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Abstract

We present a method for fitting parametric probability density models using an

integrated square error criterion on a continuum of weighted Lebesgue spaces formed by

ultraspherical polynomials. This approach is inherently suitable for creating mixture

model representations of complex distributions and allows fully autonomous cluster

analysis of high-dimensional data sets. The method is also suitable for extremely

large sets, allowing post facto model selection and analysis even in the absence of the

original data. Furthermore, the fitting procedure only requires the parametric model

to be pointwise evaluable, making it trivial to fit user-defined models through a generic

algorithm.
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1 Introduction

As the complexity of data sets produced in scientific enterprises, engineering projects and

internet-based applications keeps increasing, efficient tools are needed to uncover the infor-

mation they contain. An example of such a tool is density estimation that can be used to

model the probability distribution that supposedly generated the data. A density estimate

can be used to visualize the salient features of the data and identify potentially interesting

clusters in it. Density estimates can also be used in classification to recognize patterns in

the data and they can be employed in simulation based analyses. For a general introduc-

tion to density estimation methods and their applications, see for example Klemelä (2009);

Silverman (1986); Wand and Jones (1995); Scott (1992).

One approach to density estimation is to estimate the parameters thought to describe the

probability distribution from which the data originated. Thus, given the data x1, . . . ,xN ∈
Rk, one assumes that they were generated from a distribution with density function f(·|θ)
specified by a vector of parameters θ. An example would be fitting a normal (Gaussian)

density to the data in which case θ would comprise the components of the mean and the

covariance matrix of the distribution. The standard way to estimate θ is to maximize the

likelihood
∏N

i=1 f(xi|θ) of the data. The maximizer θ̂ is the maximum likelihood estimate

(MLE) of θ and the density estimate is f(·|θ̂). This approach is called “parametric” as it

is based on the estimation of a set of unknown parameters that describe a family of model

distributions.

A different approach is taken in “non-parametric” estimation, where the density from

which the data were generated is not assumed to be a member of fixed parametrically de-

fined family of models but rather to belong to a function space defined by some regularity

conditions imposed on its member functions. In such estimation the data are allowed to

“speak for themselves” and the estimate usually takes the form f̂(·|λ), where λ is a tuning

parameter that controls how much the individual data points are allowed to affect the result.

A simple example in the case of univariate data is the histogram, a bar plot of the data

normalized so that the area under the plot equals 1. Here the width of the bars acts as a
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tuning parameter in that a small width shows the contributions of individual data points

whereas a large width smooths the data to show only its coarse, overall structure. The accu-

racy of a non-parametric density estimate f̂(·|λ) of a density f is typically measured by an

integrated error
∫
Rk |f̂(x|λ)−f(x)|pdx. From a mathematical point of view the L1-error that

corresponds to the choice p = 1 is most satisfactory as the integral is then always defined

provided only that the estimate is integrable and the error is also invariant under reason-

able transformations of the data (Devroye, 1987; Devroye and Györfi, 1985; Holmström and

Klemelä, 1992). However, by far the most common choice is the L2-error corresponding to

p = 2 because it facilitates much more straightforward mathematical analyses.

Density estimation using mixture models is an approach somewhere in between the para-

metric and non-parametric methods (e.g. McLachlan and Peel (2000); Mengersen et al.

(2011)). The mixture is a linear combination of parametrically defined component densi-

ties but the potentially large and even unspecified number of components gives the method

a non-parametric flavor.

From a theoretical point of view, the parametric approach is more efficient than the

non-parametric approach because it leads to a faster decrease of the error as a function

of the sample size N . This however requires that the estimated unknown density indeed

does belong to the hypothesized parametric family. Given the highly complex data sets the

analyst faces today, any strict parametric assumptions may well be risky and therefore the

flexibility of the non-parametric approach may well compensate for its lesser efficiency.

An interesting variation of these estimation principles is the L2E-method described in

Scott (2001). There, instead of MLE one fits a parametric model f(·|θ) by approximately

minimizing the integrated squared error
∫
Rk(f(x|θ) − f(x))2dx. For earlier work on this

idea, see the references in Scott (2001). A particularly interesting aspect of this method is

its robustness against outliers, that is, its resistance to data points that do not originate

from the density of interest but rather from a different distribution that corrupts the data

at hand.

The method we propose is related to L2E in that a parametric model is fit by effectively
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minimizing the L2-distance. However, whereas L2E uses the raw data x1, . . . ,xN as such to

approximate the part of the error that involves the unknown density f , we prefer to model the

data non-parametrically before the parameters are fit. Thus, our proposal could be described

as smooth L2E. Orthogonal series expansion using a polynomial basis is the non-parametric

estimation method employed. This results in a minimization problem involving a sum of

squares that can be efficiently solved using for example the Levenberg-Marquardt algorithm.

The proposed method exhibits robustness similar to L2E. In addition, the benefits partic-

ular to our method include the ability to efficiently model extremely large data sets through

a single pass, completely parallelizable assimilation algorithm. Combined with the inherent

suitability of orthogonal polynomials for representing multidimensional data, this leads to

natural applications in data compression and feature extraction. For example, in classifica-

tion of weather radar data, the difficulty of modeling multidimensional data sets without a

priori knowledge about the actual distributions involved has favored the use of unrealistically

simple empirical Bayes classifiers even in cases where their assumptions about coordinate

independence clearly are invalid. As a preliminary demonstration of the potential of the pro-

posed density estimation method we describe how to achieve a much better classifier design

in a real world case that is practically unassailable by the more conventional approaches.

The new method also appears to work particularly well in fitting mixtures of densities. Its

resistance to outliers in the data guides the fitting algorithm to find clusters reliably in a

decreasing order of importance. Comparisons with the EM algorithm, the standard fitting

procedure for mixture models, suggests that our method can perform competitively or even

exceed the EM performance when the difficulty of the task increases.

The rest of the paper is organized into two main sections. The first section describes the

technical underpinnings of the method and the second provides examples of its application

to the analysis of synthetic and empirical data sets. Some technical derivations related to

ultraspherical polynomials are given in Appendix A. A proof of a consistency theorem is

given in Appendix B.
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2 The method

2.1 An outline of the approach

The basic idea is to connect the observed data and a suitable parametric density model

through an intermediary entity that can efficiently interface with both. An L2 function

space is a natural choice for such an entity since orthogonal function expansions can be

used to approximate both a parametrically defined probability density and the unknown

density from which the data arose. This, however, requires that both expansions can be

constructed in the same space in an effective manner. We propose to use a scale of weighted

L2 spaces that, combined with a linear transformation between any two of them, has the

desired property.

In a univariate setting, let α > −1 and consider the weight function w(α)(x) = (1− x2)α,

x ∈ [−1, 1], and the associated weighted Lebesgue space L2
α that consists of functions f for

which

‖f‖2α =

∫ 1

−1

f(x)2w(α)(x)dx < ∞. (1)

Clearly, L2
α ⊂ L2

β when α < β and L2
α includes all bounded functions on [−1, 1], for example

the polynomials. As explained in Appendix A, the ultraspherical polynomials G
(α)
m , m ∈ N,

constitute an orthogonal basis for L2
α, with the inner product between two basis functions

given by

〈Gm, Gn〉α =

∫ 1

−1

w(α)(x)G(α)
m (x)G(α)

n (x)dx = γ(α)
m δmn. (2)

Two bases {G(α)
m } and {G(β)

m } are related by an explicitly defined linear transformation (cf.

(24)). As we describe below, certain choices of the weight parameter α are advantageous for

each of the two subtasks, approximation of a parametric model and non-parametric repre-

sentation of the data-generating density. Therefore, combined with the linear transformation

between bases, the family {L2
α} of weighted Lebesgue spaces provides a natural framework

for the proposed density estimation method. The details of our approach will be explained

in the context of univariate data only. The extension to the k-variate case is straightfor-

ward when one uses tensor product basis functions of the form G
(α)
m1,...,md(x) =

∏k
i=1G

(α)
mi (xi),
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(m1, . . . , mk) ∈ Nk,x ∈ Rk.

Note that there is no loss of generality in assuming that the density functions consid-

ered have support in [−1, 1] since one can always achieve this through a suitable change

of variables. If the data-generating density can be assumed to have a compact support, a

simple affine transformation to [−1, 1] can be applied. If a density g : R → R defined on

the whole real line must be considered instead, one can use for example a transformation

like φ : [−1, 1] → R, φ(x) = κx/
√
1− x2, where κ > 0 is a user-defined scale factor. Then

f = (g ◦φ)φ′ is the transformed density on [−1, 1] and after the desired model is fit, one can

transform back to the original domain R. This is in fact the transformation (with κ = 1) used

in the numerical examples of Section 3. Note that this particular a choice of φ is pertinent in

the present context because of the similarity between φ′ and the weight function w(α). This

provides for example a simple formula for the L2-norm of the original g,∫ ∞

−∞
g(z)2dz =

∫ 1

−1

(φ′(x))−1
f(x)2dx

=
1

κ

∫ 1

−1

(1− x2)
3
2 f(x)2dx

=
1

κ

∑m
n=0 γ

( 3
2
)

n

(∑∞
m=0C

(α, 3
2
)

mn c
(α)
m

)2

(3)

where f =
∑∞

m=0 c
(α)
m G

(α)
m for some α > −1 and the coefficients C

(α, 3
2
)

mn link the bases in L2
α

and L2
3/2 (cf. Appendix A). In a multivariate setting a suitable transformation can be applied

separately to each coordinate.

2.2 The non-parametric model

Consider a density f ∈ L2
α and let

f =

∞∑
m=0

dmG
(α)
m . (4)

By (2),

dm =
1

γ
(α)
m

∫ 1

−1

w(α)(x)G(α)
m (x)f(x)dx = E

{
w(α)(X)G

(α)
m (X)

γ
(α)
m

}
, (5)
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where the distribution of the random variable X has density f . Given a random sample

X1, . . . , XN ∼ f and defining ξ
(α)
m (x) = w(α)(x)G

(α)
m (x)/γ

(α)
m this allows us to calculate an

estimator for dm through

d̂m =
1

N

N∑
i=1

ξ(α)m (Xi). (6)

The estimator is unbiased, E(d̂m) = dm.

Consider then the M-dimensional random vector d̂ = (d̂m) ≡ (d̂0, . . . , d̂M−1)
T. We have

d̂ =
1

N

N∑
i=1

ξ
(α)
i ,

where ξ
(α)
i = (ξ

(α)
0 (Xi), . . . , ξ

(α)
M−1(Xi))

T and therefore, by the central limit theorem, for large

N the distribution of d̂ is approximately multivariate normal. A sample estimate of the

covariance matrix of d̂ is given by

Σ̂ =
1

N(N − 1)

N∑
i=1

(ξ
(α)
i − ξ̄(α)N )(ξ

(α)
i − ξ̄(α)N )T, (7)

where ξ̄
(α)
N = (1/N)

∑N
i=1 ξ

(α)
i is the sample mean.

The above considerations are valid at least when the functions ξ
(α)
m are bounded on

[−1, 1]. For ultraspherical polynomials this requirement is satisfied for all α ≥ 0. However,

our strategy for estimating a parametric model for the density f is to fit the model in a

finite dimensional polynomial subspace of L2
0, the ordinary non-weighted space of square

integrable functions on [−1, 1] (cf. Section 2.4). The optimal target density then is the

orthogonal projection of f onto the polynomial subspace which suggests that {G(0)
m } is the

orthogonal basis one should use to represent f .

The ultraspherical polynomials G
(0)
m are the classical Legendre polynomials Pm with the

orthogonality factor in (2) given by

γ(0)
m = γm =

2

2m+ 1
. (8)

The expansion (4) becomes the Legendre series of f ,

f =

∞∑
m=0

dmPm. (9)
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Since now w(0)(x) = P0(x) = 1 for all x ∈ [−1, 1], we have by (5) that

d0 =
1

γ0

∫ 1

−1

f(x)dx =
1

γ0
=

1

2
. (10)

Since also d̂0 = 1/2, the first Legendre series coefficient d0 does not have to be estimated

or taken into account when minimizing the L2-distance between the non-parametric esti-

mate of the density and a fitted parametric model, another reason for choosing α = 0 (see

Section 2.4).

To minimize the expected L2-distance between the underlying density f and its non-

parametric estimate, the empirical coefficients d̂m need to be shrunk in some way. We have

adopted a simple truncated estimator approach with the Hart (1985) cut-off criterion. For

an M-term Legendre polynomial estimator, the Hart criterion is equivalent to finding an

M ≥ 2 that minimizes

H(M) =

M−1∑
m=1

γm

[
2V̂ar(d̂m)− d̂2m

]
, (11)

where diagonal elements of (7) provide estimates for the variances of the coefficients d̂m. The

non-parametric estimate of f is then defined as

f̂(·|M) =
M−1∑
m=0

d̂mPm, (12)

where the role of the smoothing parameter is played by M . The criterion (11) is both

trivial to evaluate and is easily generalized for multivariate data. A number of alternative

approaches exists as described, e.g., in Efromovich (2010). The specific choice of a shrinking

scheme is non-critical to the working of the proposed method as long as the quality of the

estimate is adequately controlled. Also note that yet another benefit of using the Legendre

basis is that the non-parametric density estimate f(·|M) is always normalized since by (10),∫ 1

−1

f̂(x|M)dx =
〈
P0, f̂(·|M)

〉
0
= γ0d̂0 = γ0d0 = 1.

With large data sets, for evaluating d̂m and Var(d̂m) we strongly recommend some variant

of the single-pass, parallelizable algorithm suggested by Chan et al. (1979), depending on
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computational constraints either in the simple form, or as a highly stable pairwise adder

that requires of the order of log2(N) additional storage units per cumulant. This allows the

partitioning of data in an arbitrary manner which is a necessary requirement for parallel

processing but also provides an advantage in the management of data that are divided into

particular sets, as the cumulants of a set of sets are simply the sums of cumulants of individual

sets. Again, while the choice of algorithm for calculating the coefficients is not germane to

the method itself, the availability of a stable, single-pass and parallelizable algorithm for

data assimilation gives the method the widest possible applicability.

2.3 The parametric model

The weighted Lebesgue space L2
−1/2 of Chebyshev polynomials of the first kind is ideal for fit-

ting a parametric model f(·|θ) because the expansion coefficients in (4) can be approximated

without explicit integration and Runge’s phenomenon is minimized (Berrut and Trefethen,

2004). Thus, denote by Tm the Chebyshev polynomials of the first kind (see e.g. Abramowitz

and Stegun (1972), p. 889), Tm = G
(−1/2)
m , and suppose that

f(·|θ) =
∞∑

m=0

cm(θ)Tm. (13)

Denoting the kth Chebyshev node of TM(x) by

xk = cos

(
π
2k + 1

2M

)
(14)

we have the discrete orthogonality equation

M−1∑
k=0

Tm(xk)Tn(xk) = γM
m δmn , m, n = 0, . . . ,M − 1, (15)

where γM
m = (M/2)(1 + δm,0). Assuming point-wise convergence in (13), which holds for

example for a continuous f(·|θ), it follows that theM first expansion coefficients can obtained

from a discrete cosine transformation (DCT) of f(·|θ),

cm(θ) =
1

γM
m

M−1∑
k=0

f(xk|θ)Tm(xk), m = 0, . . . ,M − 1. (16)
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This use of the Chebyshev polynomial basis sets minimal requirements for a user-defined

model since only its evaluation with given parameters at predetermined points is required.

2.4 Coupling the models

Non-parametric modeling creates a Legendre expansion that approximates the density of

the underlying data-generating distribution, and parametric modeling creates a Chebyshev

expansion of a user-provided, parametrized density model. In principle, both of these can

be transformed to an arbitrary ultraspherical basis if the application calls for a particular

choice. In the absence of such preferences, the best choice for matching the expansions is

the Legendre basis.

It is important to notice that transforming the parametric model to an expansion in an

arbitrary basis is no more computationally intensive than transforming it to a Chebyshev

expansion. For example, if T = (Tm(xk)) is the matrix performing the DCT of (16), then

the Chebyshev coefficients are given by the column vector c(θ) = (cm(θ)) = Tf(θ) where

f(θ) = (f(xk)|θ)). If C is the transformation between the M first Chebyshev and Legendre

basis functions, then the Legendre coefficients d(θ) = (dm(θ)) are given by

d(θ) = CTc(θ) = CTTf(θ),

where bothCT andT are constant matrices that can be combined into a single transformation

L = CTT, yielding the Legendre coefficients as

d(θ) = Lf(θ). (17)

It appears that the complete formula for the matrix C has not been published before and

we therefore include its derivation in the Appendix A (Theorem A.4).

Now that both the model and the data are expressed in the same polynomial basis, we

can easily measure their difference using the L2-distance,

‖f(·|θ,M)− f̂(·|M)‖20 =
∫ 1

−1

[
f(x|θ,M)− f̂(x|M)

]2
dx

=

M−1∑
m=0

γm(dm(θ)− d̂m)
2,

(18)
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where f(·|θ,M) is the M-term Chebyshev approximation of f(·|θ) obtained from the coeffi-

cients (16). The minimization of (18) is a standard procedure. For models that only provide

function values at given points, Powell’s method (Powell, 1964) is an effective choice; for

models that also provide partial derivatives of the model with respect to its parameters the

Levenberg-Marquardt algorithm (Levenberg, 1944; Marquardt, 1963) can be applied. Once

a parameter vector θ̂ that minimizes (18) has been found, the final density estimate is f(·|θ̂).
Note here the asymptotic relationship to Scott’s L2E: for a large sample size N , and hence

large M , we have that f(·|θ,M) ≈ f(·|θ) and f̂(·|M) ≈ f .

The goodness of the fit of the model can be estimated through χ2-statistics,

χ2
ν = ‖Σ̂−1/2

1 (d1(θ̂)− d̂1)‖2, (19)

where the first fixed Legendre coefficient has been left out from d(θ̂) and d̂, that is, d1(θ̂) =

(d1(θ̂), . . . , dM−1(θ̂))
T, d̂1 = (d̂1, . . . , d̂M−1)

T, and Σ̂1 is the sample covariance matrix of d̂1

(cf. (7)). The degrees of freedom are given by ν = M − 1 − p, where p is the number of

components of θ.

The following theorem is a consistency result for an estimator θ̂N = θ̂. Its proof can be

found in the Appendix B.

Theorem 2.1. Consider a compact parameter space Θ ⊂ Rp and let

{f(·|θ)|θ ∈ Θ} be a family of probability density functions on [−1, 1] for which both (x, θ) �→
f(x, θ) and (x, θ) �→ ∂

∂x
f(x, θ) are continuous. Assume that for the density f underlying

the data one has f = f(·|θ0) for a unique θ0 ∈ Θ. Assume further that in the Legendre

expansion (9) dm �= 0 for infinitely many m, that is, f is not a polynomial, and that the

Hart criterion (11) is applied by selecting the optimal M from a set {2, 3, . . . , R(N)}, where
R(N) → ∞ and R(N) = o(

√
N) as the sample size N tends to infinity. Then θ̂N

P−→ θ0 as

N → ∞ (convergence in probability), where , θ̂N is obtained by minimizing (18) over Θ.
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3 Numerical examples

The utility of the proposed method can be assessed through specific numerical examples. In

this section the robustness of the estimator is first examined, followed by an application to

cluster analysis and to construction of an empirical Bayes classifier for weather radar data.

3.1 Robustness of fit

As discussed in Scott (2001), in contrast to maximum likelihood, minimization of the inte-

grated square error (i.e. L2E) in parametric modeling leads to an inherently robust estimation

method. L2E does not require any tuning parameters typically found in robust likelihood

algorithms, making it a desirable alternative provided that it can be computed efficiently.

The method suggested in the present article works in the spirit of L2E so it is of interest

to examine if it actually exhibits similar robustness against outliers. A test on synthetic

data similar to the one used by Scott was therefore performed. A random sample of size

N = 100 was generated from two normal distributions, N(0, 1) and N(5, 1), with mixing

ratios between 0 and 100% at 20% intervals. The data were projected to [−1, 1] by using

(3) with κ = 1, and the underlying probability density was approximated by a Legendre

series f̂(·|M), as described in Section 2.2. Likewise, the density function f(·|µ) of N(µ, 1)

was approximated by a Chebyshev series in a manner explained in Section 2.3. To test the

robustness of the method in different weighted Lebesgue spaces, the L2
α-distance between

f̂(·|M) and f(·|µ) as a function of µ was calculated both in the Chebyshev (α = −1/2) and

Legendre (α = 0) spaces, and also in the special space L2
3/2 (cf. (3)). The results are shown

in Figure 1.

As expected, the choice of the Lebesgue space has a moderate effect on the overall shape

of the distance function. In a sense, the special case α = 3/2 is the most objective choice

by the virtue of coinciding with the L2 metric in R (cf. (3)). However, the behavior of the

minima and thus also the parametric density estimate is not affected by the metric. Just like

L2E, instead of yielding a linear interpolation between the two models like MLE does, the
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(a) (b)

(c)

Figure 1: The L2
α-distance between a normal model N(µ, 1) and a non-parametric estimate

of the data-generating density when a sample of size N = 100 was drawn from two normal

distributions N(0, 1) and N(5, 1) at mixing ratios between 0 and 100% at 20% intervals.

The panels (a) - (c) shown distance as a function of µ in the spaces L2
−1/2, L

2
0 and L2

3/2,

respectively. The solid line corresponds to a sample from N(0, 1) only, the line with long

dashes to a sample from N(5, 1) only, and the remaining four curves correspond to mixing

ratios 20%, 40%, 60%, and 80%, respectively.
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Figure 2: Cluster analysis, “easy” test. 500 points were drawn from three bivariate normal

distributions and the resulting data set was analyzed by the method in this paper and by

the Matlab fitgmdist algorithm (EM). Left: The result from the EM algorithm (solid line).

The exact solution is congruent with the EM one. Right: The result by the method of this

paper (solid line) and the exact solution (dash-dotted line)

proposed method gives an estimate for either one or the other distribution, depending on

the mixing ratio (cf. Scott (2001)). This property of our method opens up some interesting

applications.

3.2 Cluster analysis

For tasks where only the global minimum of a function is of particular interest, the existence

of local minima is a significant problem. However, if the objective is to approximate a

complex function with a mixture of simple ones, then local minima may actually facilitate

the task. A relatively simplistic approach is to converge on the nearest minimum and “fill” it

with a prototype fitting function, and then iterate this procedure until a convergence criterion

is satisfied. In the context of the proposed method, the fitting of model functions is done to
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Figure 3: Cluster analysis, “hard” test. 8000 points points were drawn from three bivariate

normal distributions and the resulting data set was analyzed by the method in this paper

and by the Matlab fitgmdist algorithm (EM). Left: The result from the EM algorithm

(solid line) and the exact solution (dash-dotted line). Right: The result by the method of

this paper (solid line) and the exact solution (dash-dotted line). Only a fraction of the points

is shown to keep the plot readable.

15



Test i Solution pi µi,x µi,y σi,x σi,y ρi

easy 0 exact 0.6000 0.6079 -0.3189 0.1495 0.2934 0.2676

OPT 0.5852 0.6167 -0.3254 0.1531 0.2783 0.2559

EM 0.6000 0.6079 -0.3189 0.1495 0.2934 0.2676

1 exact 0.3000 -0.4435 0.4815 0.1329 0.1545 -0.0605

OPT 0.2991 -0.4502 0.4948 0.1411 0.1476 -0.0397

EM 0.2980 -0.4430 0.4840 0.1334 0.1520 -0.0690

2 exact 0.1000 -0.4730 -0.1219 0.0970 0.0910 -0.2422

OPT 0.1157 -0.4894 -0.1046 0.1070 0.1147 -0.0688

EM 0.1020 -0.4738 -0.1174 0.0959 0.0954 -0.2404

hard 0 exact 0.6000 0.0000 -0.0011 1.0079 1.0225 0.0038

OPT 0.7216 0.0875 0.0592 0.9563 0.9553 0.0184

EM 0.6541 -0.0054 0.1166 0.9058 0.9720 -0.0670

1 exact 0.3000 0.4165 0.4066 0.5011 0.4995 -0.0020

OPT 0.2057 0.3813 0.3730 0.4289 0.4486 0.2017

EM 0.3347 0.1197 0.1396 0.5493 0.5482 0.6387

2 exact 0.1000 -0.3959 -0.4071 0.2422 0.2457 -0.0848

OPT 0.0727 -0.4879 -0.4268 0.2314 0.2129 -0.1326

EM 0.0111 2.6328 0.0010 0.3085 0.9682 0.9955

Table 1: Results for fitting a three component normal mixture in the easy and hard cases.

Here pi is the mixing ratio, µi,x and µi,y are the components of the mean, σi,x and σi,y are

the marginal variances and ρi is the correlation coefficient. For each test, the table gives

the exact parameter values as well as the values obtained with the method described in this

article (OPT) and the Matlab fitgmdist algorithm (EM).
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the Legendre expansion, thus making the computational cost effectively independent of the

size of the underlying data set. As a direct consequence of this and the robustness property of

the proposed fitting algorithm, our method can be used for computationally efficient cluster

analysis. The relative computational advantage compared to algorithms that manipulate the

data directly is proportional to the sample size involved. The fitting algorithm in pseudocode

for general mixtures in Rk is displayed in Algorithm 3.1. A theorem on the consistency of

the estimators θ̂i of the mixture component parameters in the one-dimensional case with a

fixed number of components is formulated in Appendix B.

Algorithm 3.1 Fitting mixtures

1: Given data in Rk, transform them to [−1, 1]k

2: Let θi be the parameter vector of the ith fitted mixture component f(·|θi)
3: i = 1

4: Let f̂1(·|M) be the Legendre series estimate of the underlying density in [−1, 1]k

5: repeat

6: Let f(·|θi) be the ith mixture component function transformed to [−1, 1]k and let

f(·|θi,M) be the Legendre series approximation with the same basis functions as in

f̂1(·|M)

7: Let θ̂i be the minimizer of ‖f(·|θi,M)− f̂i(·|M)‖20
8: Let f̂i+1(·|M) = f̂i(·|M)− f(·|θ̂i,M)

9: i = i+ 1

10: until convergence

11: K = i

12: The fitted mixture is
∑K

i=1 f(·|θ̂i) transformed to Rk

In order to assess the performance of our method, two synthetic data sets were con-

structed, representing “easy” and “hard”problems. In both tests data were drawn from three

two-dimensional normal distributions in mixing ratios (p1, p2, p3) = (0.6, 0.3, 0.1). In Algo-

rithm 3.1 we therefore have θi = (pi,µi,Σi), where µi is the mean and Σi is the covariance

matrix of the ith mixture component. In the easy test these distributions were well apart
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from each other with the total number of data points N = 500. In the hard case they were on

top of each other, with N = 8000 to provide statistical significance. The solutions given by

our method were compared to those from the Matlab fitgmdist Expectation-Maximization

(EM) algorithm (Dempster et al., 1977) which is the default choice for the task. The results,

along with expected (exact) solutions, are listed in Table 1 and shown in figures 2 and 3 for

the easy and hard cases, respectively.

In the easy case the EM algorithm produced the essentially correct solution whereas the

result obtained with the proposed method was less accurate. In the hard case our solution

was still quite close to the exact one but the EM solution that had the highest likelihood

out of 100 runs of the algorithm merged the two weaker distributions into one and produced

a completely superfluous third one. The failure of the EM algorithm to analyze the hard

case correctly was indeed anticipated since the algorithm relies on the spatial separation of

data points for estimating their respective latent variables, an approach that becomes less

efficient as component distributions overlap (cf. Redner and Walker (1984)).

While the solutions given by both approaches are roughly comparable, there are addi-

tional advantages beyond data set size considerations that the proposed method has over the

EM algorithm. First, the number of clusters must be explicitly given to the EM algorithm

whereas our method can determine it directly from the data. This can be achieved simply

by progressively fitting each local minimum, one component at a time, until either the sum

of the mixing ratios approaches unity or the χ2
ν in (19) becomes sufficiently small. Thus,

unlike the EM approach that requires manual inspection and judicious interpretation of the

solution, our method implements completely autonomous cluster analysis.

Second, the method is deterministic if a reasonable guess, like a maximum likelihood

estimate, for the initial state of the minimization algorithm is used. This is unlike the EM

algorithm where the validity of the solution depends on random initialization, thus making

it necessary to repeat the whole EM procedure until a solution with an acceptable likelihood

is produced. This may add a large overhead to computational requirements; in the tests

described here the EM algorithm had a success rate of 55% for the easy case and only 4%
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for the hard case.

It must be noticed that the proposed method always produces a solution that is a fair

approximation of the original distribution, even if all the underlying clusters are not iden-

tified. In the hard case, halving the number of data points to 4000 yielded a solution with

just two components because the close proximity of the underlying distributions made the

difference between two and three components statistically insignificant.

While it was not implemented for this study, it is also trivial to create a mixed-model

version of the fitting algorithm. Instead of using just one prototype function, like the Gaus-

sian, to fill the local minima, an extended version of the algorithm would try all functions

from an user-provided set and choose the one that fits the data best.

In conclusion, our method produces solutions that are comparable to those of the EM

algorithm in numerical accuracy while simultaneously providing significant methodological

and computational advantages, making the method an attractive choice for cluster analysis.

3.3 Classifier design

A major hurdle in the construction of density based classifiers has been the relative difficulty

of modeling high-dimensional data sets. Because of this, an overly simple Bayes approach

that assumes independent feature dimensions may still be the default choice for example in

weather radar data analyses, even for cases where the independence assumption is either

questionable or obviously invalid. Here we outline a real world case of supervised learning in

which the described method was used to model and analyze a very large and high-dimensional

data set with the purpose of producing optimal components for an empirical Bayes classifier.

New dual polarimetric weather radars produce copious amounts of data which creates an

immediate need for automatic classification of observed targets. This task is relatively well

established for common meteorological phenomena but much less so for other target classes

like birds or insects. Simple multivariate models like Principal Component Analysis (PCA)

and neural networks have previously been used as the framework for supervised learning.

However, both approaches have significant shortcomings in this particular context and the
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(a) (b)

(c) (d)

Figure 4: The marginal density of a dual polarimetric radar target class (arctic birds) in the

subspace that maximizes its distance from all other classes in the training set, shown as a

Legendre expansion (a) and a mixture of five multivariate normal distributions based on the

Legendre expansion (b). For comparison, a kernel density estimate (c) and a MLE model (d)

are also shown. The MLE model is a multivariate normal density that looks here distorted

because it has been transformed to the rectangle [−1, 1]× [−1, 1].
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method described in this article was specifically developed to overcome these issues.

The training set for the project in question consists of about 1000 radar images manually

selected and labeled into 30 classes. The total number of data points in the set is about one

million. The channels coming directly from the radar are augmented by applying a number

of filters that quantify the presence of particular types of texture in the images. In the

current configuration this brings the dimensionality of the data set up to 58.

The data were first turned into class specific Legendre expansions. For each class, a

low-dimensional optimally resolving subspace, maximizing target class separation was then

determined by simple search through possible combinations of feature vector dimensions.

This task was made easy by the properties of multivariate orthogonal polynomial expansions

for which a marginal density is obtained through a simple selection of expansion coefficients:

to integrate out variables xi, i ∈ J one simply drops the coefficients dm1,...,mk
for which

mi > 0 for some i ∈ J . This follows because
∫ 1

−1
Pmi

(xi)dxi = 〈P0, Pmi
〉0 = 0 when mi > 0.

The L2-distances between class models were evaluated as weighted euclidean distances of

coefficient vectors (cf. (21)). Once the optimal subspace was found, the marginal density of

each class was turned into a minimal parametric model to be used as a class density in an

empirical Bayes classifier for the class in question.

Concerning the dimensionality of the Legendre expansion, it would be both computa-

tionally infeasible and statistically meaningless to calculate the coefficients of a full 58-

dimensional model. Taking into account the cut-off criterion for discarding insignificant

coefficients allows the dimensionality to be reduced to a size comparable to the lengths

of one-dimensional expansions. In this application where the objective was to find a low-

dimensional class model, the complexity of the Legendre expansion could be reduced even

further to the expected maximal dimensionality of the final models. Thus, based on existing

knowledge about the task, the expansion used in the analysis consisted only of terms that

each involved at most five different variables xi.

A typical class density, corresponding to the training class “arctic birds”, is shown in

Figure 4, plotted in its own optimal two-dimensional subspace, in which the complement
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class “NOT-arctic-birds”would be approximately centered and Gaussian, thus allowing easy

classification. Comparing the minimal mixture model that was derived from the Legendre

expansion to a kernel density estimate calculated directly from the bivariate data and used

here for visualization purposes, demonstrates good congruence of the minimal model with the

original data. PCA is the only other commonly used approach that would be comparable to

our method in the ability to search for optimal subspaces and the amount of computing time

required to produce a solution, but the resulting MLE models are very poor approximations

of the actual distributions, a known issue in the context of radar data that makes PCA

unsuitable for the task.

In conclusion, the method does not just solve the task of creating density models for Bayes

classifiers but makes it a relatively trivial and effortless exercise, with the added benefits that

the solution is easy to inspect and verify, and allows for easy manipulation of original class

definitions without a need to re-assimilate the data – none of which are true for example

with neural networks. In addition to such practical computational advantages, one might

also conjecture that the usefulness of the proposed method in high dimensional problems

is increased by the potential capability of orthogonal series methods to resist the curse

of dimensionality (see e.g. Prakasa Rao (1983, Section 3.3), Krzyżak and Pawlak (1982)),

Klemelä (2009, Section 16.4)).

4 Summary

We have described a method for estimating the probability density of potentially large and

multivariate data sets by parametric models through ultraspherical polynomials and given

specific examples of potential applications for the method. Similarly to L2E, the proposed

method lies between parametric and non-parametric approaches to density estimation where

a parametric model is fitted by minimizing an integrated square error. The key idea is

to model the data first non-prametrically and to then fit the parametric model in a finite

dimensional space spanned by polynomials. The advantages of the proposed method over
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more conventional approaches include:

• Single pass, perfectly parallelizable data input that allows processing of very large data

sets.

• Economical handling of high dimensional data sets offered by the properties of orthog-

onal series expansions.

• Compressing the data into an orthogonal series expansion implies that the subsequent

parametric fitting step is independent of the sample size. The Levenberg-Marquardt

algorithm can be used for efficient parameter estimation.

• In pattern recognition applications, efficient computation of marginal densities and

L2-distances greatly facilitate feature extraction and classifier design.

The relevant algorithms are easy to implement and we believe that the proposed method has

potential to be of great generic utility in practical data analyses.

A Ultraspherical polynomials

The method described in this work is based on the weighted Lebesgue spaces L2
α on [−1, 1],

defined by the weight functions w(α)(x) = (1 − x2)α, α > −1, and their orthogonal bases

defined by ultraspherical or Gegenbauer polynomials. Because the required properties of

the ultraspherical polynomials are not readily found in the related literature, we provide the

necessary details here.

Definition 1. Given the Jacobi polynomials P
(αβ)
m (see, e.g., Szegő (1959, Ch. IV)), we

define the normalized ultraspherical polynomials G
(α)
m as

G(α)
m (x) = P (αα)

m (x)/P (αα)
m (1)

for α > −1, m ∈ N and x ∈ [−1, 1].
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Remark. The above definition is chosen for simple consistency between related spaces. The

classical definition of Gegenbauer polynomials uses a parametrization that differs by a con-

stant −1/2 compared to the definition above, as well as a different normalization factor.

Theorem A.1. The polynomials G
(α)
m are orthogonal on the interval [−1, 1] with respect to

the weight function w(α)(x) = (1− x2)α and satisfy the orthogonality equation∫ 1

−1

w(α)(x)G(α)
m (x)G(α)

n (x)dx = γ(α)
m δmn,

γ
(α)
m =

22α+1[Γ(α + 1)]2m!

(2m+ 2α+ 1)Γ(m+ 2α+ 1)
.

(20)

Proof. This follows directly from the definition of G
(α)
m and known properties of Jacobi poly-

nomials.

Remark. In (20), γ
(α)
m has a special point at m = 0, α = −1/2 which must be evaluated by

setting m to zero before taking the limit, yielding

lim
α→−1/2

γ
(α)
0 = lim

α→−1/2

22α+1[Γ(α + 1)]2

Γ(2α+ 2)
= π.

Corollary A.2. For functions f, g ∈ L2
α defined as combinations of the basis functions G

(α)
m ,

f =
∑∞

m=0 amG
(α)
m and g =

∑∞
m=0 bmG

(α)
m , the inner product and L2-distance have the form

〈f, g〉α =

∫ 1

−1

w(α)(x)f(x)g(x)dx

=
∑∞

m=0 γ
(α)
m ambm,

‖f − g‖2α =

∫ 1

−1

w(α)(x)(f(x)− g(x))2dx

=
∑∞

m=0 γ
(α)
m (am − bm)

2.

(21)

Proof. This follows directly from (20).

Theorem A.3. The polynomials G
(α)
m satisfy the recurrence relation

G
(α)
0 (x) = 1 , G

(α)
1 (x) = x,

(m+ 2α)G
(α)
m (x) = (2m+ 2α− 1)xG

(α)
m−1(x)− (m− 1)G

(α)
m−2(x).

(22)
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Proof. This follows directly from the definition of G
(α)
m and known properties of Jacobi poly-

nomials.

Remark. Based on (22) and the uniqueness of orthogonal polynomials, the set {G(α)
m } contains

as special cases the Chebyshev polynomials Tm, Legendre polynomials Pm and at the limit

α → ∞ the set of monomials: for x ∈ [−1, 1],

G
(−1/2)
m (x) = Tm(x),

G
(0)
m (x) = Pm(x),

lim
α→∞

G(α)
m (x) = xm.

Theorem A.4. Let G
(α)
m and G

(β)
n be normalized ultraspherical polynomials as defined above.

Then the connection coefficients C
(αβ)
mn ,

G(α)
m =

∞∑
n=0

C(αβ)
mn G(β)

n , (23)

have the form

C
(αβ)
mn = 0 if n > m or m+ n is odd,

C
(αβ)
00 = C

(αβ)
11 = 1,

C
(αβ)
mn =

m!

n!k!

dh(α)

dh(β)
rmn(α, β) , m ≥ 2,

dh(α) =
2h+2α

√
π

Γ(α+ 1)
Γ(h+ α + 1

2
)

Γ(h+ 2α + 1)
,

rmn(α, β) = (α− β)k
2n+ 2β + 1

m+ n+ 2β + 1

Γ(n+ 2β + 1)

Γ(m+ 2α+ 1)

Γ(h+ 2α + 1)

Γ(h+ 2β + 1)
,

(24)

where k = (m−n)/2 and h = (m+n)/2 and the Pochhammer symbol (α)k = α(α+1) · · · (α+
k − 1) represents the rising factorial.

Proof. Equation (23) can be expanded by applying (22), which yields

(m+ 2α)
∑

n C
(αβ)
mn G

(β)
n =

(2m+ 2α− 1)
∑

n C
(αβ)
m−1,n

[
n + 2β + 1

2n+ 2β + 1
G

(β)
n+1 +

n

2n+ 2β + 1
G

(β)
n−1

]
− (m− 1)

∑
n C

(αβ)
m−2,nG

(β)
n .
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Comparing the coefficients of G
(β)
n for each n yields a recurrence relation for the elements of

C(αβ),

C
(αβ)
mn = 0 if n > m or m+ n is odd,

C
(αβ)
00 = C

(αβ)
11 = 1,

(m+ 2α)C
(αβ)
m0 =

2m+ 2α− 1

2β + 3
C

(αβ)
m−1,1 − (m− 1)C

(αβ)
m−2,0,

(m+ 2α)C
(αβ)
mn = (n+ 2β)

2m+ 2α− 1

2n+ 2β − 1
C

(αβ)
m−1,n−1

+ (n+ 1)
2m+ 2α− 1

2n + 2β + 3
C

(αβ)
m−1,n+1

− (m− 1)C
(αβ)
m−2,n

for m ≥ 2, n ≥ 1, n = m,m− 2, . . ..

(25)

Since there is only one non-zero term in the recurrence relation for diagonal elements, the

respective relation reduces to

C
(αβ)
mm = δm(α, β)C

(αβ)
m−1,m−1,

δm(α, β) =
(m+ 2β)(2m+ 2α− 1)

(m+ 2α)(2m+ 2β − 1)
.

(26)

Similarly, combining the terms in (25) for element C
(αβ)
m0 and then progressively for the rest of

the elements of the respective side diagonal C
(αβ)
m+k,k, k ≥ 0 and repeating this for m = 2, 4, . . .

yields an anti-diagonal recurrence relation

C
(αβ)
mn = ρmn(α, β)C

(αβ)
m−1,n+1,

ρmn(α, β) =
m(n + 1)

m− n

2n + 2β + 1

n+ 2β + 1

(m− n+ 2α− 2β − 2)

(m+ 2α)(2n+ 2β + 3)

(27)

for m ≥ 2 and n = m− 2, m− 4, . . .. The formulas (24) for all C
(αβ)
mn , m ≥ 2, then directly

follow from

C(αβ)
mn =

h∏
i=2

δi(α, β)

k∏
j=0

ρh+j,h−j(α, β). (28)

Remark. The coefficients in (24) have particular forms for certain limits and special val-

ues. They can be determined by taking the respective limits in (26) and (27) and then
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reconstructing C
(αβ)
mn through (28). For completeness,

lim
α→∞

dh(α) = 1,

lim
α→∞

rmn(α, β) =
1

2k
2n+ 2β + 1

m+ n+ 2β + 1

Γ(n+ 2β + 1)

Γ(h+ 2β + 1)
,

lim
β→∞

rmn(α, β) =
1

(−2)k
Γ(h+ 2α+ 1)

Γ(m+ 2α + 1)
,

lim
β→−1/2

rm0(α, β) =
(α + 1)k

2k!

Γ(k + 2α + 1)

Γ(m+ 2α+ 1)
,

lim
β→−1/2

lim
α→∞

rm0(α, β) =
1

2k+1k!
.

Remark. Given a finite M , the coefficients C
(αβ)
mn , m,n = 1, . . . ,M − 1 define change of

coordinates between the bases {G(α)
m } and {G(β)

n }, that is, if
M−1∑
m=0

amG
(α)
m =

M−1∑
n=0

bnG
(β)
n ,

then bn =
∑M−1

m=0 C
(αβ)
mn am.

Lemma A.5. Let α ≥ β. Then C
(αβ)
mn ≥ 0 for all m, n ∈ N.

Proof. The sign of C
(αβ)
mn is determined by (α−β)k in (24). Since α ≥ 0 impies that (α)k ≥ 0

for all k ∈ N, Lemma A.5 directly follows.

Lemma A.6.
∑∞

n=0C
(αβ)
mn = 1 for all m ∈ N.

Proof. Summing over n in (25) yields

(m+ 2α)

∞∑
n=0

C(αβ)
mn = (m+ 2α)

m∑
n=0

C(αβ)
mn = (2m+ 2α− 1)

m−1∑
n=0

C
(αβ)
m−1,n − (m− 1)

m−2∑
n=0

C
(αβ)
m−2,n

Since C
(αβ)
00 =

∑1
n=0C

(αβ)
1n = 1, Lemma A.6 directly follows by induction.

Theorem A.7.
∣∣∣G(α)

m (x)
∣∣∣ ≤ 1 for all x ∈ [−1, 1] and α ≥ −1/2.

Proof. As mentioned above, G
(− 1

2
)

n = Tn. Since Chebyshev polynomials satisfy the equation

Tn(cos(θ)) = cos(nθ) it follows that for x ∈ [−1, 1] and α ≥ −1/2,∣∣∣G(α)
m (x)

∣∣∣ =
∣∣∣∑m

n=0C
(α,− 1

2
)

mn G
(− 1

2
)

n (x)
∣∣∣

≤ ∑m
n=0

∣∣∣C(α,− 1
2
)

mn G
(− 1

2
)

n (x)
∣∣∣ = ∑m

n=0C
(α,− 1

2
)

mn

∣∣∣G(− 1
2
)

n (x)
∣∣∣

=
∑m

n=0C
(α,− 1

2
)

mn |cos(n arccos(x))| ≤ ∑m
n=0C

(α,− 1
2
)

mn = 1
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by applying (23), the triangle inequality, Lemma A.5, the Chebyshev identity, the definition

of cos(x) and Lemma A.6, respectively.

B Proof of Theorem 2.1

The proof of Theorem 2.1 has the usual structure of a consistency argument for a minimizer or

M-estimator commonly used for example in connection with non-linear econometric models.

A good account of the relevant theory can be found in Pötscher and Prucha (1997).

Proof. Let (Ω,F ,P) be the underlying probability space. The estimator θ̂N : Ω → Θ is

obtained by minimizing

GN(ω, θ) = ‖f(·|θ,M)− f̂(·|M)‖20 =
∫ 1

−1

[f(x|θ,M)− f̂(x|M)]2dx (29)

with respect to θ (cf. (18)). To simplify notation we leave out ω from the right hand side of

(29) and also in most of what follows. Note that M is in fact a random variable with values

in {2, 3, . . . , R(N)} that implements the Hart cut-off (cf. (11)). It is clear that GN(·, θ) is

measurable when θ is fixed. It also follows easily from the assumptions and the Lebesgue

dominated convergence theorem that for each ω ∈ Ω the function GN(ω, ·) is continous on

Θ. Lemma 3.4 of Pötscher and Prucha (1997) then guarantees that the minimizer θ̂N of

(29) can chosen to be measurable, that is, a random variable.

Define next

G(θ) = ‖f(·|θ)− f‖20 =
∫ 1

−1

[f(x|θ)− f(x)]2dx. (30)

It follows again from the assumptions and the dominated convergence theorem that G is a

continuos function on Θ. Also, θ0 is the unique minimizer of G because f = f(·|θ0). We

will show that

max
θ∈Θ

|GN(·, θ)−G(θ)| P−→ 0. (31)

It then follows from Lemma 3.1 of Pötscher and Prucha (1997) that θ̂N
P→ θ0, as claimed.

Note that by standard arguments the maximum on the left hand side of (31) is a random
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variable because of continuity in θ, measurability of GN(·, θ), and the compactness of Θ

(e.g. Lemma A3 of Pötscher and Prucha (1997)).

Following the proof of Hart (1985) we show first that the cut-off M
P→ ∞ as N → ∞.

Thus, let L ≥ 2 be an integer. We show that

lim
N→∞

P(M > L) = 1. (32)

Select l ≥ L such that dl �= 0 and let N be so large that l + 1 ≤ R(N). Then, for any

J ∈ {2, 3, . . . , L} we have by (11) that

H(l + 1)−H(J) =
l∑

m=J

γm

[
2V̂ar(d̂m)− d̂2m

]
≥ γl

[
2V̂ar(d̂l)− d̂2l

]
. (33)

Here, by the strong law of large numbers, V̂ar(d̂l) → 0 and d̂2l → d2l > 0 with probability 1

and therefore (32) holds.

Let us then establish the consistency of f̂(·|M). Using the orthogonality of Legendre

polynomials we have

‖f̂(·|M)− f‖20 =
∫ 1

−1

[
f̂(x|M)− f(x)

]2
dx

=
M−1∑
m=0

γm(d̂m − dm)
2 +

∞∑
m=M

γmd
2
m.

Here
∑∞

m=M γmd
2
m

P→ 0 because M
P→ ∞ and

∑∞
m=0 γmd

2
m = ‖f‖20 < ∞. To prove that the

first term also converges to zero in probability we estimate its expectation,

E

{
M−1∑
m=0

γm(d̂m − dm)
2

}
≤ E


R(N)−1∑
m=0

γm(d̂m − dm)
2

 =

R(N)−1∑
m=0

γmVar(d̂m).

Here

Var(d̂m) =
1

Nγ2
m

Var(Pm(X1)) ≤ 1

Nγ2
m

because |Pm(x)| ≤ 1 for all x ∈ [−1, 1] (Theorem A.7). Substituting γm = 2/(2m + 1) we

then get after some simple computations that

E

{
M−1∑
m=0

γm(d̂m − dm)
2

}
≤ R(N)2

2N
−→
N→∞

0
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because R(N) = o(
√
N). It now follows from Markov’s inequality that

M−1∑
m=0

γm(d̂m − dm)
2 P−→ 0

and therefore

‖f̂(·|M)− f‖20 =
∫ 1

−1

[
f̂(x|M)− f(x)

]2
dx

P−→ 0. (34)

Let us now turn to (31). Combining the integrals, using the identity a2−b2 = (a−b)(a+b)

and the Schwarz inequality we get

|GN(ω, θ)−G(θ)| ≤ (35)

‖[f(·|θ,M)− f(·|θ)]− [f̂(·|M)− f ]‖0‖f(·|θ,M) + f(·|θ)− f̂(·|M)− f‖0.

Let us first show that the second factor in this upper bound remains uniformly bounded for

θ ∈ Θ as N → ∞. Using the triangle inequality it is bounded by

‖f(·|θ,M)‖0 + ‖f(·|θ)‖0 + ‖f̂(·|M)‖0 + ‖f‖0 ≤
‖f(·|θ,M)‖0 + ‖f(·|θ)‖0 + ‖f̂(·|M)− f‖0 + 2‖f‖0.

By (34) the third term converges to zero in probability and the fourth term is a constant.

Further,

‖f(·|θ,M)‖20 =
M−1∑
m=0

γmdm(θ)
2 ≤

∞∑
m=0

γmdm(θ)
2 = ‖f(·|θ)‖20

and because by the assumptions of the theorem (x, θ) �→ f(x|θ) is bounded, the second

factor in (35) has an upper bound C + ‖f̂(·|M)− f‖0 P→ C where C > 0 is a constant.

The first factor in (35) is bounded by

‖f(·|θ,M)− f(·|θ)‖0 + ‖f̂(·|M)− f‖0.

Therefore, to prove (31) it is by (34) enough to show that the first term converges to zero in

probability uniformly in θ. By the continuity of x �→ ∂
∂x
f(x, θ) it follows from Theorem 6.2

of DeVore and Lorentz (1993) that for each θ ∈ Θ,

‖f(·|θ,M)− f(·|θ)‖0 ≤ π

2M
‖ ∂

∂x
f(·, θ)‖0
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and by the continuity of (x, θ) �→ ∂
∂x
f(x, θ) the right hand side is bounded by C ′/M where

the constant C ′ is independent of θ. The proof is then complete because M
P→ ∞.

Remark. Theorem 2.1 assumes that the true density f underlying the data corresponds to

a unique member f(·|θ0) of the parametric family {f(·|θ)|θ ∈ Θ}. This may not always

be the case, a prime example being mixture models where numbering of the components

alone is a source of non-identifiability. The proof Theorem 2.1 can be extended to such

non-identifiable situations using, Lemma 4.2 of Pötscher and Prucha (1997) instead of their

Lemma 3.1. Then we only assume that Θ0 = {θ ∈ Θ|f(·|θ) = f} is non-empty and

consistency of the minimization estimator holds in the sense that minθ∈Θ0 ‖θ̂N − θ‖ P−→ 0.

Let then {g(·|ψ)|ψ ∈ Ψ} be a parametric family of densities on [−1, 1], Ψ ⊂ Rp, and

consider a mixture model
K∑
i=1

pig(·|ψi) =

K∑
i=1

f(·|θi),

where 0 ≤ p1, . . . , pK ≤ 1,
∑K

i=1 pi = 1, ψi, . . . ,ψK ∈ Ψ, and θi = (pi,ψi), f(·|θi) =

pig(·|ψi). Suppose that Algorithm 3.1 is used to fit such a mixture model. Then, at the ith

stage one finds a parameter vector θi = θ̂iN which minimizes

‖f(·|θi,M)− f̂i(·|M)‖20, (36)

where

f̂i(·|M) = f̂(·|M)−
i−1∑
j=1

f(·|θ̂j).

Suppose that the density f underlying the is of the form f =
∑K

i=1 f(·|θi0) for some

θ01, . . . , θ0K ∈ Ψ. Minimization of (36) can then be thought to approximate minimization

of

‖f(·|θi)− fi‖20, (37)

where

fi = f −
i−1∑
j=1

f(·|θ0j).
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Theorem B.1. Suppose that both (x,ψ) �→ g(x,ψ) and (x,ψ) �→ ∂
∂x
g(x,ψ) are continuous

and, for each i = 1, . . . , K, let Θi ⊂ [0, 1]×Ψ be a compact set such that (37) has a unique

minimizer θi0 ∈ Θi. Assume further that in the Legendre expansion (9) dm �= 0 for infinitely

many m and that the Hart criterion (11) is applied by selecting the optimal M from a set

{2, 3, . . . , R(N)}, where R(N) → ∞ and R(N) = o(
√
N) as the sample size N tends to

infinity. Then for i = 1, . . . , K we have that θ̂iN
P−→ θi0 as N → ∞, where θ̂iN minimizes

(36) in Θi.

We omit the proof because it consists of a straightforward induction on the mixture

component index i that at each step essentially repeats the arguments of the previous proof.

In practice, the existence of the parameter subspaces Θi and unique local minimizers of (37)

in them could be expected to hold at least if the components f(·|θ0i) do not overlap too

much and good initial values are available for the true parameters θ0i.
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Devroye, L. and Györfi, L. (1985). Nonparametric Density Estimation: The L1 View. John Wiley, New

York.

32



Efromovich, S. (2010). Orthogonal series density estimation. Wiley Interdisciplinary Reviews: Computational

Statistics, 2:467–476.

Hart, J. D. (1985). On the choice of a truncation point in Fourier series density estimation. Journal of

Statistical Computation and Simulation, 21:95–116.
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