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Abstract 

Variation of marine temperature at different time scales is a central environmental factor 

in the life cycle of marine organisms, and may have particular importance for various 

life stages of anadromous species, e.g. Atlantic salmon. To understand the salient 

features of temperature variation we employ scale space multiresolution analysis, that 

uses differences of smooths of a time series to decompose it as a sum of scale-

dependent components. The number of resolved components can be determined either 

automatically or by exploring a map that visualizes the structure of the time series. The 

statistical credibility of the features of the components is established with Bayesian 

inference. The method was applied to analyze a marine temperature time series 

measured from the Barents Sea and its correlation with the abundance of Atlantic 

salmon in three Barents Sea rivers. Besides the annual seasonal variation and a linear 

trend, the method revealed mid time-scale (~10 years) and long time-scale (~30 years) 

variation. The 10-year quasi-cyclical component of the temperature time series appears 

to be connected with a similar feature in Atlantic salmon abundance. These findings can 

provide information about the environmental factors affecting seasonal and periodic 

variation in survival and migrations of Atlantic salmon and other migratory fish.  

 

Keywords 

Climate change, anadromous Atlantic salmon, Bayesian inference, time series 

decomposition, scale space 

 

 

 

1. Introduction 

The large-scale impacts of climate change on marine ecosystems and their fisheries 
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productivity have been widely recognized and clearly demonstrated (e.g. Lehodey et al., 

2006; Barange et al., 2010; Hoegh-Gulberg and Bruno, 2010). Changes in ocean 

temperatures and related shifts in other physical conditions have altered marine 

ecosystems, e.g. plankton communities (Edwards and Richardson, 2004), and also 

resulted in distribution shifts among fish species (Perry et al., 2005). Furthermore, an 

overall change in oceanic fauna throughout the north-eastern Atlantic ecosystem has 

been attributed to climate change, subarctic-subtropical water-mass exchanges and a 

strong and persistent bottom-up influence of the North Atlantic subpolar gyre (Hátún et 

al., 2009).  

The impacts of changing climate are particularly complicated on 

anadromous fish species, which have to cope with a variety of habitats and 

environmental conditions during their life cycle, across long geographic distances and 

wide temperature and salinity gradients, from fresh water to full sea water (Heino et al, 

2016). For example, Atlantic salmon (Salmo salar L.) juveniles emigrate from fresh 

water after having achieved a certain size and physiological stage (called smolts at this 

life stage), and return to their natal rivers after one or more years of rapid growth and 

maturation at sea (Aas et al., 2011).  

Over the past three decades, Atlantic salmon populations have declined 

over most of their range, despite marked reductions in fishing pressure (Chaput 2012). 

The decline has been associated to climate forcing and concurrently increasing sea 

temperature, pointing towards the marine environment as a key factor dictating the 

development in salmon survival and stock status (e.g. Todd et al., 2011;  Friedland et 

al., 2014). This is true also with salmon populations in northernmost Europe where 

abundance indices and marine growth rates are correlated with sea surface temperatures 

in adjacent sea areas of the Barents Sea and Norwegian Sea, but fewer links have been 
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detected with the broad-scale climate indices, like the North Atlantic Oscillation 

(Niemelä et al., 2004). In addition to survival, temperature may influence the oceanic 

migration patterns and subsequent timing of maturation and return migration (Todd et 

al., 2011). Environmental factors affect the freshwater entry and run timing of salmon 

(e.g. Thorstad et al., 2008), and Vähä et al. (2011) demonstrated that different 

populations of salmon within a single large river system of the Barents Sea basin 

entered fresh water in a consistent, population-specific order, although the actual timing 

varied between years, likely reflecting variation in environmental conditions at sea and 

in the river. Moreover, large scale variation in climate in the Baltic Sea area has induced 

periodic cycles in abundance and growth of salmon (Huusko and Hyvärinen, 2012). 

Therefore, understanding the rapidly changing environment and predicting the 

consequences require appropriate measurements and long-term data sets from the 

environment and modeling tools for integrating population dynamics, life history stages, 

corresponding environments and their changes (Lassalle et al., 2008). 

Time series typically exhibit features that manifest themselves in different 

time scales. Fine scale, local details, such as yearly seasonal variation, show in short 

time scales, while large characteristics, such as changes in climate, appear only over 

longer time horizons, tending to be more smooth in character.  For various life stages of 

anadromous Atlantic salmon, several of the different time scales in marine temperature 

variation may have particular importance. For example, the point of sea water entry of 

juvenile salmon (smolts) and the first months at sea are critical periods (Otero et al., 

2014), but occur just once during the salmon life span, which typically varies between 

3-6 years, but may cover even 10 or more years for salmon in northern latitude rivers 

(Niemelä et al., 2006). On the other hand, such salmon may spend up to four or five 

consecutive years at sea, and the environmental conditions, including their repeated 
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annual cycle, during the marine phase of their life cycle are crucial for feeding, growth, 

maturation, and ultimately survival of the animals. Another critical life stage is the 

return to sea by spent fish that need fast reconditioning after an exhaustive spawning 

migration and reproduction. For salmon in northern latitudes this may happen 1-3 times 

during the life time of salmon, often every second year, but sometimes also in 

consecutive years (Niemelä et al., 2006).  Finally, cyclic variation of marine conditions 

over several years or decades affect several generations of salmon and their marine 

migrations, and thus the long term resilience and productivity of populations (Todd et 

al., 2011, Huusko and Hyvärinen, 2012). 

In the present study, we analyze a marine temperature time series 

measured from the Barents Sea and its correlation with the abundance of Atlantic 

salmon in three Barents Sea rivers. We are interested in uncovering marine temperature 

features which may affect fish behavior at different time scales. These features are 

presented by additive components in a time series decomposition. The widely used 

classical time series decomposition (see e.g. Hyndman and Athanasopoulos, 2014) 

includes noise and seasonal components as well as a trend that may also contain large 

scale oscillatory or quasi-oscillatory features. The annual seasonal component of sea 

temperature and its effect are well known, but we are interested in extracting also other 

oscillatory or quasi-oscillatory large scale temperature features that may be embedded 

in the trend component when the classical approach is used. To this end, we propose to 

use a new statistical method, scale space multiresolution analysis (Pasanen et al. 2013), 

to resolve the salient features of a time series across multiple time scales. For a 

temperature time series, the analysis helps us establish the existence of a linear trend 

during past decades, explore the extent of long-scale temperature oscillations, and find 

the time intervals during which the warm and cool periods occurred. 
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The scale space multiresolution analysis uses differences of smooths of a 

time series to decompose it as a sum of scale-dependent components, the number of 

which is determined automatically or by visual analysis of the so-called scale-derivative 

map. As time series are often noisy, Bayesian statistical inference is used to establish 

the credibility of the features of the extracted structural components. In addition to sea 

temperature series, the method can be used to study long -term variation in for example 

salinity, oxygen conditions and chlorophyll content over time. 

 

2. Materials and methods  

2.1. Smoothing 

A time series can be smoothed for example in order to remove its rough, small-scale 

features. Perhaps the most commonly used smoothing method is the moving average. 

Consider a time series 𝑦𝑦 = [𝑦𝑦1, … ,𝑦𝑦𝑛𝑛], a smoothing operator 𝑆𝑆λ and a smoothed time 

series 𝑆𝑆λ𝑦𝑦 . Here λ (≥ 0) is a “smoothing parameter” that controls the amount of 

smoothing in 𝑆𝑆λ𝑦𝑦. For example, the window length of a moving average is such a 

smoothing parameter:  the wider the window the smoother the result. Other popular 

smoothing methods include local linear regression and spline regression (Eubank, 

1999). We consider here the discrete spline smoother (Green and Silverman, 1993) for 

which 𝑆𝑆0𝑦𝑦 = 𝑦𝑦  and, as λ  grows to infinity, the smooth 𝑆𝑆λ𝑦𝑦  becomes the linear 

regression line of the time series.  

Smoothing can reveal time series features that correspond to different time 

scales. When λ is small, little smoothing is applied and the smooth 𝑆𝑆λ𝑦𝑦 resembles the 

observed time series y showing its small-scale features. On the other hand, a larger 

value of λ smooths out the smallest scale details and reveals only locally average 

behavior in y. The scale-dependent features of y can be extracted by considering 
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differences 𝑆𝑆λ𝑖𝑖𝑦𝑦 − 𝑆𝑆λ𝑗𝑗𝑦𝑦 of smooths, where λ𝑗𝑗 > λ𝑖𝑖. The difference of smooths captures 

the features that are present at the smoothing level λ𝑖𝑖, but will be smoothed out at the 

higher smoothing level λ𝑗𝑗. Such smoothing based exploration of time series features is 

an example of statistical scale space analysis, a methodology that has gained 

considerable popularity in recent years (Holmström, 2010; Holmström and Pasanen, 

2016). 

 

 2.2. The decomposition 

Using differences of smooths, a time series can be decomposed into additive scale-

dependent components as follows. Let 0 = λ1 < λ2 < ⋯ < λ𝐿𝐿 ≤ ∞  be an increasing 

sequence of smoothing levels.  Since 𝑆𝑆λ1𝑦𝑦 = 𝑆𝑆0𝑦𝑦 = 𝑦𝑦 , a decomposition of a time series 

𝑦𝑦  is then given by 

 𝑦𝑦 = �(𝑆𝑆𝜆𝜆𝑗𝑗 − 𝑆𝑆𝜆𝜆𝑗𝑗+1)𝑦𝑦 + 𝑆𝑆𝜆𝜆𝐿𝐿𝑦𝑦 − 𝑦𝑦�𝟏𝟏 + 𝑦𝑦�𝟏𝟏 = �𝑧𝑧𝑗𝑗,

𝐿𝐿+1

𝑗𝑗=1

𝐿𝐿−1

𝑗𝑗=1

 (1) 

 

where the  𝑧𝑧𝑗𝑗s are the scale-dependent components: 

-  𝑧𝑧𝑗𝑗 = (𝑆𝑆𝜆𝜆𝑗𝑗 − 𝑆𝑆𝜆𝜆𝑗𝑗+1)𝑦𝑦, 𝑗𝑗 = 1, … , 𝐿𝐿 − 1,  

- 𝑧𝑧𝐿𝐿 = 𝑆𝑆𝜆𝜆𝐿𝐿𝑦𝑦 − 𝑦𝑦�𝟏𝟏,  

- 𝑧𝑧𝐿𝐿+1 = 𝑦𝑦�𝟏𝟏, 

-  𝑦𝑦� is the mean value of 𝑦𝑦, 

-  𝟏𝟏 is a vector of ones.  

However, since we are not interested in the mean of the series, the last component 

𝑧𝑧𝐿𝐿+1will be omitted from our analyses. Notice that because of the particular smoothing 

method employed (discrete spline smoothing), 𝑧𝑧𝐿𝐿 is simply the linear trend if  λ𝐿𝐿 = ∞.  

  The choice of the smoothing parameter sequence 0 = λ1 < λ2 < ⋯ <
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λ𝐿𝐿 ≤ ∞ is crucial for proper extraction of the salient scale-dependent features of a time 

series. A subjective, judicious choice of this sequence is one possibility. However, we 

have developed an objective approach where the smoothing parameter sequence is 

selected by an optimization algorithm as the local minima of the norm of the “scale-

derivative”  𝜕𝜕𝑆𝑆𝜆𝜆𝑦𝑦
𝜕𝜕 ln(𝜆𝜆)  (Pasanen et al., 2013). Time series analysis is visualized using a so-

called scale-derivative map and, as an alternative to the optimization method, this map 

can also be used to support a subjective choice of the smoothing parameter sequence. 

As an example of scale-derivative analysis, the Kola Section sea temperature time series 

considered in this article and its associated map are displayed in Fig. 1 and Fig. 2, 

respectively. The color of a pixel in the map indicates the value of the scale-derivative 

at a given time and smoothing level, deep red corresponding to a large positive value, 

deep blue to a large negative value, while green indicates a value close to zero. The two 

uppermost black lines in Fig. 2 correspond to the values of 𝜆𝜆  produced by the 

optimization algorithm and the lowest one to the smoothing level determined by visual 

inspection. 

[Figure 1 near here] 

[Figure 2 near here] 

Positive value of the scale-derivative for a time 𝑖𝑖 and smoothing level 𝜆𝜆 

indicates that the value of the smooth at time 𝑖𝑖 increases when the smoothing level  𝜆𝜆 is 

increased.  Therefore, the value of the smooth at time 𝑖𝑖 is smaller than its average in a 

local neighborhood. An analogous interpretation holds for a negative value of the 

derivative. It follows that the scale-derivative map reveals the scale-dependent 

components as oscillating bands of colors. For example, there are three oscillating 

bands in Fig. 2.  The bottom, high-frequency band of blue and red represents the annual 

seasonal component.  Since the amplitude of this component is relatively high, the other 
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two components appear in the milder colors of yellow and cyan. The middle band of 

cyan and yellow represents a low-frequency, large-scale component with a period of 

approximately 10-15 years.  The topmost band with light yellow in the middle and cyan 

at the edges represents a negative scale-derivative changing to positive and then back to 

negative again, indicating a u-shaped time series component. Note that these inferences 

can be made directly from the smoothed data without any reference to a particular 

statistical time series model. 

If the data contain non-stationary features, straightforward minimization 

of the scale-derivative norm may not produce a satisfactory smoothing parameter 

sequence. This may happen, for example, if there is a transient oscillation which is not 

present for the whole duration of the series. Prior to choosing the sequence, it is 

therefore important to visually inspect the scale-derivate map because it can reveal such 

non-stationary features. It may then be necessary to choose the smoothing parameter 

sequence manually including values roughly at the boundaries between two oscillating 

bands (Pasanen et al., 2013). 

 

2.3. Bayesian inference 

If the observed time series 𝑦𝑦 is noisy, statistical inference may be necessary to establish 

the statistical credibility of the scale-dependent components 𝑧𝑧𝑗𝑗. In Bayesian statistics, 

this requires building a posterior model for the underlying time series. We assume an 

additive noise model for the observed time series,  

 𝑦𝑦𝑖𝑖 = 𝜇𝜇𝑖𝑖 + 𝜀𝜀𝑖𝑖, (2) 

where  𝑦𝑦𝑖𝑖 is the observed value of the time series at time 𝑖𝑖, 𝜇𝜇𝑖𝑖 is the unknown true value, 

and 𝜀𝜀𝑖𝑖  is the residual value, which we formally assume to be uncorrelated Gaussian 

noise, 𝜀𝜀𝑖𝑖~𝑁𝑁(0,𝜎𝜎𝑖𝑖2). 
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According to the Bayes’ theorem, the posterior distribution of the 

unknown true time series 𝜇𝜇 conditional on the observed time series 𝑦𝑦 is 

 
𝑝𝑝(𝜇𝜇 |𝑦𝑦) =

𝑝𝑝(𝑦𝑦 |𝜇𝜇)𝑝𝑝(𝜇𝜇)
𝑝𝑝(𝑦𝑦) ∝ 𝑝𝑝(𝑦𝑦 |𝜇𝜇)𝑝𝑝(𝜇𝜇) 

(3) 

where 𝑝𝑝(𝑦𝑦 |𝜇𝜇) is the likelihood function,  𝑝𝑝(𝜇𝜇) is the prior distribution of the true time 

series  underlying  the observed data and 𝑝𝑝(𝑦𝑦) is the marginal distribution of 𝑦𝑦. 

                      In Section 2.2, the scale-dependent components 𝑧𝑧𝑗𝑗  were defined by 

decomposing the observed noisy time series into a sum of differences of smooths. 

However, we are of course interested in the features of the noiseless, true time series 𝜇𝜇  

and its scale-dependent components. Since 𝜇𝜇 is modeled as a random variable, its scale-

dependent components 𝑧𝑧𝑗𝑗 are also random variables and the expansion (1) holds with 

the observed time series y replaced by 𝜇𝜇 .  The smoothing parameter sequence λ𝑗𝑗  is 

obtained from the scale-derivative map of the posterior mean of the true time series.  

To find out which features of a scale-dependent component 𝑧𝑧𝑗𝑗 are real and 

not just artifacts of noise, we infer the credibly positive or negative time intervals for 

each such component. For this, we need to estimate the posterior distributions 𝑝𝑝�𝑧𝑧𝑗𝑗�𝑦𝑦�. 

This can be done by first drawing a large sample from the posterior distribution 𝑝𝑝(𝜇𝜇|𝑦𝑦) 

of the true time series 𝜇𝜇. For the sea temperature series displayed in Fig. 1 and described 

below, we used sample size 104.  Each sampled time series 𝜇𝜇 is then transformed into a 

difference of smooths, i.e.  𝑧𝑧𝑗𝑗 = (𝑆𝑆𝜆𝜆𝑗𝑗 − 𝑆𝑆𝜆𝜆𝑗𝑗+1)𝜇𝜇 and the transformed sample is used to 

approximate the posterior distribution 𝑝𝑝�𝑧𝑧𝑗𝑗�𝑦𝑦�. 

The credibly positive or negative time intervals for each component 

𝑧𝑧𝑗𝑗  could be found by finding the time points where the proportion of positive or negative 

values in the transformed sample exceeds a threshold value, for example 0.95. Such 

point-wise inference is, however, prone to false-positives, and we therefore use 
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simultaneous inference over all time points by applying the method of highest point-

wise probabilities (HPW), first described by Erästö and Holmström (2005). 

The statistical inference is summarized by plotting the posterior means 

𝐸𝐸�𝑧𝑧𝑗𝑗�𝑦𝑦� of the scale-dependent components and coloring the time interval background 

white, black or gray when the component is credibly positive, negative or neither, 

respectively. Such a summary is shown in Fig. 3 for the Kola Section sea temperature 

time series.  

 [Figure 3 near here] 

As explained in Section 2.2, a positive value of the scale-derivative for a 

time 𝑖𝑖 and smoothing level 𝜆𝜆 indicates that the value of the smooth at time 𝑖𝑖 increases 

when the smoothing level  𝜆𝜆  is increased and analogously for a negative scale-

derivative. A positive scale-derivative therefore indicates a possible local minimum in 

the time series. Note that since a local minimum corresponds to a negative value in an 

extracted component, the scale-derivative and the extracted components then in fact 

have opposite signs. This is evident in Fig. 2 and Fig. 3, especially in the case of the u-

shaped component (panel (e) in Fig. 3).  

 

2.4. Analyzing correlation between two time series 

 

When investigating the dependence between two time series, the problem often is that 

the type of correlation they exhibit depends on the time scale considered. Thus, a small 

scale correlation structure in the data may hamper the detection of large scale 

correlation features, and vice versa.  In such situations, scale space multiresolution 

analysis can help discover correlation structures that manifest themselves in different 

time scales.  
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We assume that the two time series contain interesting features in similar time scales 

and that our goal is to discover the correlations between such features. To this end, both 

time series are decomposed into additive scale-dependent components using the same 

smoothing parameter sequence and the correlation between the corresponding 

component pairs is analyzed. Scale-derivatives can be used to choose this smoothing 

parameter sequence (cf. Section 2.2), but a compromise is needed between the 

smoothing levels suggested on the basis of the two scale-derivative maps. Our approach 

here is simply to select a common smoothing parameter sequence for the two time 

series so that the levels  λ_j are located as nearly as possible between the oscillating 

bands of blue and red in the scale-derivative maps of each time series. Dependence 

between each multiresolution component pair is summarized by reporting their Pearson 

correlation coefficient and displaying the components in the same plot. 

 

2.5. Sea temperature data  

Knipovich Polar Research Institute of Marine Fisheries and Oceanography (PINRO) has 

over the years accumulated a large array of oceanographic data on the Barents Sea and 

adjacent waters. The longest datasets are available for the Kola Section running along 

the 33°30′E meridian from 69°30’ to 77°00′N (Fig. 4). Observations along the Kola 

Section started in 1900 and are more frequent (6–15 times a year) than at other sections 

in the Barents Sea (Boitsov et al., 2012). The Kola Section runs across the Coastal 

Water having warm temperatures and low salinity (stations 1-3; 69°30’-70°30’N, 

33°30E). The northern stations (8 through 10; 73°00’-74°00’N, 33°30E) with highest 

salinities measured are considered as Atlantic Water. Stations 3-7 (70°30’-72°30’N, 

33°30E) are usually associated with the Murman Current, which is the continuation of 

the North Cape Current entering the Barents Sea through its western boundary 
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(Karsakov, 2009).  

   [Figure 4 near here] 

To study seasonal and interannual variability of temperature, the data are 

averaged vertically over 4 depth intervals (0-50, 0-200, 50-200 and 150-200 m) and 

horizontally over 3 parts of the Section. Temperature averaged over the upper 200 m 

and over stations 3 through 7 (70°30’-72°30’N, 33°30E) produces a well-known and 

widely used time-series (Yndestad et. al, 2004). The Section has been occupied most 

frequently since the mid-1950s with often more than 12 surveys each year. In 1970-

1980 the annual number of sampling occasions exceeded 15. A considerable decrease in 

sampling occasions of the section occurred in the early 1990s.  Since the 1990s 

approximately 10 surveys per year along the transect have been undertaken by PINRO 

(Karsakov, 2009). 

The general opinion is that the Kola Section time series can serve as a 

reliable indicator of climate variability in the whole southern Barents Sea (coastal and 

Atlantic water domain) and the temperature time series (stations 3-7, 0-50 m, 0-200 m) 

can be used to assess seasonal and interannual variability of hydrographic conditions in 

the southern Barents Sea. In this study long-term variations in the Barents Sea were 

analyzed using monthly mean temperature data of the 0–50 m layer of the Kola Section, 

1951–2013 (stations 3-7). The time series is displayed in Fig. 1. 

For the sea temperature data analyzed, no reasonable prior information 

was available for the true values 𝜇𝜇𝑖𝑖 . One possible choice could be to impose a 

smoothing prior for the temperatures (cf. Erästö and Holmström, 2005; Erästö and 

Holmström, 2007). However, we did not want the smoothing prior to reduce the 

seasonal effects and therefore used a flat non-informative prior distribution for the time 

series 𝜇𝜇 which leads to the posterior distribution  



14 
 

 𝜇𝜇𝑖𝑖| 𝑦𝑦𝑖𝑖 ~ 𝑁𝑁(𝑦𝑦𝑖𝑖,𝜎𝜎𝑖𝑖2) (4) 

when the noise variance 𝜎𝜎𝑖𝑖2is considered fixed. As the posterior mean of the true time 

series now equals the observed time series, the posterior means of the scale-dependent 

components 𝑧𝑧𝑗𝑗  are actually obtained by decomposing the observed time series 𝑦𝑦 into 

differences of smooths. For the variance parameter 𝜎𝜎𝑖𝑖2, we used a value of 1 for the 

summer months of June, July and August and a value 0.52 otherwise. These values were 

based on the estimation of variance in similar sea temperature time series obtained from 

Laksefjord and Varangerfjord. The sea temperatures were received from the Institute of 

Marine Research, Norway. We could have considered the two variances as unknown 

parameters, but given the reliable information about their likely values, chose to treat 

them as known quantities. 

 

2.6 Atlantic salmon abundance data  

Abundances of Atlantic salmon were available from three rivers running to the Barents 

Sea, the rivers Kola and Tuloma in the Russian Kola Peninsula, and the River Teno, 

which forms the border between northern Finland and Norway (Fig. 4) and runs into the 

Barents Sea through the Tana fiord on the Norwegian coast. In the River Kola, all 

ascending salmon are caught at a fish counting fence, except for those that have passed 

the trapping site during the spring flood before the fence is installed (Jensen et al. 1997). 

In the River Tuloma, all ascending salmon are captured and counted at the fish ladder 

next to a hydroelectric power plant (Karppinen et al,. 2002). All sea age groups of 

salmon are included in the counts at both Kola and Tuloma. In the River Teno, annual 

estimated catches of one-sea-winter salmon (in numbers) has been used as a proxy of 

abundance (see Niemelä et al. 2004). 

Although the oceanic migration of these three salmon populations is not 
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known in detail, young salmon from these rivers spend at least their first months of sea 

migration in the Barents Sea and thus the temperatures measured at the Kola section are 

likely reflecting the environmental conditions the salmon are facing at sea (Niemelä et 

al. 2004; Aas et al. 2011). Moreover, the temperatures at the Kola section are highly 

correlated with those measured at other gauging stations along the Norwegian coast of 

the Barents Sea (Niemelä, pers.comm.;http://www.imr.no/sjomil/index.html). 

 

 

 

3. Results 

 

3.1 Multiresolution decomposition of the monthly temperature data 

The observed temperature series shows an obvious seasonal component 

(Fig. 1). In order to reveal longer scale and quasi-oscillatory patterns, the time series is 

smoothed with a discrete spline smoother where the smoothing level is chosen based on 

the scale-derivative map so that the seasonal component is smoothed out but the other 

features remain intact.  This corresponds to the middle black line in the scale-derivative 

map (Fig. 2).  The smooth is shown with a blue line in Fig. 1 and it does seem to include 

quasi-oscillatory components and there might also be an increase in the temporal trend 

after 2000. 

For a closer examination of the potential quasi-oscillatory components and 

the possible increase in trend in the new millennium the time series is resolved into 

scale-dependent components using the decomposition (1). The decomposition was 

based on an automatic selection of two smoothing levels, shown by the two upper black 

lines in the scale-derivative map in Fig. 2. A visual inspection of the map confirms this 
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as a reasonably good representation of the data at different time scales, since the 

aforementioned components are shown by three alternating bands of red and blue or 

yellow and cyan, and no other bands are seen. 

The extracted components are shown in Fig. 3 and they include a noise 

component (b), the annual seasonal component (c), mid time-scale (~10 years) variation 

(d), long time-scale (~30 years) variation (e), and a linear trend (f). The smallest 

smoothing parameter, which produced the noise component, was not obtained from the 

scale-derivative map, but was manually added to the smoothing level sequence in order 

to clarify the credibility of the annual seasonal component. The centered linear trend 

corresponds to λ5 = ∞. The credibility of the features was quantified using the HPW 

method with the credibility threshold 0.95. In Fig. 3, the credibly positive or negative 

features are indicated with white or black background whereas the background of non-

cerdible patterns is gray. 

The smallest scale component is noise (Fig. 3, panel (b)). The strongest 

credible pattern of variation with the greatest amplitude is the annual seasonal variation 

with an approximately 4  oC difference between the warmest and coolest months (Fig. 3, 

panel (c)). The effect of the other scale-dependent components on the temperature 

variation was smaller but still mostly statistically credible. 

For each decade, warm and cool periods are suggested by the mid-scale 

component (Fig. 3 panel (d)). Five cool periods are repeated every 8-13 years and six 

warm periods every 7-15 years. The extreme temperature difference between the 

credible warm and cool periods was on average 0.9 oC. The u-shaped long-scale 

component shows an approximately 30 years long cool period from 1967 to 1998 and a 

warmer period in the new millennium (Fig. 3, panel (e)). Relative to the zero level, the 

temperature dropped approximately 0.34 oC  during  the cool period. A slightly 
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increasing linear trend (0.94 oC over the whole study period) is shown over the whole 

60-year time period (Fig. 3, panel (f)). The additional increase in temperature since 

2000 contributed by the u-shaped component has been 0.55 oC.  

  

3.2 Connection between Atlantic salmon abundance and temperature 

 

The Atlantic salmon abundance time series from the rivers Kola and Tuloma follows a 

seemingly similar pattern, whereas the Teno time series shows somewhat different 

characteristics, not only in magnitude but in other respects, too (Fig. 5).  However, 

closer inspection of these three data sets in fact shows similarity in their patterns of 

variation.   

 

[Figure 5 about here] 

 

To analyze the connection between salmon abundance and the Kola Section sea water 

temperature, we extracted the multiresolution components separately for each of the 

three temperature-abundance pairs using a separate smoothing parameter sequence for 

each pair. These sequences were chosen by eye as a compromise between the 

corresponding two scale-derivative maps associated with each pair.  As the salmon 

abundance datasets have been collected yearly, annual means are used also for the Kola 

Section sea temperatures, instead of the finer resolution, monthly time series considered 

in Section 3.1. 

The Kola river salmon abundance and annual sea temperature time series 

for the Kola Section are shown in panel (a) of Fig. 6. The corresponding scale-

derivative maps are shown panels (e) and (f) of  Fig. 6 with the selected smoothing 
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parameter values highlighted with black lines.  The extracted component pairs are 

shown in the panels (b)-(d). The time series are decomposed into four components: 

noise, small scale features, large scale features and linear trends.  Both time series 

contain positive linear trends (not shown). Note that the small and large scale 

temperature components shown in the panels (c) and (d)  of Fig. 6 are similar to those in 

Fig. 3; the differences are due to different sampling resolutions and different smoothing 

levels used for extracting the time series components. This is true also for the two other 

temperature-abundance comparisons presented below. 

   [Figure 6 about here] 

 

The first component pair in Fig. 6 (panel (b)) contains the annual variation 

and can here be considered as noise. As expected, these components do not appear to 

exhibit any connection. The second component pair (panel (c)) contains variation in 

roughly 10-year cycles and, for most of the time period considered, the two components 

are positively correlated. The Pearson correlation coefficient is 0.65 but the connection 

between the components seems to vanish in the new millennium. The third component 

pair contains the deviations from the positive linear trends. As previously discussed, the 

temperature data show a cool period (relative to the linear trend) during 1967 - 1998. On 

the other hand, salmon abundance during 1968-1998 has increased more than the linear 

trend would predict and therefore the correlation between these long-term components 

is negative. 

The results for the River Tuloma are shown in Fig. 7. The salmon 

abundance has a negative linear trend and therefore a negative correlation with the 

linear trend in the temperature (not shown). 

  [Figure 7 about here] 
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Again, the first component pair appears to be uncorrelated and the second components 

show roughly 10-year cycles and strong positive correlation (the Pearson correlation 

coefficient is 0.80). For the Tuloma river, the positive correlation between the quasi-

cyclical components persists even in the new millennium. The third components contain 

the deviation from the linear trends and exhibit a positive correlation. 

 

  [Figure 8 about here] 

   

The results for the River Teno are presented in Fig.8. The salmon 

abundance time series for the Teno river is shorter than for the two other rivers, starting 

in 1972. This shorter time interval is now used also for the Kola Section sea 

temperature. The first component pair contains the yearly variation and no apparent 

correlation, while the second pair shows roughly 10-year cycles and a positive 

correlation (Pearson correlation coefficient 0.46).  The sea temperature contains positive 

linear trend also in this interval and the salmon abundance has a slightly negative linear 

trend (result not shown).  The components that represent the deviations from a linear 

trend do not seem to have a clear connection.  

 All salmon abundance data sets contain a roughly 10-year cycle that seems 

to be correlated with the 10-year cycle in the temperature data. The 10-year abundance 

cycle of the Tuloma seems to track the 10-year cycle in temperature rather closely for 

the whole time period considered. The corresponding abundance pattern of the Kola 

river follows the temperature even more closely during 1990-2000 but after 2000 the 

connection seems to be lost. The disappearance of the connection may, in part, be due to 

the fact that the 2006 observation for the River Kola salmon abundance time series is 

missing whereas both the Tuloma and the Teno series then have a local maximum (see 
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Fig. 5). The 10-year abundance cycle of Teno does not follow the temperature as 

closely, but there still seems to be at least some correlation. 

 

 

 

 

4. Discussion   

We used a novel time series method developed by Pasanen et al. (2013) to extract 

marine temperature features at different time scales in the Barents Sea and assessed 

their statistical credibility with Bayesian inference. The features in the temperature time 

series were then compared with Atlantic salmon abundance data to explore their time-

scale dependent connections. Traditional time series analysis would decompose the data 

into seasonal variation and a single large scale component that would include both the 

linear trend and quasi-oscillatory patterns. The novel method is able to extract more 

useful information from the observed data. Another advantage of the new method is that 

it can also assess the credibility of the discovered components.  

Other time series methods for finding oscillatory and quasi-oscillatory 

features include Fourier-based spectral analysis, wavelets and singular spectrum 

analysis (SSA). The classical estimate of time series spectrum is the periodogram, 

originally defined by Schuster (1898). The REDFIT program by Schulz and Mudelsee 

(2002) combines the calculation of the Lomb-Scargle periodogram with false-alarm 

confidence bounds for the spectrum peaks, based on an assumption of autocorrelated 

red noise. For a review of spectral methods for climatic time series, see Ghil et al. 

(2002).  

The scale space multiresolution method differs from spectral methods in that, as a time-
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domain method, it provides time-localized information of the scale-dependent 

components, an advantage which it shares with the wavelet methods and SSA. The 

SSA, which is related to principal component analysis, represents the time series in 

phase space, where it is decomposed by singular value decomposition into additive 

components, some of which may relate to trend and oscillations and others to noise. 

However, the SSA is a purely algebraic method which does not contain a statistical 

model of noise. The posterior SSA by Holmström and Launonen (2013) combines the 

SSA with Bayesian inference to separate signal components from noise, where the 

inference is performed in a similar fashion as in the scale space multiresolution method. 

Compared to the relatively large number of components produced by SSA, the scale-

dependent components of scale space multiresolution analysis form a compact 

representation of the time series with a smaller risk of noise artifacts identified as signal. 

The monographs by Golyandina et. al (2001) and Golyandina and Zhigljavsky (2013) 

provide extensive reviews of various aspects of SSA.  

In the scale space multiresolution method, the scale is a continuous 

parameter and hence can be flexibly chosen to produce the best possible representation 

of the data, whereas in most wavelet methods (e.g. Vidakovic, 1999) a dyadic set of 

scales is used. Holmström et al. (2011) compared the results of scale space 

multiresolution decomposition to the results of wavelet analysis in the case of digital 

images and concluded that wavelets can be more susceptible to artifacts that do not 

correspond to clear image features. 

In time series analysis, the data are often assumed to be equispaced in time 

without any missing observations. Sometimes the time intervals with missing values are 

simply excluded from the analysis (see e.g. Friedland et al., 2003a and Friedland et al., 

2003b). Our method does not require temporally equispaced data but the results would 
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be different if a time period containing a local minimum or maximum were missing. 

In this paper, we used scale space multiresolution analysis also for 

discovering dependence structures between two time series that appear in different time 

scales. Although we only used the simple Pearson correlation coefficient to assess the 

dependence between the multiresolution components of the two time series, a deeper 

scale space oriented analysis would consider correlation also for a range of time scales. 

Such an approach is described in Pasanen and Holmström, 2016. We leave such 

analyses for future work. 

The scale space multiresolution method revealed cool and warm periods in 

the Barents Sea, separated by 7-15 years.  Since the marine life cycle of northern 

populations of Atlantic salmon varies typically between five and eight years (Niemelä et 

al., 2006), some cohorts of fish will fall inline well with temperature trends while others 

will fall between the trends. This fluctuation of environmental factors may therefore 

induce variable effects among salmon year classes.  Understanding the periodic 

variation in environmental conditions may facilitate interpretation of trends in situations 

where both anthropogenic and environmental factors are acting behind changes in 

population abundance and/or structure (Niemelä et al., 2006; Chaput, 2012). 

The three salmon populations seem to show an overall, roughly 10-year 

cyclic pattern in their abundance. Similarly, many other anadromous salmonid 

populations undergo marked variations in abundance, typically attributed to climate 

variation (Huusko & Hyvärinen 2012 and references therein). Moreover, corresponding 

roughly 10-year cycles have been detected in several populations of Atlantic salmon in 

various parts of the species’ range (e.g. Niemelä et al. 2004; Aas et al. 2011, Huusko & 

Hyvärinen 2012). Interestingly, all three populations, especially the Kola, show a less 

cyclic fluctuation and increasing deviation from the sea water temperature trend in the 
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last part of the time series, roughly since the turn of the millennium. The overall 

increase in the Barents Sea temperature may have improved survival of certain life 

stages of salmon, especially the previously spawned fish (Niemelä et al. 2006), but the 

changing environment may affect other life stages, like outmigrating smolts in a 

different manner, causing deviations from the earlier cycles through more variable, 

unpredictable mechanism (cf. Otero et al. 2014; Heino et al. 2016). In addition, the 

abundance trend in the Teno seems to deviate from the two Russian rivers especially 

after the turn of the millennium. Similar deviation has been detected in the River Teno 

time series compared with some other rivers in the close vicinity (Anon 2012), and 

several reasons for this phenomenon can be considered. Given its large population size 

and relative contribution to the coastal salmon fishery in the Barents Sea, the Teno 

salmon has long been exploited rather heavily both in the sea and in the river (Niemelä 

et al. 2006; Anon. 2012; Vähä et al. 2014), and this may have affected its population 

cycle in a way that differs from several other, smaller rivers in the Barents Sea area. It 

should be remembered, however, that the abundance data from the Teno are estimated 

catches whereas those from the Kola and Tuloma rivers are actual fish counts at 

counting facilities. Caution should therefore be practiced in direct comparisons of the 

three rivers. 

Population dynamics of anadromous salmonid fish are profoundly 

impacted by survival rates of marine growth, and timing of subsequent maturation, i.e. 

sea age at maturity, which in turn are strongly affected by environmental conditions at 

sea (Jonsson and Jonsson, 2007; Wells et al., 2007). For both Pacific salmon (Chinook 

salmon, Oncorhynchus tshawytcha; Wells et al., 2007), and Atlantic salmon (Friedland 

and Haas, 1996), it has been postulated that fast marine growth during the year before 

return is associated with earlier maturation, whereas other studies suggest that Atlantic 
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salmon tend to mature and return to freshwater earlier if growth during the first months 

has been slow (Jonsson and Jonsson, 2007). In any case, critical parameters in 

population dynamics of anadromous salmonids that are also crucial in life cycle 

modeling (Michielsens et al., 2008; Massiot-Granier et al., 2014) are typically related to 

sea temperatures at certain specific periods of time.   

One of the most critical periods within the life cycle of Atlantic salmon 

are the first months at sea, and mortality during this period has increased over recent 

decades across most of the species’ geographic range (e.g. Chaput, 2012; Mäntyniemi et 

al., 2012). Factors and processes affecting the declining post-smolt survival are poorly 

understood but elements related to the marine environment, e.g. sea temperature and 

related feeding opportunities, in addition to direct predation, are likely candidates 

behind this development (Mäntyniemi et al., 2012 and references therein). Moreover, 

marine migration of salmon at other phases of their life cycle include elements in their 

behavior in swimming, feeding, predator avoidance etc. which are typically directly 

affected by environmental conditions, especially the sea water temperature (Todd et al., 

2011). In this study, the sea temperature measurements are from a sea area which is 

representing the critical environment the salmon in the Barents Sea area are facing upon 

their ocean entry. The scale space multiresolution method presented here provides 

useful information by extracting specific cool and warm periods and trends from the 

basic time series data. It is able to reveal the environmental elements behind  critical 

mortality factors connected to certain temporal periods of salmon life history, and trends 

and periodicity in environmental conditions.   Deeper insights of the environmental 

factors help us understand, and eventually counteract the development in marine 

mortality rates. 

Although an anadromous fish species has been used as an example in this 
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study, the novel statistical approach described in the article would certainly be useful in 

any analysis where temperature-related critical events and parameters of a species’ life 

cycle are examined. For instance, studies of long-lived marine species of fish or 

mammals would benefit from such a multiresolution technique able to extract specific 

periods and trends from a time series.  
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Figure 1.The observed sea temperatures in the Kola Section of the Barents Sea for 

1951–2013, averaged over the depth interval 0-50 m (black line) together with a smooth 

(blue line). The level of smoothing applied is indicated by the middle black line in Fig. 

2 and it smooths out the annual seasonal trend while leaving the other salient features 

intact. 
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Figure 2. The scale-derivative map of the observed sea temperatures in the Kola Section 

of the Barents Sea for 1951–2013, averaged over the depth interval 0-50 m.. Time is on 

the horizontal axis and the vertical axis represents the logarithm of the smoothing 

parameter. . The color of a pixel indicates the value of the scale-derivative for a given 

time and smoothing level, with deep red indicating a large positive value, deep blue a 

large negative value, and green corresponds to a value close to zero. The black lines 

indicate the smoothing levels used in the decomposition shown in Fig. 3. The two 

uppermost black lines indicate the local minima of the norm of the scale-derivative and 

the bottom line was chosen by visual inspection. 
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Figure 3. Panel (a): the observed sea temperature data of the Kola section of the Barents 

Sea for 1951-2013, averaged over the depth interval 0-50m.. Panels (b)-(f): the additive 

components in the multiresolution decomposition (1), together with their statistical 

credibility. The smoothing levels used for in the decomposition are indicated in Fig. 2.  

The posterior means of the components are shown in blue. The horizontal yellow line is 

the zero level. The background color indicates the time intervals where the component 

is credibly positive (white), negative (black) or neither (gray). 
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Figure 4. The map showing the Kola Section of the Barents Sea and the three rivers 

from which Atlantic salmon abundance data were obtained.  
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Figure 5. Atlantic salmon abundance in the rivers Kola, Teno and Tuloma.  
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Figure 6. Analysis of the dependence between Kola Section sea temperature and 

Atlantic salmon abundance in the Kola river. Panel (a): the observed temperature (blue) 

and salmon abundance (black). Panels (b)-(d): the additive multiresolution components 

in the decomposition (1) for temperature (blue), and salmon abundance (black). Panels 

(e) and (f): The scale-derivative maps of the temperature and salmon abundance, 

respectively.  Time is on the horizontal axis and the vertical axis represents the 

logarithm of the smoothing parameter. The color of a pixel indicates the value of the 

scale-derivative for a given time and smoothing level. See caption of Fig. 2 for more 

information. The black lines indicate the smoothing levels used to define the 
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multiresolution components displayed in panels (b)-(d). The sequence of smoothing 

parameters was chosen by eye as a compromise between the values suggested by the 

two scale-derivative maps. (High resolution image is available at 

http://cc.oulu.fi/~lpasanen/BarentsSea) 

 

Figure 7. Analysis of the dependence between Kola Section sea temperature and 

Atlantic salmon abundance in the Tuloma river. Panel (a): the observed temperature 

(blue) and salmon abundance (black). Panels (b)-(d): the additive multiresolution 

components in the decomposition (1) for temperature (blue), and salmon abundance 

(black). Panels (e) and (f): The scale-derivative maps of the temperature and salmon 
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abundance, respectively.  See captions of Fig. 2 and  Fig. 6 for more information. (High 

resolution image is available at http://cc.oulu.fi/~lpasanen/BarentsSea) 

 

 

Figure 8. Analysis of the dependence between Kola Section sea temperature and 

Atlantic salmon abundance in the Teno river. Panel (a): the observed temperature (blue) 

and salmon abundance (black). Panels (b)-(d): the additive multiresolution components 

in the decomposition (1) for temperature (blue), and salmon abundance (black). Panels 

(e) and (f): The scale-derivative maps of the temperature and salmon abundance, 

respectively. See caption of Fig. 2 and Fig. 6 for more information. (High resolution 
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image is available at http://cc.oulu.fi/~lpasanen/BarentsSea) 

 

 

 

 

 

 

 

 

 

 

 

 

 


