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Abstract 

In this study, the Hydrologic Evaluation of Landfill Performance (HELP3.8D) model was developed to 

evaluate the spatiotemporal distribution of potential Groundwater recharge (GWR) in Tasuj aquifer, 

northwestern Iran. High-resolution future climatic data from CanESM2 General Circulation Models 

(GCMs) was produced under different scenarios of Representative Concentration Pathways (RCP2.6, 

RCP4.5, and RCP8.5). The analysis of climate parameters demonstrated that under RCP2.6, climatic 

variation will be substantially similar to that of the observed period (1961-2005), while moderate and 

severe droughts are anticipated under scenarios RCP4.5 and RCP8.5, respectively over 2017-2030. The 

projection results showed that GWR will be changed by climate change, on average, from 31 mm/yr at 

baseline to 32 (+3%), 28.5 (-8%) and 11.5 (-63%) mm/yr under the RCP2.6, RCP4.5 and RCP8.5 
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scenarios, respectively. This approach can be easily replicated by other researchers and could be beneficial 

for monitoring water security and managing groundwater resources in other catchment areas.  

 

Keywords: Groundwater recharge; Climate change; HELP model; GIS; Tasuj plain aquifer, Iran. 

 

 

Introduction 

Based on the Fifth Assessment Report (AR5) of the Intergovernmental Panel on Climate Change (IPCC), 

the mean global surface temperature showed an increasing trend of 1°C by the end of 2018 (IPCC, 2018). 

On the other hand, precipitation in Asia showed a decreasing trend over the period 1880 to 2012 

(Christensen et al., 2013). These changes in recent decades have affected water resources both directly 

(i.e., direct interaction with surface water resources) and indirectly (i.e., impacts on aquifer recharge and 

storage aquifers) (Jyrkama and Sykes, 2007; Xia and Chen, 2008; Toreti et al., 2009; Beigi et al., 2014; 

Bloomfield and Marchant, 2013). On the other hand, groundwater (GW) demand (e.g., GW used for 

agricultural, industrial, recreational, tourism, and residential activities) has more than doubled in recent 

decades. It will continue to rise in the future because of population growth, national development policies, 

reduced access to surface water, and climate change (Scibek and Allen, 2006; Scibek et al., 2007; Mayer 

and Congdon, 2008; Ghazavi and Ebrahimi, 2019). The lack of precipitation, and its uneven 

spatiotemporal distribution and increasing temperature rise, leads to considerable socio-economic and 

environmental challenges (Vaghefi et al., 2019; Panahi et al., 2020, Ashraf et al., 2021). Subsequently, 

GW plays a major role in supplying water demands (Nassiri et al., 2006; Abbaspour et al., 2009). 

Additionally, severe climate fluctuations and the occurrence of intermittent and long-term droughts in Iran 

have exacerbated water scarcity and highlighted the importance of GW management and planning 

(Zarghami et al., 2011; Ashraf et al., 2021). Accordingly, for water managers and policymakers to get a 
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clear picture of future water availability, a precise projection of the impacts of climate change on 

groundwater recharge (GWR) is needed (Prinos et al., 2002; Andaryani et al., 2019b; Ashraf et al., 2021). 

The number of research papers on GWR sensitivity to climate change using various physical, numerical, 

data-driven, machine learning and time series methods has skyrocketed in recent decades, summaries in 

the following review articles e.g., Earman and Dettinger., 2011; Treidel et al., 2012; Kløve et al., 2014; 

Pulido-Velazquez et al., 2015. The GWR sensitivity issue associated with the climate change has been 

studied in various research projects, which have shown reduction (e.g., Bouraoui et al., 1999; Candela et 

al., 2009; Andaryani et al., 2019a) as well as increase (e.g., Green et al., 2007; Jyrkama and Sykesa, 2007; 

Kovalevskii, 2007; Gurdak and Roe, 2010) in GWR due to climate change. Because of the complexity of 

the process, evaluating recharge as a direct measure is unreliable. The methods such as Hydrologic 

Evaluation of Landfill Performance (HELP) as a physical model are utilized to estimate GWR according 

to the data accessibility, expenses, area expansion, climate, etc. The efficiency of the HELP model 

(Schroeder and Peyton, 1987; Schroeder et al., 1994) in comparison to the others has been evaluated in 

numerous studies, which have proved the ability of this model to estimate GWR (Berger, 2000; Jyrkama 

et al., 2007; Toews and Allen, 2009; Beigi et al., 2014). For instance, Jyrkama and Sykes (2007) reported 

that the GWR rate would increase from 10 to 50% under CC in an area of 7000km2 using the HELP model. 

Toews and Allen (2009) applied the HELP model in an arid and semi-arid climate (i.e., the Oliver region, 

British Columbia, Canada, with annual precipitation of 300mm) using geospatial data (i.e., soil, land use, 

surface slope, Leaf Area Index (LAI) and GW depth) for areas with a resolution of 100×100m to assess 

the climate change impact on irrigation-induced GWR. Based on their findings, irrigation return flow and 

GWR are predicted to increase by 0.4 and 4mm/day for the most and least efficient irrigation systems 

under scenarios of climate change. In a separate work, Zhang et al. (2016) used this model to simulate the 

capillary barrier covers (type of evapotranspiration (ET)) under high precipitation conditions. The results 

https://onlinelibrary.wiley.com/doi/full/10.1002/hyp.10191#hyp10191-bib-0026
https://onlinelibrary.wiley.com/doi/full/10.1002/hyp.10191#hyp10191-bib-0016
https://onlinelibrary.wiley.com/doi/full/10.1002/hyp.10191#hyp10191-bib-0025
https://onlinelibrary.wiley.com/doi/full/10.1002/hyp.10191#hyp10191-bib-0027
https://onlinelibrary.wiley.com/doi/full/10.1002/hyp.10191#hyp10191-bib-0018
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indicated an increase in capillaries under the studied condition in clay texture. Therefore, according the 

studies looked at here, the predicted changes in temperature and precipitation can have significant impacts 

on hydraulic heads, recharge rates, and capillary mechanisms (Green et al., 2007; Aguilera and Murillo, 

2009; Kumar, 2012; Green, 2011; Meixner et al., 2016).  

Here, HELP3.8D model was employed to evaluate the possible impacts of three Representative 

Concentration Pathways (RCP) for climate change scenarios (RCP2.6, RCP4.5, RCP8.5) on GWR in the 

Tasuj sub-basin of the Urmia Lake Basin (a hypersaline lake which is completely drying), Iran. Although 

some studies have been conducted to assess GWR under climate change, but less attention has been paid 

to GWR in arid and semi-arid regions with consideration of the uncertainty decrease through monthly 

LAI. In the previous studies, e.g., Toews and Allen (2009); Beigi et al. (2014), LAI values were considered 

separately for individual wells, without looking at the monthly LAI for the growing season. While monthly 

LAI can be applied in models suffering from the limitation of ET estimation, as their estimation is based 

on using the available water content in the evaporation depth zone (this zone specified by the user is non- 

physical-based depth parameter in the model) (Jyrkama et al., 2007; Toews and Allen, 2009). This zone 

is considered equal to the plant rooting depth which is determined by users. Consequently, LAI and its 

monthly variation can be the controlling factor for ET and GWR. On the other hand, GWR monitoring for 

managing water resources and identifying the suitability of groundwater quantity for irrigation purposes 

in arid and semi-arid areas of developing countries plains such as Iran has not been carried out properly. 

However, some large-scale projects have been focused on GW level decline under climatic and 

anthropogenic changes, as well as the interaction between lake water level (such as Lake Urmia) and GW 

level reduction (e.g., Jvadzadeh et al., 2020; Ashraf et al., 2021). To the best of our knowledge, GWR has 

not been analyzed under climate scenarios in this case study and the areas surrounding it that are suffering 

from the lack of proper data for modeling have not been assessed so far. 

https://onlinelibrary.wiley.com/doi/full/10.1002/hyp.10191#hyp10191-bib-0016
https://onlinelibrary.wiley.com/doi/full/10.1002/hyp.10191#hyp10191-bib-0002
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Therefore, the main objectives of our study are the projection of monthly, seasonally, and yearly 

spatiotemporal GWR and uncertainty reduction under different climate change scenarios using monthly 

LAI in Tasuj plain, an area which is experiencing a remarkable drop in the groundwater level (Fig. 1). 

 

 Fig.1  

 

First, a Statistical Downscaling Model (SDSM) was used for reducing the scale of climatic variables 

provided by General Circulation Models (GCMs) (Wilby et al., 2002) under the three specified climate 

change scenarios. Second, the hydrological cycle variation was simulated in 24 piezometric wells located 

in the area. Then, monthly LAI obtained from Moderate Resolution Imaging Spectroradiometer (MODIS) 

product in the location of each well was utilized to decrease model uncertainty. Due to the unavailability 

of data for evaluation of the simulated GWR, the simulated ET was examined using the ET of MODIS 

product from 2001-2005. Subsequently, GWR was plotted against the observed GW level in this period. 

Finally, maps of spatiotemporal distribution of GWR were produced under the CC scenarios at a monthly, 

seasonal, and yearly scale. Results of our study can help to provide insight into possible future challenges 

related to water management in the study area. Particularly, generating the spatiotemporal maps under 

climate change can help us to understand the interaction between groundwater recharge and climate 

change in arid and semi-arid regions. 

 

2. Data and method 

In order to analyze the future groundwater recharge in a semi-arid region under climate change scenarios, 

a set of tasks, as presented in Fig. 2, were followed, comprising estimation of groundwater recharge and 
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ET using the HELP model, projection of climate change and projection of groundwater recharge under 

different climate change scenarios. 

 

Fig. 2.  

 

 

2.1. Study Area 

This study was conducted in an intensively farmed sub-catchment of 602km2 (36%, mainly farmland) of 

the 51800km2 Urmia Lake’s catchment, located in the East Azerbaijan Province of Iran between 45˚2 E 

to 45˚32 E longitude and 38˚11 N to 38˚25 N latitude (Fig. 3). The topographical elevation varies from 

1510 to 3114m above sea level, and the region has flow from only eight seasonal rivers, without any 

permanent river. The annual mean precipitation and temperature are 276 mm/yr (2000-2012) and 12°C 

(1961-2014) available from Tasuj and Tabriz stations, respectively.  

There is a significant diversity of geological formations in the study area. Among these, three igneous, 

metamorphic and sedimentary rocks can be found from the Precambrian period to the present (1:100,000 

geology maps from Khodabandeh and AminiFazl, 1993). A significant area in the south of the plain has 

become saline due to the shrinkage of Lake Urmia (Fig. 3a). In this plain, the Quaternary alluvium is 

divided into alluvial terraces and alluvial fans, which are the sources of aquifer recharge in the plain. (Fig. 

3b). The younger part is in the form of alluvial terraces and is usually located along rivers (flood plain) 

with a thickness of 30m (Nadiri et al., 2013). An unconfined and heterogeneous aquifer with an area of 

about 212.5km2 (plain area of 258km2), a storage coefficient of 3%, and precipitation infiltration (PI) of 

3.3% is located in the younger section (Table 2 of Javadzadeh et al., 2020). The land use (LU) data used 

in this study was available from typical Iranian LU types, based on Sentinel-2 with a spatial resolution of 
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10m, where 13 typical LU types have been classified for the whole of Iran by Gorbanian et al., 2020 (Fig. 

3c). 

 

 

Fig. 3.  

 

 

2.2. Input Data  

Elevation, land use, soil data, plant, and climatic data were obtained from multiple sources and different 

time periods (Table 1). 

 

Table 1.  

 

Meteorological data, including the daily precipitation and temperature from 1961-2005, were introduced 

into the SDSM model to project climate variation (Fig. 4). Furthermore, the climate variables (i.e., 

precipitation, temperature, solar radiation, wind speed, and relative humidity) obtained from Tabriz 

synoptic station (46 ̊, 17ˊ E longitude and 38 ̊, 05ˊ N latitude) were used to calculate recharge and 

evapotranspiration in the HELP model. 

 

Fig. 4.  

 

To provide the soil data for modelling, we used information from 24 piezometric wells (e.g., Fig. 5a, 

Amestarjan well, namely W3). Fig. 5b presents the texture map for the soil's first layer and  the  location of 

the piezometric wells. Based on this map, soil textures were sandy, sandy-clay, sandy-silty, and sandy-

silty-clay. The depth of soil texture decreases gradually from the north to south of the region. For instance, 

the information from one of the piezometric logs of soil texture showed different textures at various 
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depths, 0-15m (sandy), 15-30m (gravel and clay), 30-45m (gravel with clay), 55-48m (silt with sand), 48-

66m (sand-gravel-clay), 66-69m (gravel-sand with clay) and 69-79m (gravel with sand). It should be noted 

that the initial layer depth of the unsaturated zone in the piezometric logs was considered as the layer 

thickness (see Fig. 5a). 

 

Fig. 5.  

 

The runoff curve number (CN) as a necessary parameter in the estimation of runoff depends on the 

vegetation cover, cultivated area, type of agricultural operations, soil moisture conditions, soil 

permeability and plant rooting depth (Hawkins, 1978). The CN for the area was calculated as the weighted 

average based on the surface cover characteristics of the study area and the soil hydrological group under 

moderate moisture conditions (Zhan and Huang, 2004). 

Based on the information available in the Agricultural Organization of Tasuj city (Iranian Ministry of 

Jahade-Agriculture (MOJA, 2007)), the most significant agricultural lands in the plain are allocated to 

wheat, tomato, and apricot production. The growing seasons for spring and winter wheat are from April 

to May and from September to November, respectively, while the growing season for summer crops and 

orchards is from June to September. Given that the depth of the evaporation zone (i.e., the maximum depth 

of consuming ET) should be at least equal to the average depth of plant root penetration, to determine the 

depth of root penetration of wheat, summer crops and orchard plants, we considered both the estimations 

of the root penetration depth on a global scale (Canadell et al., 1996) and the comments of agricultural 

experts in the Tasuj plain. Depending on the soil thickness and types of topsoil and cultivated plant, the 

root penetration depth was estimated to be about one to three meters. 

Considering that a plant-covered surface has more ET under similar conditions than a plant-free surface 

(Andaryani et al., 2021), the vegetation cover is another important factor affecting the amount of 
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groundwater and its storage. Therefore, in this study, we used the Leaf Area Index (LAI) obtained from 

MODIS products (i.e., MOD15A3H.006), defined as the one-sided green leaf area per unit of ground 

surface area on a four-day temporal scale. LAI has been extracted for the locations of all 24 wells (Fig. 6, 

which shows the LAI in the growing season of 2003).  

 

Fig. 6.  

 

2.3. Investigation of future climate change through statistical downscaling of global climate 

projection 

In order to project climate variables on smaller scales, such as a watershed or in urban areas, the outputs 

of Atmospheric General Circulation Models (AGCM) must be downscaled using dynamic models and/or 

statistical methods (Wilby and Dawson, 2007). Given that the dynamic models are costly, researchers' 

attention has been drawn to SDSM, which involves expanding quantitative relationships between large-

scale atmospheric and local variables. In the present study, the SDSM, which works based on multiple 

linear regression and the stochastic weather generator, was applied to downscale the general atmospheric 

circulation model (Wilby et al., 2002). The main advantages of this method are its simplicity, high speed, 

and economic justification in the downscaling process (Baghanam et al., 2019; Nourani et al., 2019). 

Statistical downscaling involves the expansion of quantitative relationships between large-scale 

atmospheric variables (predictors) and local variables (predictand) (Wilby and Dawson, 2007). The 

predictors can characterize different atmosphere features such as circulation, stability, thickness, and 

moisture content at various levels (500 hpa, 850 hpa and near the surface) (Getachew, 2021). It should be 

mentioned that the results of 4 GCMs models including ACCESS-1 (the Australian Community Climate 

and Earth System Simulator), MIROC-ESM (Model for Interdisciplinary Research on Climate), MIROC-
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ESM-CHEM (An atmospheric chemistry coupled version of MIROC-ESM) and CanESM2 (second-

generation Canadian Earth System Model) were compared together using Tailor diagram (Taylor, 2001) 

considering Correlation Coefficient (CC), Standard Deviation (SD) and Root Mean Square Error (RMSE) 

between historical data of the models and observed data (Fig.7). According to the Fig. 7, historical of 

CanESM2 is closer to observed data. On the other hand, previous studies have , also, shown that the 

CanESM2 developed by the Canadian Centre for Climate Modelling and Analysis (CCCma) of 

Environment Canada is capable of simulating the climate for the arid and semi-arid climate of Iran (Emami 

and Koch, 2018; Zamani and Berndtsson, 2019; Saatloo et al., 2020); therefore, this model, with a spatial 

resolution of 2.8125° (longitude) × 2.8125° (latitude), was chosen to simulate future climate data under 

the three scenarios, RCP2.6, RCP4.5 and RCP8.5. Consequently, downscaling was done by applying 26 

predictors of NCEP (National Centers for Environmental Prediction) reanalysis data for historical 

information (1961–2005) and CanESM2 for the future (2017–2030).  

 

 

Fig. 7 

 

Table 2 indicates the selected NCEP based on the high value of absolute correlation and partial 

correlation for CanESM2 model. In other words, the best predictor variables that have the highest 

correlation with the observed data (temperature, precipitation) logically and statistically were selected for 

projection.  

 

 

Table 2.  
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The required data for projection was downloaded from the website https://esgf-

node.llnl.gov/projects/cmip5 (see Table 2). The comparison of observed and historical data pertaining to 

CanESM2 based on NCEP’s Table 2 is presented in Fig. 8.  

 

Fig. 8 

 

2.4. Recharge calculation model  

2.4.1. HELP model 

HELP as a quasi-two-dimensional model (i.e., HELP 3.8, a DOS-based software, refer to Schroeder et al., 

1994 for more detail) was employed to assess GWR. The model simulates all the surface and subsurface 

hydrological processes to estimate the daily movement of water using water balance equation (Eq. 1). 

𝑅 = 𝑃 − 𝐷 − 𝐸𝑇𝑎 − ∆𝑊                                                                                                         (1) 

Where, R is potential recharge, P represents precipitation, D is net runoff, Et is actual evapotranspiration 

and ΔW represents change in a soil water storage (for more detail refer to Lee et al, 2006).  

The model used the SCS curve number approach to determine daily surface runoff (Eq. 2).  

𝑄 =
(𝑃−𝐼𝑎)

𝑃−𝐼𝑎+𝑆
  for P≥ 𝐼𝑎                                                                                                              (2) 

Where Q is runoff (mm), P is rainfall (mm), S is the potential maximum soil moisture retention after the 

beginning of runoff (mm), Ia represents the initial abstraction (mm), or the amount of water before runoff, 

such as infiltration, or rainfall interception by vegetation; and Ia= 0.2S is commonly assumed. The 

following equation is used to compute the CN:  

CN=
1000

𝑆
− 10                                                                                                                        (3) 

https://esgf-node.llnl.gov/projects/cmip5
https://esgf-node.llnl.gov/projects/cmip5
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The CN scale runs from 0 to 100, with lower values indicating reduced runoff potential and higher 

numbers indicating more runoff potential. Soil type, soil infiltration capabilities, land usage, antecedent 

soil moisture content, and seasonal water table depth are all factors that influence the CN. In addition, the 

FAO Penman-Monteith method (Allen et al., 1998) is used to determine the reference evapotranspiration. 

The processes start with the calculation of the surface water budget, ET, investigation of water infiltration, 

and water routing to the last and deepest soil layer. In this regard, the model considered a soil column as 

comprising several layers from the surface to the water table and determined the daily infiltration in each 

layer directly using the surface water budget. Here, we reported only ET and recharge of the case study.  

 

2.4.2. Accuracy of the HELP results 

In this study, due to the absence of observed runoff and ET data to validate the model results, the estimated 

ET data from the MOD16 with a spatial resolution of 500m were compared with computed ET from the 

HELP model. Five wells were selected to ensure the model results based on the completeness of their 

monthly scale data from April to September (the growing season) from 2001 to 2005 (Fig. 9, which shows 

only 2001 and 2005). Furthermore, the observed groundwater level was compared with the calculated 

recharge from HELP in this period. We could access to the complete data of GW level in five wells during 

the period of 2001-2005 for validating the model simulation. 

As recharge data was not readily available in the study area, direct model calibration was only possible 

visually. Therefore, the accuracy of the estimated data was assessed using ET and recharge data.  

 

 Fig. 9.  

 

3. Results and discussion 

3.1. Projection of climate change over 2017-2030 
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Observed temperature and precipitation data (1961-2005) were compared to the outcomes of 

constructed data under various climate change scenarios to determine the possibility of future climate 

change (2017-2030). As seen in Fig. 10a, the temperature increases in scenario RCP8.5, which occurs 

over the cold months (Jan. to Mar. and Oct. to Dec.) and is higher than the other scenarios. The highest 

and lowest temperature rise will occur in Feb. and May, respectively. Under RCP4.5, the temperature will 

only decrease in April, however, it will increase in the other months. In addition, under RCP2.6, the 

temperature will decrease over the cold periods of each year compared to the baseline, with the highest 

values in March and April (0.2 and 0.25, respectively). In climate change scenarios, RCP2.6 is an 

optimistic pathway in which CH4 emission in 2100 will be half of that in 2020, and CO2 emission will be 

nil (IPCC, 2018). However, based on, RCP4.5 and RCP8.5 all the months would experience a temperature 

increase apart from April under RCP4.5.  

 

Fig. 10.  

 

 

Fig. 10b shows precipitation changes under scenarios RCP2.6, RCP4.5, and RCP8.5 from 2019-2030 

compared to the baseline. Even though precipitation does decrease over the warm seasons of the year, the 

decline is negligible compared to the precipitation reduction during the cold seasons. Under the RCP2.6 

scenario, precipitation increases in the year's cold months and decreases in the warm months. In the other 

words, Precipitation, like temperature, demonstrates an improvement in the climate status of the research 

area under RCP2.6, i.e., precipitation will increase in six months of the year. The amount of precipitation 

under the RCP8.5 scenario is significantly reduced in all months. The maximum precipitation reduction 

under RCP8.5, RCP4.5 and RCP2.6 scenarios are -8.3, -4.49 and -2.9, respectively. 

 

3.2. Comparison of MODIS ET and simulated ET using HELP under mean monthly and mean 

yearly LAI values 
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The model's sensitivity to parameters and input data is checked to provide better and more accurate 

results. Here, the effect of LAI changes as an input parameter of the HELP model on the recharge changes 

was investigated. As the density of the vegetation canopy influences plant transpiration, LAI can be used 

to show ET fluctuations.  

Table 3 shows the values of recharge and ET with changes in LAI. As the table shows, there is an 

inverse relationship between LAI and recharge. LAI values of 0.1 and 5 correspond to the maximum and 

minimum levels of ET and recharge, respectively. These relationships for ET, LAI, and groundwater 

recharge have also been reported by Batelaan and De Smedt (2007) and Simic et al. (2014). Furthermore, 

for LAI values greater than 3, ET accounts for more than 90% of precipitation.  

 

 

Table 3.  

 

 

 Due to the model's sensitivity to LAI (see Table 3), the values of this index were obtained from MODIS 

products. To increase the accuracy of the model, Mean Yearly Value (MYV) and Mean Monthly Value 

(MMV) of LAI for the location of each well (one corresponding pixel of MODIS is 25ha) were examined 

in the modeling process. Then, the simulated ET using the HELP model was evaluated against the ET of 

the MODIS product. Fig. 10 depicted the comparison between ET product and simulated ET in 5 selected 

wells over six months (the growing season) of each year in 2001-2005. 

 

Fig. 11.  

 

 

Since the maximum value of the LAI in the studied region occurs from April to September (i.e., the 

growing season), the mean monthly and yearly values of this period were used in modeling over the period 

2001-2005 (see Fig. 11a). According to Fig. 11b, ET can be estimated more accurately by considering the 

spatiotemporal changes in LAI. In other words, when the mean monthly LAI is used for the location of 
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each well, the correlation coefficient between MODIS-ET and simulated ET increases accordingly. It 

should be mentioned that the amount of ET accounts for more than 76% and 73% of precipitation for the 

mean monthly and yearly LAI, respectively. 

Among the selected wells (Fig. 11), the highest correlations between predicted ET and those derived from 

MODIS images were ascribed to wells No. 12 and 14, respectively. These wells also have the highest LAI 

value during the growing season (see Fig. 6). The lowest correlation between estimated ET, and those 

generated from the MODIS product was seen in W5, which could be attributed to the well's soil texture. 

As shown in Fig. 5b, the soil texture around this well is sandy, allowing water to penetrate quickly into 

the lowest parts of the soil and reducing the chances of plant transpiration. Because geological and soil 

properties are considered in physical-based hydrological modeling, comparing simulated ET to satellite-

based ET products, which are primarily dependent on ambient temperature and vegetation characteristics, 

etc., displays a lower correlation coefficient. 

Here, our proposed model only takes into account the amount of evaporation caused by precipitation (i.e., 

we ignored the obtained recharge from irrigation due to lack of data); for this reason, the amount of 

evaporation in dry months of the year was estimated to be zero (see Fig. 11, the months of June, July and 

August). On the other hand, 1-dimensional models (pseudo-2-D) such as HELP do not calculate the path 

of surface water (and sub-surface water) between adjacent network cells (Jyrkama and Sykes, 2007; 

Toews and Allen, 2009). Crop irrigation evaporation and the path of surface water between the close 

network cells are, however, considered in ET estimation of MODIS. Therefore, the amount of 

computational ET with MODIS images is higher than that of the HELP model. Regardless of the 

differences between the MODIS and HELP model results, the general ET trend in both methods is 

consistent. This comparison can demonstrate the model's performance in recharging simulation. As 
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previously stated, ET and recharge are inversely connected. Hence, correct ET simulation is proof of 

accurate recharge simulation. 

3.3. Comparison of observed groundwater level and simulated recharge  

Based on Fig. 12a, between 2001 and 2005, a hydrographic survey of selected wells in the Tasuj catchment 

area revealed a continuous reduction in groundwater level. It's worth noting that, in addition to rising 

temperature, increasing evaporation capacity, reducing rainfall, agricultural development, land-use 

change, and the use of groundwater resources as the primary source of domestic, industrial, and 

agricultural requirements have all had significant impacts on water level reduction in recent decades. 

Although the increasing and decreasing trends of temperature and precipitation during 2001-2005 are not 

particularly noticeable (Fig. 12b), long-term study of temperature and precipitation changes from 1961-

2005 (Fig. 3) demonstrates the decreasing trend of precipitation and increasing trend of temperature, which 

can have considerable impacts on water resource instability. In their investigations, Zarghami et al. (2011) 

and Nourani et al (2021) found increasing and decreasing trends in temperature and precipitation in the 

Urmia Lake basin. The purpose of comparing the level of selected wells and recharge is to evaluate the 

model's performance because the lower the groundwater recharge, the lower the groundwater level per 

unit time. It should be noted that factors such as uncontrolled groundwater abstraction are effective in 

lowering the groundwater level. Fig. 12 shows that the simulated groundwater recharge trend is nearly 

identical to the groundwater level trend, indicating that the model can perform well in simulating 

groundwater recharge in the future. It should be noted that We do not attempt to determine a direct 

mathematical relationship between groundwater level and GWR, but we know that there is a close 

relationship conceptually. Hence, supporting that the simulated signals of GWR in our scenarios are also 

representative of the likely changes in groundwater level in future scenarios. 
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Fig. 12.  
 

 

3.5. Projected recharge under different climate change scenarios 

As previously mentioned, the HELP model was used to estimate the amount of nutrition in the baseline 

period (1961-2005) and under climate change scenarios in the future period (2017-2030). This model can 

simulate the load of nutrition in the unsaturated zone of the soil, which works based on the water balance 

equation. Fig. 13 shows the mean monthly recharge over baseline and scenario periods. Under the RCP2.6 

scenario, groundwater recharge in the rainy months (March to May) shows a small increase compared to 

the baseline due to increasing precipitation (see Fig. 10); the recharge peak in all wells, particularly in 

W14 and W15, through which many branches of the seasonal river flows, occurs in April, the baseline 

period. The maximum quantity of recharge in these wells is due to the practically permeable nature of the 

soil (sandy-clay), proximity to the mountains, and lower use of these wells for irrigation (see Fig. 5, which 

illustrates the low LAI in the vicinity of these wells). Due to the skinny soil layer (7m), soil texture (sandy-

silty), and distance from seasonal sub-branches, well 8 has the lowest yearly recharge under this scenario 

from 2017 to 2030 (see Fig. 5b). 

In comparison to the baseline, wells 8 and 14 will experience an annual recharge decrease and increase 

of 1.08 mm/yr and +4 mm/yr, respectively. Since the HELP model did not account for irrigation return 

flow, no recharge has been presented for the 2.6 and baseline scenarios for the June to September dry 

months, even though irrigation return flow may slightly replenish the well. Under the RCP4.5 and RCP8.5 

scenarios, temperature increases in the cold months, resulting in precipitation transformation from snow 

to rain. Snowmelt reduction causes the recharge peak to shift from April to March in winter. This issue is 

particularly noticeable in well 14 (Fig. 13). Compared to the baseline period, the amount of recharge in 

the RCP4.5 and RCP8.5 scenarios will be much lower. The recharge amount in most wells will be severely 
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reduced under the RCP8.5 scenario due to lower rainfall and a large increase in temperature (see Fig. 10). 

Most wells will be refilled at a rate of less than 3 mm/yr in this scenario. As previously noted, the reason 

for the largest recharge in Wells 14 and 15 is more dependent on the geological structure and soil texture 

of the examined wells, as well as their location, which has caused the rate of penetration of these wells to 

be higher than the other wells in the baseline period and under the three studied scenarios. 

 

Fig. 13.  

 

 

    According to Fig. 14, which shows the seasonal recharge of piezometric wells in the baseline and under 

climatic scenarios, the seasonal distribution of well recharge follows the rainfall pattern in the region. The 

maximum recharge occurs in spring in the baseline and RCP2.6 scenarios; however, under the RCP4.5 

scenario, and especially the RCP8.5 scenario, it happens in winter, indicating a shift in maximum recharge 

from spring to winter. As previously stated, in the simulation using the HELP model, the dry season does 

not affect the recharge of the examined wells, and the recharge rate in this season is zero. Due to the 

decrease in initial soil moisture over the summer and autumn, the recharge process will probably begin in 

the winter, with a time delay in both scenarios RCP4.5 and RCP8.5. The seasonal recharge decline trend 

in the baseline period explores the following pattern: Spring> winter> autumn> summer; however, in the 

RCP8.5 scenario, there is no recharging in summer and autumn, and the quantity of recharge in the other 

seasons will reduce significantly. In general, the quantity of net recharge in this coastal aquifer is minimal 

due to the high ET rate. In addition to the effects of climate change, this ET rate may be attributed to the 

overdevelopment of cultivated land (agricultural expansion) over a long period without considering the 

balanced development of pressured irrigation systems in this basin. Under RCP4.5 and RCP8.5 scenarios, 

aquifer recharge is active for a short period during the winter when the plants are dormant and ET activity 

is at its lowest level. In the spring and autumn, a significant portion of the precipitation evaporates, while 
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the remainder is converted to runoff or soil moisture, with just a tiny portion being converted into 

groundwater recharge. 

 

Fig. 14.  

 

Regarding annual spatial changes (Fig.15) under climate scenarios, groundwater recharge in the western 

half of the region will experience a sharp decline. Recharge varied from 15mm in the east of the basin to 

47mm in the west over the baseline period, while, with increasing precipitation in RCP2.6 scenario, the 

amount of recharge will increase slightly compared to the baseline period and will experience a minimum 

and maximum difference of 1 and 2mm, respectively. Topographic characteristics and recharging wells 

from seasonal rivers are the reasons for higher recharge in the western part of the aquifer. Water 

penetration is also affected by the type of soil texture. The changes in spatial recharge for the period 2017-

2030 under the RCP4.5 and RCP8.5 scenarios are the same as the baseline period, however, the quantity 

of recharge will decrease in both scenarios. Due to a decline in precipitation and a severe rise in 

temperature (up to 0.4℃ obtained from Fig. 10), the recharge caused by precipitation in the RCP8.5 

scenario will be significantly lower than in the RCP2.6 and RCP4.5 scenarios (Up to 25mm/yr difference 

from the baseline). Under this pessimistic scenario, the drying up of wells and the destruction of the aquifer 

is anticipated. The method provided here can be applied to a variety of aquifers in various climate zones, 

particularly in arid areas. Using this approach, wells that are prone to drying can be identified. Therefore, 

various methods, such as artificial recharge, controlled groundwater abstraction, applying improved 

irrigation systems and cultivating crops that do not require irrigation in the summer, can all be employed 

to maintain aquifers and avoid future consequences like subsidence in the plains. 

 

Fig. 15.  
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4. Conclusion 

To study the impact of climatic factors such as variation in water resources, especially groundwater 

directly through interactions between rivers and lakes and indirectly through groundwater recharge, GWR 

for the near future (2017-2030) was simulated under three climatic scenarios. Based on the results of this 

study, the following conclusions could be drawn: 

• Since the effect of climate change on various hydrological components is nonlinear, it is critical 

to consider the different characteristics of an area, such as soil texture and thickness, vegetation, 

and the other unique aquifer features in various sections (here, the different characteristics of 

24 piezometric wells were considered).  

• Using satellite data to validate the model in locations where data is scarce can be beneficial.  

• Except for the RCP2.6 scenario, climate change scenarios in the study area predict temperatures 

rising and precipitation decreasing during the cold seasons and the rainy months (spring), 

respectively. These changes will reduce snowfall and indirectly affect the most important 

groundwater supply source (i.e., snowmelt affects runoff, which affects groundwater supply). 

Also, global warming and reduced precipitation will diminish groundwater recharge directly.  

• Hydrological modeling using HELP, with consideration of the LAI value on a monthly basis 

for each well, for the RCP8.5 scenario shows a very sharp decrease in GWR of at least 14mm/yr 

and a maximum of 25mm/yr (50% and 93%, respectively) compared to the baseline period.  

• In the RCP4.5 scenario, reduction in GWR reaches a total of 13%. However, the RCP2.6 

scenario is optimistic, predicting a 5% increase in recharge.  
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• The anticipated decline trend of GWR in the study region under climate scenarios is similar to 

the baseline, and it moves from west to east, which could be attributable to soil type or present 

land use (agricultural is more developed in the study area's east). 

In this study, land-use change corresponding to climate change was not taken into account for the future 

period based on LAI and irrigation. It is suggested that the amount of aquifer recharge under the influence 

of land-use changes, population growth, the increasing water demand of plants due to rising temperatures, 

and other factors be explored in future studies.  
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Table 1. Input data used for model set-up and validation. 

Data Parameter Period/ 

Resolution 

Unit Time 

scale 

Data source Application 

in 

Meteorological 

Precipitation 1961-2005 mm  

daily 

 
Iranian Meteorological Organization of East 

Azerbaijan Province (IMO) 

 

SDSM and 

HELP Temperature 1961-2005 oC 

Solar radiation  1961-2005 MJ/M2 

HELP 
Average wind 

speed 

1961-2005 km/h annual 

Relative humidity 

for every season  

1961-2005 %  

season 

Atmospheric  NCEP large scale 

data 

1961-2005 mm & 
oC 

daily https://esgf-node.llnl.gov/projects/cmip5/ 
SDSM 

 

 

 

Raster 

 

Digital Elevation 

Model 

30m m  

2011 

https://lpdaac.usgs.gov/products/astgtmv003 

HELP 

Land use  10m  2016 Ghorbanian et al. (2020) 

LAI 500m  4-day MODIS: Product of MOD15A3H.006 

Evapotranspiration 500m mm daily MODIS: Product of MOD16A2.006 

 

Stratigraphic 

for soil data  

Info. of 

piezometric logs 

profile  

 

- 

 

- 

 

- 

Forest, Rangeland and Watershed 

Management Organization of Azerbaijan 

Province 

https://doi.org/10.1007/s00704-018-2616-0
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Hydrological Groundwater level - m monthly East Azerbaijan Regional Water 

Organization 

 

 

 

 

Table 2- Selection of large-scale predictor variables for predicting local precipitation and temperature parameters in Tabriz 

station. 
Variable Selected Predictor predictors Description Absolute correlation Partial correlation 

 

 

Temperature 

Ncepmslpgl.dat Mean sea level pressure -0.74 -0.27 

Ncepp500gl.dat 500 hPa Geopotential 0.87 0.35 

Nceps850gl.dat 850 hPa Specific humidity 0.83 0.07 

Ncepshumgl.dat Surface specific humidity 0.77 0.09 

Nceptempgl.dat Air temperature at 2 m 0.97 0.46 

 

 

Precipitation  

Ncepp5_vgl.dat 500 hPa Meridional wind component 0.337 0.081 

Ncepp8zhgl.dat 850 hPa Divergence of true wind -0.284 -0.026 

Ncepp8_vgl.dat 850 hPa Meridional wind component 0.256 0.041 

Ncepp850gl.dat 850 hPa Geopotential -0.264 -0.043 

Nceps500gl.dat 500 hPa Specific humidity 0.22 0.03 
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Table 3. Evapotranspiration and recharge changes under assumed LAI for the baseline period (1961-2005).  

 
Leaf area index 0.1 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 

Evapotranspiration (%) 82 84 86 86 88 89 90 92 93 93 94 

Groundwater recharge (%) 12 10 9 9 8 7 7.6 7 7 6 6 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1. Groundwater level (in meters above mean sea level) over the period 1995-2012 in Tasuj plain aquifer, Iran. 
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Fig. 2. An overview of the proposed method.  
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Fig. 3. (a): Tasuj catchment, elevation and stream system, (b) lithology including Qal = recent alluvium (1%), Qf = 

Gravel fan (10%), Qmf = sandy salty flats (24%), Qsf = salt flats (9%), Qt1 = high level terraces (0.5%), Qt2 = old 

terraces (55.5% of the plain area)), (c): land use for the year 2017 (Gorbanian et al., 2020) (d): Urmia Lake basin. 
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Fig. 4. Daily time series of mean temperature and precipitation from 1961-2015 in Tabriz station. The linear trend 

is shown by the dashed lines. 
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Fig. 5. (a) Shows the soil texture map in the first layer and soil layer thickness through piezometric logs and (b) a 

sample schematic (stratigraphic) of a log. 
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Fig. 6. Leaf area index (LAI) in 2003 was obtained from MODIS product for each well of W1-W24. 
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Fig. 7. Taylor diagrams of the monthly climate variables, (a) temperature (b) precipitation. 
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Fig. 8. Difference between observed and simulated: (a) temperature, and (b) precipitation (1961-2005).  
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Fig. 9. Spatiotemporal variations of ET in the Tasuj plain catchment from April (200104 in the legend means the 

April of 2001) to September (200109 means the September of 2001) during the period 2001 and 2005 based on 

MODIS ET and selected piezometer wells for the verification of estimated ET from the HELP model. 
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Fig. 10. Near future changes (2017-2030): (a) in temperature, and (b) precipitation; under RCP2.6, RCP4.5, and 

RCP8.5 scenarios for Tabriz station compared to the base period (2005-1961).  
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Fig. 11. (a) Comparison of MODIS ET and simulated ET using HELP over 2001-2005 at a monthly scale (the 

growing season) under mean yearly and mean monthly LAI values. (b) Shows the correlation coefficient between 

MODIS ET and simulated ET using mean yearly and mean monthly LAI values in the selected wells for testing.  
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Fig. 12. Compression observed groundwater level and simulated recharge in selected piezometric wells and 

temperature and precipitation variations over 2001-2005. 
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Fig. 13. Mean monthly recharge (estimated using HELP) in the baseline (1961-2005) and under climate change 

scenarios over 2017-2030 at the piezometers of the Tasuj plain. 
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Fig. 14. Seasonally variation in 2030 at piezometers of W1- W24. 
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Fig. 15. Annual variation of groundwater recharge based on climate change scenarios at W1-W24 in the Tasuj 

plain, Iran in 2030. 

 

 

 


