large as y approaches its upper limit since

lim
y→log(−σ/ξ)−

fY (y) = lim
y→log(−σ/ξ)−

ey

σ

(
1 +

ξey

σ

)−1/ξ−1

=
−1

ξ
lim

y→log(−σ/ξ)−

(
1 +

ξey

σ

)−1/ξ−1

= +∞. (10)

The last equality holds because−1/ξ−1 < 0 when ξ < −1. Thus the density is unbounded
in this range.
(2) ξ = −1 case: The density reduces to fY (y) = ey/σ, the exponential function shifted
by log σ. This function, defined on −∞ < y ≤ log σ, is increasing in y and attains its
maximum of 1, at its upper limit of the support, y = log σ, which is the mode.
(3) −1 < ξ < 0 case: The lower bound of (9) is negative in this range, so f ′Y (y) = 0 has
a unique solution at log σ from (8). Note that the mode in this case is strictly inside the
distribution support because −∞ < log σ < log(−σ/ξ), in contrast to the ξ = −1 case
where the maximum occurs at the upper boundary of the support.
(4) ξ ≥ 0 case: In this case the distribution support is −∞ < y <∞, which yields

−∞ < 1− ey/σ < 1. (11)

Thus f ′Y (y) = 0 has a unique solution y = log σ, which is the mode. �

Now we turn to the hazard function of the exGPD which is given by

hY (y) =
fY (y)

1− FY (y)
=
ey

σ

(
1 +

ξ

σ
ey
)−1

=
ey/σ

1 + ξey/σ
=

1

σe−y + ξ
, ξ 6= 0. (12)

Figure 3 compares the hazard function of the GPD and exGPD. The hazard function of
the GPD can increase or decrease depending on the sign of ξ, with heavy tail implied for
ξ > 0 as the hazard function decreases in y. However the exGPD always has an increasing
hazard function, a.k.a. increasing fairlure rate (IFR), regardless of the sign of ξ, as seen
from (12) and the figure. According to the standard theory, therefore, we see that exGPD is
also DMRL (decreasing mean residual lifetime), indicating a light-tailed distribution.
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Figure 3: Hazard function comparison between GPD and exGPD with different parameters

2.2 Moment Generating Function

In what follows, we denote X to be a GPD(σ, ξ) random variable and Y = logX to be
the corresponding exGPD(σ, ξ) variable. In order to derive the moment generating function
(mgf) of Y , we note the following relationship:

MY (s) = E[esY ] = E[es logX ] = E[elogXs
] = E[Xs], s ∈ IR. (13)

from which we have the next result.

Lemma 2. For the exGPD(σ, ξ) distribution defined in (4), the moment generating function
is given by

MY (s) =



−1

ξ

(
− σ

ξ

)s
B(s+ 1,−1/ξ); s ∈ (−1,∞), ξ < 0

1

ξ

(
σ

ξ

)s
B(s+ 1, 1/ξ − s); s ∈ (−1, 1/ξ), ξ > 0

σsΓ(1 + s); s ∈ (−1,∞), ξ = 0,

(14)

where B is the beta function defined as

B(x, y) =

∫ 1

0
tx−1(1− t)y−1dt =

Γ(x)Γ(y)

Γ(x+ y)
, x > 0, y > 0. (15)

Proof: We prove this for three cases depending on the sign of ξ.
(1) ξ < 0 case: From the support of X ∼ GPD(σ, ξ), we have

MY (s) = E[Xs] =

∫ −σ/ξ
0

xs · 1

σ

(
1 +

ξ

σ
x

)−1/ξ−1

dx. (16)

If we let
ξ

σ
x = −t, we have

MY (s) =

∫ 1

0

(
− σ

ξ
t

)s
· 1

σ
(1− t)−1/ξ−1 · −σ

ξ
dt

= −1

ξ

(
− σ

ξ

)s ∫ 1

0
ts(1− t)−1/ξ−1dt

= −1

ξ

(
− σ

ξ

)s
B(s+ 1,−1/ξ); −1 < s. (17)



(2) ξ > 0 case: As X is defined for all positive values,

MY (s) = E[Xs] =

∫ ∞
0

xs · 1

σ

(
1 +

ξ

σ
x

)−1/ξ−1

dx. (18)

By letting
ξ

σ
x = t, we have

MY (s) =

∫ ∞
0

(
σ

ξ
t

)s
· 1

σ
(1 + t)−1/ξ−1 · σ

ξ
dt

=
1

ξ

(
σ

ξ

)s ∫ ∞
0

ts(1 + t)−1/ξ−1dt

=
1

ξ

(
σ

ξ

)s
B(s+ 1, 1/ξ − s); −1 < s < 1/ξ, (19)

where the last equality comes from a property of the beta function

B(x, y) =

∫ 1

0
tx−1(1− t)y−1dt =

∫ ∞
0

tx−1(1 + t)−x−ydt, x > 0, y > 0. (20)

It is pointed out that if we compare the two mgf’s (ξ < 0 vs. ξ > 0) in (14), only the second
argument of the beta function is different.
(3) ξ = 0 case: The derivation is straightforward and omitted; alternatively, this can be
adapted and derived from the mgf of Gumbel distribution as shown in, e.g., Ch. 22 of John-
ston et al. (1994). �

2.3 Moments

From the mgf of the exGPD given in Lemma 2, we may determine the moments by dif-
ferentiating it with respect to s. We present the first two moments for ξ 6= 0 first. Let us
rewrite mgf in (14) as a function of gamma functions for easier differentiation.

MY (s) =


−1

ξ
Γ(−1/ξ) ·

(
− σ

ξ

)s
· Γ(s+ 1)

Γ(s− 1/ξ + 1)
; s ∈ (−1,∞), ξ < 0.

1

ξ
Γ(1/ξ + 1) ·

(
σ

ξ

)s
· Γ(s+ 1) · Γ(1/ξ − s); s ∈ (−1, 1/ξ), ξ > 0.

(21)
For ξ < 0 case, we may obtain the first two derivatives of the mgf as follows.

d

ds
MY (s) = −1

ξ
Γ(−1/ξ) ·

(
− σ

ξ

)s
· Γ(s+ 1) · 1

Γ(s− 1/ξ + 1)

·
(

log

(
− σ

ξ

)
+ ψ(s+ 1)− ψ(s− 1/ξ + 1)

)
.

d2

ds2
MY (s) = −1

ξ
Γ(−1/ξ) ·

(
− σ

ξ

)s
· Γ(s+ 1) · 1

Γ(s− 1/ξ + 1)

·
[(

log

(
− σ

ξ

)
+ ψ(s+ 1)− ψ(s− 1/ξ + 1)

)2

+ 0 + ψ′(s+ 1)− ψ′(s− 1/ξ + 1)

]
,



where ψ is the digamma function. In this derivation, we used Γ′(s+1) = Γ(s+1)·ψ(s+1)
and (

1

Γ(s− 1/ξ + 1)

)′
= −ψ(s− 1/ξ + 1)

Γ(s− 1/ξ + 1)
.

Similarly, when ξ > 0, we use the fact Γ′(1/ξ − s) = −Γ(1/ξ − s)ψ(1/ξ − s) to get

d

ds
MY (s) =

1

ξ
Γ(1/ξ + 1) ·

(
σ

ξ

)s
· Γ(s+ 1) · Γ(1/ξ − s)

(
log

(
σ

ξ

)
+ ψ(s+ 1)− ψ(1/ξ − s)

)
.

d2

ds2
MY (s) =

1

ξ
Γ(1/ξ + 1) ·

(
σ

ξ

)s
· Γ(s+ 1) · Γ(1/ξ − s)

·
[(

log

(
σ

ξ

)
+ ψ(s+ 1)− ψ(1/ξ − s)

)2

+ 0 + ψ′(s+ 1) + ψ′(1/ξ − s)
]
.

Hence, by setting s = 0, we have the first moment of the exGPD:

E[Y ] =
d

ds
MY (s)

∣∣∣∣
s=0

=



log

(
− σ

ξ

)
+ ψ(1)− ψ(1− 1/ξ); ξ < 0.

log

(
σ

ξ

)
+ ψ(1)− ψ(1/ξ); ξ > 0.

log σ + ψ(1); ξ = 0.

(22)

Here ψ(1) = −γ, where γ = 0.5772 · · · is the Euler-Mascheroni constant. The case for for
ξ = 0 has been determined separately, but it is easily done. Likewise, the second moment
is given by

E[Y 2] =
d2

ds2
MY (s)

∣∣∣∣
s=0

=



(
log

(
− σ

ξ

)
+ ψ(1)− ψ(1− 1/ξ)

)2

+ ψ′(1)− ψ′(−1/ξ + 1); ξ < 0

(
log

(
σ

ξ

)
+ ψ(1)− ψ(1/ξ)

)2

+ ψ′(1) + ψ′(1/ξ); ξ > 0

(
log σ + ψ(1)

)2
+ ψ′(1); ξ = 0.

=



E[Y ]2 + ψ′(1)− ψ′(−1/ξ + 1); ξ < 0

E[Y ]2 + ψ′(1) + ψ′(1/ξ); ξ > 0

E[Y ]2 + ψ′(1); ξ = 0.

(23)



From the second raw moment, the variance of the exGPD becomes

V ar[Y ] =



ψ′(1)− ψ′(−1/ξ + 1)

ψ′(1) + ψ′(1/ξ)

ψ′(1)

=



π2

6
−
∞∑
k=1

1

(k − 1/ξ)2
; ξ < 0

π2

6
+
∞∑
k=1

1

(k + 1/ξ − 1)2
; ξ > 0

π2

6
; ξ = 0.

(24)

Note that the variance of exGPD depends only on ξ. Furthermore, since the summation
terms in (24) are always positive, the value of the sample variance of Y , denoted s2

Y , can
serve as a quick indicator about the sign of ξ. That is, if s2

Y > π2/6 ' 1.645, then ξ
is deemed positive; otherwise, ξ is negative. The first two moments yield the method of
moments estimator (MME) of the exGPD parameter. For ξ < 0,

ξ̂MME =
1

1− (ψ′)−1(ψ′(1)− s2)
,

σ̂MME = −ξ̂MME · eȲ−ψ(1)+ψ(1−1/ξ̂MME)

and for ξ > 0,

ξ̂MME =
1

(ψ′)−1(s2 − ψ′(1))
,

σ̂MME = ξ̂MME · eȲ−ψ(1)+ψ(1/ξ̂MME).

When ξ = 0, we have σ̂MME = eȲ−ψ(1).

One may further obtain higher moments by differentiating the mgf repeatedly, but the
task is not straightforward as higher order derivatives can be complicated, involving infi-
nite series, as seen from the derivation of the first two moments above. However, formally
establishing the existence of higher moments of the exGPD is important because the diffi-
culty of handling the GPD, such as sampling variability, is essentially attributed to its tail
heaviness, directly connected to the non-existence of its moments.

Corollary 3. The exGPD defined in (6) has finite moments of all orders.

Proof: Referring to (21), the mgf of the exGPD is a product of three functions in terms
of s, for both ξ > 0 and ξ < 0 cases. The first term is simply an exponential function of
s, which has derivatives of all orders. The second and third terms are gamma functions or
its reciprocal. The derivatives of a gamma function can be written through the polygamma
function. The polygamma function of order k is defined as the (k + 1)-th derivative of the
logarithm of the gamma function

ψ(k)(z) =
dk

dzk
ψ(z) =

dk+1

dzk+1
log Γ(z) = (−1)k+1k!

∞∑
r=0

1

(z + r)k+1
, k ≥ 1, (25)

which is finite for z > 0. Hence we conclude that the mgf of the exGPD has derivatives of
all orders, each of which in turn gives a finite value when evaluated at 0. A similar argument
holds for ξ = 0 case. �



2.4 Further properties

In the GPD literature, various distributional quantities are available in addition to the or-
dinary moments and MEF; see,e.g., Ch 3 of Embrechts et al. (1997). Here we list similar
properties of the exGPD; some are parallel to those of the GPD, but others are different. We
present the findings first, and then provide the proofs. All findings include both ξ > 0 and
ξ < 0 cases.

(a) For a real value r with rξ > −1,

E

[(
1 +

ξ

σ
eY
)−r]

=
1

1 + rξ
; rξ > −1 (26)

(b) For a non-negative integer k,

E

[(
log

(
1 +

ξ

σ
eY
))k]

= ξk · k! (27)

(c) For real value r with 1 + r > |ξ|,

E

[
eY ·

(
F Y (Y )

)r]
=

σ

(r + 1− ξ)(r + 1)
(28)

(d) Assume that N ∼ Poi(λ), independent of the iid sequence (Yi)
n
i=1 where Yi ∼

exGPD(σ, ξ), i = 1, 2, · · ·n. Write MN = max(Y1, Y2, · · · , Yn). Then

P (MN ≤ y) = exp

(
− λ

(
1 +

ξey

σ

)−1/ξ)
(29)

(e) For a constant c,

∫ ∞
c

F Y (y)dy =

∫ ∞
c

(
1 +

ξ

σ
ey
)−1/ξ

dy =


B
(

(1 + ξec/σ)−1; 1/ξ, 0
)
, ξ > 0,

B
(

1 + ξec/σ; 1− 1/ξ, 0
)
, ξ < 0,

(30)
where B(x; a, b) is the incomplete beta function

B(x; a, b) =

∫ x

0
ta−1(1− t)b−1dt. (31)

Proof: Proof for (a):

E

[(
1 +

ξ

σ
eY
)−r]

=

∫ ∞
−∞

(
1 +

ξ

σ
ey
)−r
· e

y

σ
·
(

1 +
ξ

σ
ey
)−1/ξ−1

dy

=

∫ ∞
−∞

ey

σ
·
(

1 +
ξ

σ
ey
)−1/ξ−r−1

dy. (32)

For ξ > 0 case, we take 1 + ξey/σ = t, then by integration by substitution, (32) is equal to∫ ∞
1

t−1/ξ−r−1 · 1

ξ
dt =

1

ξ
· 1

1/ξ + r
=

1

1 + rξ
; r > −1/ξ. (33)



When ξ < 0, (32) becomes, with the same substitution,∫ 0

1
t−1/ξ−r−1 · 1

ξ
dt =

1

ξ
· 1

1/ξ + r
=

1

1 + rξ
; r < −1/ξ, (34)

completing the proof. Note that the different conditions for ξ has been combined to rξ >
−1. We comment thus that the condition used in Theorem 4.3.13 of Embrechts et al. (1997)
is not correct.

Proof for (b):

E

[(
log

(
1 +

ξ

σ
eY
))k]

=

∫ ∞
−∞

(
log

(
1 +

ξ

σ
ey
))k

· e
y

σ
·
(

1 +
ξ

σ
ey
)−1/ξ−1

dy.

(35)

For ξ > 0 case, if we take log(1 + ξey/σ) = t, then by integration by substitution, (35) is
equal to

ξ−1

∫ ∞
0

tk · e−t/ξdt = ξk · k!. (36)

For ξ < 0 case, we obtain the same result with the same substitution, but via a slightly
different integration as ξ < 0 and t < 0. Note that depending on k being odd or even, the
quantity can be negative or positive for ξ < 0.

Proof for (c):

E

[
eY ·

(
F Y (Y )

)r]
=

∫ ∞
−∞

ey ·
((

1 +
ξ

σ
ey
)−1/ξ)r

· e
y

σ
·
(

1 +
ξ

σ
ey
)−1/ξ−1

dy

=

∫ ∞
−∞

ey · 1

σ

(
1 +

ξ

σ
ey
)−(r+1)/ξ−1

dy. (37)

For ξ > 0 case, if we take 1 + ξey/σ = t, then (37) is equal to∫ ∞
1

σ

ξ
· (t− 1)t−(r+1)/ξ−1 · 1

ξ
dt =

σ

ξ2

∫ ∞
1

(t−(r+1)/ξ − t−(r+1)/ξ−1)dt

=
σ

ξ2

(
ξ

r + 1− ξ
− ξ

r + 1

)
=

σ

(r + 1− ξ)(r + 1)
; 1 + r > ξ. (38)

For ξ < 0 case, with the same substitution, (37) becomes∫ 0

1

σ

ξ
· (t− 1)t−(r+1)/ξ−1 · 1

ξ
dt =

σ

(r + 1− ξ)(r + 1)
; r + 1 > 0. (39)

Thus the conditions differ depending on the sign of ξ even though the results are identical.
If one wishes to merge these for convenience sake, then 1+r > |ξ|would serve the purpose.

Proof for (d): Note that

P (MN ≤ y) = E[P (MN ≤ y|N = n)] =

∞∑
n=0

P (MN ≤ y|N = n) · P (N = n).



On the other hand, we have

P (MN ≤ y|N = n) = P (Mn ≤ y) = P (Y1 ≤ y, Y2 ≤ y, · · · , Yn ≤ y)

= P (Y1 ≤ y)P (Y2 ≤ y) · · ·P (Yn ≤ y) = (FY (y))n.

Therefore, we have

P (MN ≤ y) =
∞∑
n=0

(FY (y))n · λ
ne−λ

n!
= e−λ

∞∑
n=0

(λ · FY (y))n

n!

= e−λ · eλ·FY (y) = e−λ(1−FY (y)) = e−λ·FY (y)

= exp

(
− λ

(
1 +

ξey

σ

)−1/ξ)
. (40)

This property is related to the POT framework. If transformed back, this is the generalized
extreme value (GEV) distribution.

Proof for (e): For ξ > 0 case, use integration by substitution t = (1 + ξey/σ)−1 to get∫ ∞
c

F Y (y)dy =

∫ ∞
c

(
1 +

ξey

σ

)−1/ξ

dy =

∫ (1+ξec/σ)−1

0
t1/ξ−1 · (1− t)−1dt

= B
(

(1 + ξex/σ)−1; 1/ξ, 0
)
, (41)

which can be evaluated using the hypergeometric function. Similarly, for ξ < 0 case, we
set t = 1 + ξey/σ to get∫ log(−σ/ξ)

c
F Y (y)dy =

∫ log(−σ/ξ)

c

(
1 +

ξey

σ

)−1/ξ

dy =

∫ 0

1+ξec/σ
t−1/ξ · (t− 1)−1dt

=

∫ 1+ξec/σ

0
t−1/ξ · (1− t)−1dt = B

(
1 + ξec/σ; 1− 1/ξ, 0

)
.

(42)

For ξ = 0 case, we may use integration by substitution t = ey−log σ to get∫ ∞
c

F Y (y)dy =

∫ ∞
c

e−e
y−log σ

dy =

∫ ∞
ec−log σ

t−1e−tdt = Γ(0, ec−log σ), (43)

where Γ(s, x) is the incomplete gamma function

Γ(s, x) =

∫ ∞
x

ts−1e−tdt. � (44)

Sometimes the three-parameter GPD is found in the literature, which is created by adding
a location parameter µ to the GPD. The df of this distribution is defined as G(x;µ, σ, ξ) =
G(x−µ;σ, ξ), x > µ, whereG(x;σ, ξ) is the GPD in (1). We comment that most results in
this section can be readily applied to the three-parameter GPD without additional difficulty.



2.5 Maximum likelihood estimation

Let y1, · · · , yn be an iid sample from exGPD(σ, ξ). Then from its density (6) the log-
likelihood of the exGPD can be written as

l(σ, ξ) =
n∑
i=1

yi +
n log σ

ξ
−
(1

ξ
+ 1
) n∑
i=1

log(σ + ξeyi). (45)

and the MLE (σ̂, ξ̂) may be found from solving

∂l

∂σ
=

n

σξ
−
(1

ξ
+ 1
) n∑
i=1

( 1

σ + ξeyi

)
= 0

∂l

∂ξ
= −n log σ

ξ2
−
(1

ξ
+ 1
) n∑
i=1

( eyi

σ + ξeyi

)
+

1

ξ2

n∑
i=1

log(σ + ξeyi) = 0.

Clearly, the MLE has to be solved numerically. Due to the condition that σ + ξeyi > 0 for
all i, one must have y(n) < log(−σ/ξ) for ξ < 0 where y(n) is the sample maximum. Then,
for any given ξ < −1, we see that

lim
log(−σ/ξ)→y+

(n)

l(σ, ξ) =∞, (46)

implying that there is no finite MLE. So the MLE exists only when ξ > −1, the same
condition for the MLE of the GPD to exist as pointed out in, e.g., Grimshaw (1993). In fact,
it turns out that the MLEs for the GPD and exGPD are identical for a given sample. To see
this, consider the densities of these two distributions with the same parameter (σ, ξ), that is,
gX(x) and fY (y) from (3) and (6), respectively. When a sample x1, · · · , xn is given from
the GPD, we can obtain a corresponding exGPD sample y1, · · · , yn with yi = log xi. The
log-likelihood function for the exGPD (ξ 6= 0) is then shown from the density to be

n∑
i=1

log fY (yi|σ, ξ) =
n∑
i=1

yi +
n∑
i=1

log gX(eyi |σ, ξ)

=
n∑
i=1

log xi +
n∑
i=1

log gX(xi|σ, ξ) (47)

In the last expression, the first term involves no parameter and the second term stands for
the log-likelihood function of the GDP. Hence maximizing the likelihood functions for both
distributions leads to the identical parameter estimate. This implies that, even though the
log transform may stablize the volatility of the GPD sample in terms of, e.g., moments,
the MLE does not offer additional benefits from this stabilization. Consequently, if we let

θ̂ =

(
σ̂

ξ̂

)
be the MLE of the parameter θ =

(
σ
ξ

)
for exGPD(σ, ξ), we have

√
n(θ̂ − θ) d∼ BV N(0, [I1(θ)]−1), (48)

where the covariance matrix is given by

[I1(θ)]−1 =

[
2σ2(1 + ξ) −σ(1 + ξ)
−σ(1 + ξ) (1 + ξ)2

]
, ξ > −0.5. (49)

The condition ξ > −0.5 is needed for the information matrix to be defined properly; see,
e.g., Smith (1984) or Embrechts et al. (1997).



3. Risk measures and mean excess function

Modern financial risk management in the EVT framework often requires determination
of some well-known tail risk measures to summarize the riskiness of the underlying loss
distribution. Two popular such measures are the Value-at-Risk (VaR) and the conditional
tail expectation (CTE). The VaR of a continuous random variable Y at the 100p% level,
with df FY , is the 100p quantile of the distribution of Y , denoted by

yp = F−1
Y (p). (50)

The VaR is a widely-accepted standard risk measure used in solvency and risk analyses in
financial and insurance industry, with p close to 1. From (4), the VaR of the exGPD is easily
shown to be

yp = log

(
σ

ξ

(
(1− p)−ξ − 1

))
, 0 < p < 1, (51)

or, using that quantiles are preserved under a monotone transform, we can also write yp =
log xp, where xp is the 100p quantile of the GPD. Despite of its popularity, the quantile
VaR measure has also been criticized for failing to meet one of the properties that any
desirable risk measure is expected to satisfy, the criteria known as the coherent risk measure
axioms; see Artzner et al. (1999). In this regard, the CTE1 has received much attention as
an alternative, coherent tail risk measure. The idea of the CTE is to measure the average
severity of the loss when the extreme loss does occurs, where the extreme loss is represented
by the VaR. The CTE of the random variable Y at 100p% level is defined as

CTEp(Y ) = E(Y |Y > yp). (52)

Though the CTE is relatively new, it is closely related to the excess variable Y − u|Y > u
which has long been used in statistics and reliability studies to examine the tail behaviour
of a given distribution. Its expectation e(u) = E(Y −u|Y > u), known as the mean excess
function (MEF) or the mean residual lifetime, is connected to the CTE through

CTEp(Y ) = E(Y |Y > yp) = yp + E(Y − yp|Y > yp) = yp + e(yp). (53)

Thus the CTE is immediate if we can obtain the MEF.

For the exGPD we first derive the df of the excess variable, denoted Y ′ = Y −u|Y > u
for a constant u. Referring to the df of the exGPD (4), we have

FY ′(y
′) = P (Y ′ < y′) = P (Y − u ≤ y′|Y > u) =

P (u < Y < u+ y′)

P (Y > u)
=
F Y (u)− F Y (u+ y′)

F Y (u)

= 1−

(
1 +

ξeu+y′

σ

)−1/ξ

(
1 +

ξeu

σ

)−1/ξ
= 1−

(
σ + ξeu+y′

σ + ξeu

)−1/ξ

, y′ ≥ 0, ξ 6= 0. (54)

Unfortunately this is not an exGPD df. So, unlike the GPD case, the exGPD does not have
the stability property. Nonetheless the MEF can be obtained as the mean of the df (54). We

1a.k.a. Tail VaR, Conditional VaR and Expected Shortfall in the literature.



note that the expectation of any nonnegative continuous random variable X can be written
as

E[X] =

∫ ∞
0

xfX(x)dx = −x(1− FX(x))
∣∣∣∞
0

+

∫ ∞
0

1− FX(x)dx =

∫ ∞
0

FX(x)dx.

(55)

The last equality holds as long as limx→∞ xFX(x) = 0. For the excess variable Y ′ for the
exGPD, which is nonnegative, this condition is met for both ξ < 0 and ξ > 0; the former
case has a finite upper limit, and for the latter case the tail F Y ′(y′) decays exponentially as
seen from (54). Therefore the MEF of the exGPD becomes

eY (u) = E[Y ′] = E[Y − u|Y > u] =

∫ ∞
0

(
σ + ξeuey

′

σ + ξeu

)−1/ξ

dy′

=

(
σ + ξeu

σ

)1/ξ

·
∫ ∞

0

(
σ + ξeuey

′

σ

)−1/ξ

dy′

=

(
σ + ξeu

σ

)1/ξ

·
∫ ∞

0

(
1 +

ξey
′

σe−u

)−1/ξ

dy′ (56)

To evaluate the integration term in the last expression, let us consider an exGPD variable
Y ∗ with parameter (σ∗, ξ) where σ∗ = σe−u > 0. Then We recognize the the integrand
in (59) as the survival function of another exGPD variable Y ∗, so that using Property (e) of
the previous section,

eY (u) =

(
σ + ξeu

σ

)1/ξ ∫ ∞
0

F Y ∗(y
∗)dy∗

=



(
1 +

ξeu

σ

)1/ξ

B
(

(1 + ξ/σ∗)−1; 1/ξ, 0
)
, ξ > 0,

(
1 +

ξeu

σ

)1/ξ

B
(

1 + ξ/σ∗; 1− 1/ξ, 0
)
, ξ < 0,

=


(F̄Y (u))−1B

(
(1 + ξeu/σ)−1; 1/ξ, 0

)
, ξ > 0,

(F̄Y (u))−1B
(

1 + ξeu/σ; 1− 1/ξ, 0
)
, ξ < 0,

(57)

For ξ = 0 case, the distribution of Y ′ = Y − u|Y > u is similarly obtained as

FY ′(y
′) = 1− F Y (u+ y′)

F Y (u)
= 1− e−eu+y

′−log σ+eu−log σ
= 1− e−eu−log σ(ey

′−1), y′ ≥ 0,

(58)
and its MEF is given by

e(u) = E[Y ′] =

∫ ∞
0

e−e
u+y′−log σ+eu−log σ

dy′ = exp(eu−log σ)

∫ ∞
0

e−e
u+y′−log σ

dy′

= exp(eu−log σ)

∫ ∞
u

e−e
y′−log σ

dy′ = exp(eu−log σ) Γ(0, eu/σ), (59)

where the last equality comes from (43).



4. An application: Finding tail index

In this section we illustrate how the proposed exGPD distribution can be used in the EVT
framework. In particular, we focus on finding the tail thickness, characterized as the tail
index α, for a given dataset. Here α corresponds to 1/ξ in the GPD. Determining the
tail index is a problem of great importance as it characterizes the degree of tail risk by
assigning the given distribution to a proper maximum domain of attraction, as well as its
moment existence range. To formally motivate, let us denote the tail (or survival) function
of a distribution by F̄ (x) = 1− F (x), −∞ < x <∞. Then we say that F̄ (x) is regularly
varying with index −α < 0, and write F̄ ∈ R−α, if

lim
x→∞

F̄ (xλ)

F̄ (x)
= λ−α, λ > 0. (60)

When α = 0 the tail is called slowly varying, or F̄ ∈ R0. Using this we can represent
a regularly varying distribution as F̄ (x) ∼ L(x)x−α where L(·) ∈ R0. We note that
f(x) ∼ g(x) means limx→∞ f(x)/g(x) = 1. Thus the tail of regularly varying functions
can be represented by power functions multiplied by slowly varying functions. In many ap-
plications it is of interest to accurately estimate the tail index α from the given dataset; we
refer the reader to, e.g., Embrechts et al. (1997) and Beirlant et al. (2006) for further details.

The method of Hill (1975) is one of the most studied methods to estimate the tail index
α. When F (x) is a regularly varying distribution with α > 0, the Hill method is designed
to find α using a sample X1, ..., Xn from F (x). If we let the order statistics be Xn,n ≤
... ≤ X1,n, the Hill estimator is defined as

α̂k,n =

(
1

k

k∑
j=1

logXj,n − logXk,n

)−1

, 2 ≤ k ≤ n. (61)

After computing α̂k,n for different k values, one can draw the Hill plot {(k, α̂−1
k,n)}, k =

2, 3, ..., n on the plane. The goal is then to find an area where α̂−1
k,n is stable in the plot over

different but relatively small k values. Note that logXk,n serves as the threshold for the
POT method. Other alternative tail index estimators also available in the literature, but the
performance for these alternative estimators crucially depend on the interplay between the
tail index and the so-called second order parameter, and the Hill estimator seems to be most
popular due to its simplicity. It is known that (e.g., Drees et al. (2000)) the Hill plot works
most effectively when the underlying loss distribution F (x) is Pareto with

F (x) = 1−
(x
σ

)−α
, x > σ > 0. (62)

In fact, the Hill estimator implicitly uses the fact that the Pareto variable transforms to a
shifted exponential via taking logarithm, and can be seen as an approximate MLE for the
exponential distribution with rate α, which is the sample mean. Indeed the Hill estimator
has minimum mean squared error when the second order parameter governing the rate of
convergence of (60) is zero which corresponds to the Pareto case. However, as F (x) de-
parts from Pareto, or equivalently, as the log-transformed data departs from exponential,
its performance gets poorer and the plot becomes harder to decipher. Considering that the



log-transformed variable of GPD is that of exGPD, not of exponential, the detrimental per-
formance of the Hill plot in identifying the GPD tail is not surprising.

To this extent, we propose to use the exGPD directly, which is the correct distribution of
the GPD after log-transform. Among other properties of the exGPD, we employ the second
moment result given in (24). The rationale is as follows. When X is a random variable
with a heavy tailed distribution, and its GPD realm starts from some large threshold u > 0,
we assert that X − u|X > u ∼ GPD(σ, ξ) in the spirit of the POT framework. Further-
more, according to the stability property of the GPD, it is also true that X − u′|X > u′

is GPD(σ + ξ(u′ − u), ξ) distributed, for any higher threshold u′ > u. Hence, from
the definition of the exGPD, we can say that log(X − u|X > u) ∼ exGPD(σ, ξ) and
log(X − u′|X > u′) ∼ exGPD(σ + ξ(u′ − u), ξ) for u′ > u. Since our target param-
eter ξ is invariant under the threshold change within the GPD realm, and the variance of
log(X − u′|X > u′) involves ξ only for any u′ > u as seen in (24), we are able to estimate
ξ by matching the sample variance of log-exceedances to the theoretical one over different
thresholds, and produce a series of different ξ̂ and plot them. This is always possible be-
cause the has a finite variance. A stable area is then identified in the plot, just like in the
Hill plot. In particular, we adopt the following algorithm for a given heavy tailed dataset
ordered as Xn,n ≤ ... ≤ X1,n to draw a plot to estimate ξ (or α = 1/ξ):

1. Let ui = Xi,n be the ith threshold.

2. For allXj,n greater than ui, obtain the exceedancesXj,n−ui and get log(Xj,n−ui),
j = 1, . . . , i− 1. Equate the sample variance of these i− 1 values to the theoretical
variance in (24) to get an estimate of ξ. Denote this by ξ̃i.

3. Repeat above two steps for i = n, . . . , 3 to yield ξ̃n, ξ̃n−1, . . . , ξ̃3. (Note that i stops
at 3 because the sample size needs to be at least two for the sample variance to exist)

4. Plot (k, ξ̂k) where ξ̂k = (k − 2)−1
∑k

i=3 ξ̃i, k = n, . . . , 3.

We shall call the resulting plot the log variance (LV) plot as it is based on the sample vari-
ance of the log-transformed exceedances. Note that Step 4 uses an average of ξ̃ value to
smooth volatile sample variance values in the plot. This is similar to the idea found in
Resnick and Stǎricǎ (1997) where the averaged Hill estimators are plotted to reduce the
variability of the standard plot. In the following two subsections we compare the perfor-
mances of the proposed algorithm and the Hill estimator for simulated and real datasets
from heavy tailed distributions, respectively.

4.1 Comparison between Hill plot and LV plotSimulated data from GPD and GEV

Our simulated datasets are from the GPD and GEV, two most prominent distributions in the
EVT studies. To compare the performance of the Hill and LV plots, we consider several
GPD and GEV distributions with different choices for parameters ξ, σ and µ. The location
parameter µ has also been added in our simulation study to allow diverse heavy tail shapes.
As our LV plot algorithm above is invariant under the location shifting in X , it can handle
these simulated data with no modification. For each GPD and GEV chosen, we generate
samples of size 2,000 and present two selected sample paths for illustration. We have tried
larger sample sizes and more repetitions, but the conclusions are similar. As distributions
with finite upper bounds hardly concern us in real applications, we focus on ξ > 0 cases



only and negative estimates of ξ are accordingly replaced with 0 in computing ξ̃ in the al-
gorithm; this is also consistent with the Hill plot which works only for ξ > 0. The results
are depicted in Figures 4 to 9 where the first three figures used GPD samples and the last
three used GEV samples. In each figure, the upper and lower panels represent the Hill and
LV plots, respectively. The vertical line shows the value of estimated ξ. The horizontal
axis stands for the ordered data count from the largest observation; for example, 200 in the
horizontal axis means the largest 200 observations in calculating the estimate. Note that we
have limited the range of the figures to the largest 1,000 observations even though the same
size is 2,000. So, basically the left end area in each figure is the region where the GPD
phenomenon takes place and we wish to find the tail index in this area.

From these six figures we see that, depending the combination of the parameter sets,
the Hill plot can be stable but also can have a trend of increasing or decreasing over the
whole dataset, confirming that the Hill plot should be read only over a small fraction of the
dataset on the left end side of the figure, or the tail region. However, since we do not know
exactly where the tail starts, any trend makes the Hill plot harder to decipher. Practical
experience (e.g., Section 7.2 in McNeil et al. (2005)) suggests the 5% upper tail to be used
to determine the tail index with the Hill plot. When focused on this region in each figure,
the Hill plot is sometimes able to reveal the true tail index (e.g., Figures 5 and 7), but in
other cases there is hardly any stable region in the plot (e.g., Figures 6 and 9). Thus the
Hill plot, despite its popularity, remains difficult to use in practical situations. If we turn
to the varaince plot, finding the tail index is relatively easier because it has been smoothed
via averaging, though both plots can be qualitatively poor when the sample itself has large
variation in the tail. For example, in Figures 4 and 8, both plots are relatively stable at the
left end region but they point at the wrong tail index. In Figures 6 and 9, both plots are either
unstable or biased at the left end area; in particular, the Hill plot is highly volatile and the
LV plot has a considerable bias. Compared to the Hill plot, however, a marked advantage
of the LV plot throughout all figures is that it exhibits a quite stable region in not so extreme
quantile levels without any substantial trend, and in this region the estimated value is fairly
close to the true tail index, again, relative to the Hill plot. These observations suggest that
the LV plot can be most useful when one reads the plot between, say, upper 5% and 20%
quantile regions. This is advantageous for practitioners to interpret the plot as the volatility
of extreme quantiles can be avoided in this non-extreme quantile range.
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Figure 4: Comparison of ξ for GPD with µ = 10, σ = 1, ξ = 0.5
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Figure 5: Comparison of ξ for GPD with µ = 0, σ = 1, ξ = 1
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Figure 6: Comparison of ξ for GPD with µ = 10, σ = 1, ξ = 2
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Figure 7: Comparison of ξ for GEV with µ = 0, σ = 1, ξ = 0.5
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Figure 8: Comparison of ξ for GEV with µ = 0, σ = 1, ξ = 1
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Figure 9: Comparison of ξ for GEV with µ = 10, σ = 1, ξ = 2



4.2 Real datasets

We now repeat the same exercise for two actual datasets publicaly available: the Danish
fire data and the BMW stock price log-returns. The famous Danish fire data, collected at
Copenhagen Reinsurance, comprise 2,167 fire losses between 1980 and 1990, both years
inclusive. The numbers have been adjusted for inflation to reflect 1985 values and are ex-
pressed in millions of Danish Krone. The BMW data consists of daily log-returns during
January 2, 1973 and July 23, 1996, with a total of 6,146 observations. Both datasets can be
obtained from fExtremes package in R software, and further description of these datasets
can be found in Embrechts et al. (1997).

The Hill and LV plots for these two datasets are presented in Figure 10. For the Danish
data (top panel), previously two choices for the tail index have been suggested. According
to Section 6.4 and 6.5 of Embrechts et al. (1997), the first threshold is at a loss of 10 (109
exceedances) with the corresponding Hill estimate α̂−1 = 0.618, indicating that only the
first moment exists. For the second choice, the GPD threshold is set at 18 (47 exceedances)
and the Hill estimate is α̂−1 = 0.497, suggesting the existence of the first two moments. So
essentially α−1 = ξ is indicated to be in [0.5, 0.62] by the Hill plot. However, the chosen
GPD thresholds, 10 and 18, were suggested based on the mean excess plot because the Hill
plot itself does not show any stable region within the upper 5% quantile range as seen from
the figure. When we use the LV plot, the path is more tamed and easier to investigate. In
fact, following the recommendation from the previous simulation study, we search the plot
between upper 5% and 20% quantile regions and estimate that the true ξ lies in [0.45, 0.65].
This is largely in agreement with the previously suggested interval above, though our inter-
val is slightly wider. Regarding the BMW data, we first observe that both plots are relatively
stable at the left end, implying that the extreme tail variability is not substantial. The Hill
plot suggests that ξ lies roughly in [0.25, 0.3] by inspecting the upper 5% quantile range,
indicating that only the first 3 or 4 moments are existent. In contrast, the LV plot indicates a
slightly different interval of [0.19, 0.25] based on the overall plot, indicating a less heavier
tail with finite moments up to 4 or 5. As the LV plot in this data has a very narrow interval
for ξ value over the entire data range, we have more confidence in estimating the tail index.
We comment that, as observed from previous simulation studies, the interval for ξ in the LV
plot can be identified in a much clearer manner for these real datasets compared to the Hill
plot.
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Figure 10: Plot comparison of ξ for Danish (top) and BMW data (bottom)

5. Concluding remarks

In this paper we propose and study the Exponentiated Generalized Pareto Distribution
(exGPD), which is created via log-transform of the Generalized Pareto Distribution (GPD),
an influential distribution in Extreme Value Theory. For this distribution we derive various
distributional quantities, including the moment generating function, tail risk measures and
quantities related to order statistics. As an application we develop a plot as an alternative to
the Hill plot to identify the tail index of heavy tailed datasets. The proposed plot is based
on the idea of the sample variance of log exceedances to be matched to the variance of the
exGPD. Through various numerical illustrations with both simulated and actual datasets, it
is shown that the proposed plot works reasonably well compared to the Hill plot, elucidating
the usefulness of the exGPD.
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