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Abstract 

This study applies meta-regression analysis to aggregate a sample of 1,126 empirical estimates of the 

stock market reaction to soccer matches collected from 37 primary studies. Our results indicate that 

winning a match is not associated with significant return effects for both national teams and individual 

clubs. In the case of lost matches, we find strong evidence for publication bias, i.e. negative returns are 

systematically overrepresented causing a biased picture of the true soccer match effect. After 

correcting for this bias, the mean return after losses by national teams becomes statistically 

insignificant and accounts for only −5 basis points. In the case of individual clubs, the corrected 

impact of a loss is a significant −39 basis points effect. In a further analysis, we identify various 

aspects of study design like regional differences, time period under examination, and the design of 

empirical analysis to be responsible for the wide variation in previous study outcomes. Overall, our 

findings provide evidence against the hypothesis that stock markets are driven by sports sentiment in 

the case of national teams. Due to the existence of strong asymmetry in the returns after wins and 

losses of individual clubs, behavioural explanations cannot be fully ruled out. 
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I. Introduction 

According to the efficient market hypothesis, an asset market is considered to be information-

efficient if prices reflect all available information relevant for their future value (Fama 1970). In sharp 

contrast to traditional finance theory, numerous studies have challenged the rationality of financial 

markets by documenting the existence of non-rational components in asset pricing and behavioural 

biases in investors’ decision-making (among others, Chang et al. 2008; Hirshleifer and Shumway 

2003; Saunders 1993). A major strand of the literature in this area examines the impact of sports 

results on financial markets (among others, Brown and Hartzell 2001; Chang et al. 2012; Edmans, 

Garcia, and Norli 2007; Kaplanski and Levy 2010). Especially the effect of soccer matches on stock 

returns has received broad attention in recent research (among others, Ashton, Gerrard, and Hudson 

2011; Edmans, Garcia, and Norli 2007; Ehrmann and Jansen 2016; Scholtens and Peenstra 2009). 

The findings of the existing research record on the relation between soccer matches and stock returns 

are rather inconclusive. For the impact of national soccer teams’ results, some studies document a 

statistically significant relationship (among others, Ashton, Gerrard, and Hudson 2011; Edmans, 

Garcia, and Norli 2007; Kang and Park 2015). In contrast, other authors find no evidence for a 

financial impact of national soccer match outcomes on financial markets (among others, Gallagher and 

O'Sullivan 2011; Klein, Zwergel, and Heiden 2009; Vieira 2012). For the influence of publicly traded 

soccer clubs, the picture is less ambiguous, as many studies report at least partially significant 

influence of soccer matches on the clubs’ stock prices (among others, Castellani, Pattitoni, and Patuelli 

2015; Dobson and Goddard 2001; Renneboog and Vanbrabant 2000). Nevertheless, the actual size of 

the return effect after matches of individual clubs strongly differs across previous literature. 

Given the disagreement on the existence and magnitude of the soccer match effect, academics have 

sought explanations for the large diversity in reported results. Klein, Zwergel, and Fock (2009) 

conduct a replication study of the seminal contribution by Ashton, Gerrad, and Hudson (2003)1 and 

demonstrate that after correcting minor errors in the data preparation as well as changing the 

observation period, the initially significant findings turn out to be insignificant. As a consequence, 

                                                        
1 Ashton, Gerrad, and Hudson (2003) find a strong association between the performance of the English national soccer team and daily 
changes in the FTSE 100 index. 
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Klein, Zwergel, and Fock (2009) hypothesize that the inconclusive evidence on the soccer match 

effect of national teams might be driven by a kind of publication bias, i.e. the favour of authors, 

editors, and reviewers to publish results that are statistically significant and consistent with theoretical 

predictions.2 If authors prefer specific results and thus change their model setting or data sets until 

they find the desired outcomes (e.g., a significant and negative return effect after lost soccer matches), 

specific estimates will be systematically underrepresented in the literature (e.g., insignificant or 

positive returns after losses). If results are selectively reported, inferences made from the existing 

research record will be distorted, leading to an incorrect overall picture of the true soccer match effect. 

Many previous meta-studies in other fields of economics emphasise that the issue of publication bias 

is a serious threat for the integrity of the empirical research process (among many others, 

Doucouliagos and Stanley 2009; Feld and Heckemeyer 2011; Görg and Strobel 2001). 

Based on the mixed empirical findings as well as the potential problem of publication bias, our study 

offers three main contributions. First, we use meta-regression analysis (hereafter MRA) to provide the 

first quantitative review of studies investigating the stock market behaviour after soccer matches. 

Second, we statistically test for the presence and magnitude of publication bias. This approach allows 

a quantitative investigation of the publication bias hypothesis discussed by Klein, Zwergel, and Fock 

(2009) and extends it also to soccer matches of individual clubs. Third, we use a multiple MRA 

approach to statistically explore which aspects of study design are responsible for the wide 

heterogeneity in existing empirical findings. Through this analysis, MRA enables us to provide several 

new insights into the relation between soccer match results and stock returns.  

The remainder of the article is structured as follows. Section 2 shortly reviews the theoretical 

background and explains how the soccer match effect is estimated. Section 3 outlines the data 

collection and data preparation. Section 4 presents the MRA methodology and describes the sources of 

heterogeneity. Section 5 reports and discusses the empirical results. Lastly, Section 6 concludes. 

                                                        
2 It should be noted that we use the term ‘publication bias’ to refer to selective reporting independent of a study’s publication status. As 
unpublished work like manuscripts and conference papers are written with the aim to get published, there is no reason to assume that the risk 
of selective reporting is lower in unpublished studies. 
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II. Estimating the effect of soccer games on stock returns 

There are two strands of theories linking soccer match results with stock market returns. 

Neoclassical finance argues that investor reactions are purely fundamental and originate from a 

revaluation of match-related economic consequences (efficient market hypothesis) (Fama 1970). For 

example, winning a soccer match induces direct and indirect cash flow effects through increasing 

revenues from merchandize sales, broadcasting contracts, gate attendances, or prize money (and vice 

versa for losses). Opposed to the rationality paradigm, behavioural finance theory proposes that 

investors are subject to behaviourally driven effects (Shiller 1984), which, among others, arise from 

mood changes after sports games (sports sentiment hypothesis). In other words, asset pricing is the 

result of a process that also accounts for psychological elements, such as a feel-good factor or 

overconfidence about the future induced by the match outcome (Kerr et al. 2005; Schwarz et al. 1987; 

Wann et al. 1994).  

To empirically quantify the stock return effect of soccer games, previous literature mostly applies 

event study methods. The general approach is a two-stage regression-based event study model as 

proposed in the seminal contribution by Edmans, Garcia, and Norli (2007). The first stage represents a 

market model including additional variables for confounding effects3. The second stage quantifies the 

impact of the soccer match outcomes on the abnormal returns derived from the first stage regression: 

%&' = )* + ),-&' + )./&' + 0&',	 (1) 

where	3 denotes a specific national team or individual soccer club, 4 is a time index for each trading 

day, %&' denotes the residuals from the first stage regression,	-&' is a dummy variable equal to one on 

the first trading day after a team won a match, and /&' is a dummy equal to one on the first trading day 

after a team lost a match. For trading days without matches on the previous day or for drawn matches4, 

both variables are equal to zero.  

For the meta-analysis performed in this study, we manually collect the estimates of the coefficients 

), and ). from the primary studies, as they capture the abnormal returns associated with the match 

                                                        
3 E.g., lagged returns to control for first-order serial correlation, controls for day-of-the-week effects, or controls for non-weekend holidays. 
4 In contrast to wins and losses, it is unclear how draws impact rational decisions or investor sentiment. Thus, we follow previous primary 
studies and do not analyse the return reactions after drawn matches (among others, Edmans, Garcia, and Norli 2007; Kang and Park 2015). 
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outcomes. Since the coefficients represent stock returns, the effects are directly comparable across 

studies and thus allow aggregation. 

III. Data and sample construction 

Literature search 

For the identification of the meta data set, a four-step search procedure was applied.5  (1) We 

searched major scientific databases (ABI/Inform Complete, Academic/Business Source Premier, 

EconLit, Google Scholar, SSRN) for relevant empirical studies on the relation between soccer match 

outcomes and stock returns.6 (2) We performed a backward search in the reference lists of the articles 

identified during the database search. (3) We used the ‘cited by’-option in Google Scholar to screen all 

references citing articles identified in the database search. (4) We manually screened the publication 

lists of all authors with relevant studies available in the electronic databases.  

During the literature search, only studies that meet the following selection criteria are retained in the 

sample:7 

• Studies must report return estimates for the stock market response to wins or losses of national 

teams or individual clubs. 

• Articles reporting estimates that cannot be clearly assigned to a win or loss are excluded from 

the sample. This is necessary as different match results are likely to be followed by different 

return reactions. Pooling estimates for wins and losses in one single measure would blur these 

effects. 

• A measure of precision of the estimate for the stock market reaction must be reported (that is, 

either standard errors, t-statistics, or p-values). The information about precision is obligatory 

to identify and control for publication bias in the MRA model. 

Applying the selection criteria on the set of articles identified during the literature search produces a 

final sample of 37 primary studies. Within this sample, 30 articles are published in academic journals. 

The other 7 studies are contributions from academic conferences, working papers, and book chapters. 
                                                        
5 For the literature search and the subsequent meta-analysis, we follow best practices for MRA research issued by the Meta-Analysis for 
Economics Research network (Stanley et al. 2013). 
6 Our search command consists of a combination of keywords related to soccer (soccer, football, sporting result, sport sentiment) and stock 
returns (stock return, stock price, economic impact). 
7 The complete list of excluded studies is available on request from the authors. 
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Data preparation 

From all 37 studies, we extract the estimates ), and ). (see Equation 1). To ensure comparability, 

we transform the return estimates into percentage values. Normalized abnormal returns are multiplied 

by the standard deviation of the particular time series to obtain the non-standardized abnormal returns.  

As most authors routinely report more than one estimate (e.g., results from different model 

specifications, subsamples, or robustness checks), we follow an established standard in MRA research 

and include all estimates in order to maximize the information available (among others, Feld, 

Heckemeyer, and Overesch 2013; Hang et al. 2017; Havranek, Horvath, et al. 2015).8  

The majority of estimates measure the return reactions on the first trading day after the games (76%). 

As previous literature finds evidence that financial markets might generate a lagged return reaction, 

especially to bad news (Chan 2003; Palomino, Renneboog, and Zhang 2009), we also include returns 

measuring lagged effects.9 In the full sample, 24% of the estimates refer to more than 1 day after the 

match. 

Finally, our sample consists of 1,126 estimates for the return reaction after soccer matches, where 

548 refer to won matches and 578 to losses. Altogether, the sample provides evidence from a total of 

29,066 soccer matches across 60 countries and 56 soccer clubs. Table 1 provides a detailed overview 

of the articles and the extracted estimates. In the full sample, the mean stock return after wins is 

0.38%; after losses, the effect is about twice as large (−0.76%). The overview also shows that the 

number of significant findings is 162 out of 548 estimates for wins, and 244 out of 578 estimates for 

losses, which provides a first indication for an asymmetry effect in the stock market response. 

[INSERT TABLE 1 HERE] 

IV. Empirical models 

‘Because publication selection is caused by the process of conducting empirical economic 

research itself, conventional econometrics is incapable of correcting or estimating this 

effect. Hence, some “macro” perspective is required that looks across an entire research 

                                                        
8 Picking only one or a few estimates from each study (e.g., the ‘best-set’ or the ‘average-set’ of estimates) causes additional biases, requires 
objective selection rules to decide which estimate to prefer, and leads to a loss of information about within-study variation (Stanley and 
Doucouliagos 2012). 
9 Due to confounding events, lagged return effects are difficult to measure for the impact of national teams’ results on broad stock indices. 
Therefore, lagged effects are only available in studies examining individual soccer clubs. 
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field, and this is precisely what MRA provides.’     

      (Stanley and Doucoouliagos, 2012: 4) 

MRA is a statistical tool to systematically review previous empirical results on the same economic 

effect (Stanley 2001). Its main advantage against a primary study is, that it minimizes random 

estimation error by averaging across the entire research record, allows to detect and correct for 

publication bias, and identifies variables explaining the variability in existing research results 

(heterogeneity). MRA has become the most frequently used technique for research synthesis in many 

areas of economics research (among others, Card, Kluve, and Weber 2010; Geyer-Klingeberg et al. 

2017; Havranek and Irsova 2011; Minviel and Latruffe 2017; Velickovski and Pugh 2011).  

Publication bias 

If researchers share a preference for reporting certain study outcomes (e.g., a significant negative 

return effect after losses of national teams) and therefore discard results from publication if they do not 

comply with their preference (‘file drawer problem’), literature as a whole exaggerates the effect in 

question. Previous studies reveal that publication bias is present in many areas of economics (among 

others, Doucouliagos, Stanley, and Viscusi 2014; Havranek, Irsova, et al. 2015; Møen and Thorsen 

2017). For example, in financial economics, Harvey, Liu, and Zhu (2016) and Harvey (2017) recently 

outlined the presence of strong selective reporting of significant research results in factor studies 

explaining the cross-section of expected returns. 

For a first visual investigation of publication bias, we examine the distribution of collected 

estimates via funnel plots.10 Funnel plots show the observed soccer match effects and their precision, 

which is the inverse of the estimates’ standard errors, in a scatter diagram (Stanley and Doucouliagos 

2010). In the absence of selective reporting, the plot should resemble a symmetrical inverted funnel, 

where the most precise estimates (those with the smallest standard errors) are concentrated close to the 

top and estimates with larger confidence intervals are more widely dispersed at the bottom of the 

graph. In other words, even if the true effect would be negative, we should observe also positive 

                                                        
10 We use funnel plots only for a first visual indication about selective reporting. Inferences about publication bias are drawn from statistical 
testing of publication bias. 
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estimates with large standard errors (due to the law of chance). If specific estimates (e.g., positive 

effects after losses) are systematically omitted from publication, the funnel plot exhibits asymmetry.  

For a statistical analysis of funnel plot asymmetry and thus publication bias, we follow previous 

literature (among others, Ashenfelter, Harmon, and Oosterbeek 1999; Doucouliagos, Stanley, and 

Giles 2012; Havranek 2015) and analyse the relation between the observed estimates and their 

standard errors. This test is based on the idea that, in the absence of publication bias, the effect 

estimates and their standard errors should be statistically independent quantities. However, if 

researchers prefer statistically significant results, they will search for large return effects to offset 

standard errors and to yield an adequate level of statistical significance. Such preference for specific 

results leads to a correlation between the effect estimates and their standard errors, which can be tested 

by the following model (Card and Krueger 1995): 

;&< = )* + )=>?&< + %&<, (2) 

where the dependent variable ;&< is the 3th observed estimate of the stock return effect from study @, 

>?&< are the reported standard errors of the estimates, and %&< is the error term. The slope coefficient )= 

measures asymmetry in the funnel plot and thus publication bias (Egger et al. 1997). )* denotes the 

mean return effect on the condition that standard errors approach zero. Thus, the intercept value can be 

interpreted as the underlying effect corrected for publication bias (Stanley 2005).  

Heterogeneity 

The MRA model in Equation (2) assumes that differences across studies arise from random sampling 

error and publication bias. However, estimates are obtained from studies that use different data sets 

and methodological approaches. This leads to systematic differences (heterogeneity) among the 

estimates. To account for this variation, we add a set of moderator variables, which are suspected to 

systematically affect the heterogeneity in reported results:  

;&< = )* + )=>?&< + ABC&<B

D

BE=

+ F&<, (3) 

where C&<B are moderator variables capturing differences in study design. It should be noted that the 

intercept ()*) still denotes the underlying soccer match effect corrected for publication bias, but now 
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must be interpreted together with the C variables. In the specification above, the intercept represents 

the soccer match effect conditional on G = 0. 

MRA model specification 

There are some caveats to consider during estimation of Equations (2) and (3). First, the variance of 

the estimates ;&< fundamentally depends on a study’s sample size, which is indeed largely different 

across studies (see Table 1). The common way to address this heteroscedasticity is to apply weighted 

least squares (WLS) regression with the inverse of the estimates’ variance as weights. Stanley and 

Doucouliagos (2017) recently exposed in a simulation study that the WLS approach outperforms other 

MRA methods. This inverse-variance weighting implies that more precise estimates, which are 

typically observed from studies with large sample sizes, are given a greater weight and thus more 

influence on the mean effect (precision weighting). A second issue occurs, since the inclusion of 

multiple estimates per study introduces within-study dependencies. We account for non-independent 

estimates by clustering the standard errors at the level of each study.  

As baseline model, we employ a WLS regression with standard errors clustered at the study-level. 

This is the most established and frequently used method in MRA research (among others, Abdullah, 

Doucouliagos, and Manning 2015; Laroche 2016; Nelson and Kennedy 2009). As robustness test, we 

follow Stanley and Doucouliagos (2012) and apply panel regression methods. We report the results 

from a WLS model with study-level fixed effects (FE) to control for unobservable study 

characteristics.11 In addition, we apply a mixed effects model (ME) with study-level random effects 

estimated by maximum likelihood methods. For the three MRA model specifications (WLS, FE, ME), 

all estimations are conducted by inverse-variance weighting. A disadvantage of this approach is, that it 

indirectly puts larger weights on studies that report more estimates. To avoid unintentional weighting 

of articles reporting multiple estimates, we follow recent MRA research (Havranek and Irsova 2017; 

Zigraiova and Havranek 2016) and add a fourth model with alternative weights, which account for the 

number of estimates extracted from each study. For the new weights, we use the inverse of the number 

of estimates reported per study and multiply it with the inverse of the estimates’ variance. 
                                                        
11 We do not apply the fixed effects on Equation (3), because some of the moderator variables C&<B  are constant within studies and thus would 
be perfectly correlated with individual study dummies in the fixed effects model. 
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Accordingly, the new weights assign equal weights to studies independently of the number of reported 

estimates and simultaneously put more emphasize on more precise estimates within the same study. 

Selection of moderator variables 

In this section, we describe the moderator variables C&<B  from Equation (3), which control for 

various sources of heterogeneity. All variables are manually coded from the primary studies. In Table 

2, the selected moderator variables are listed with their definitions, sample mean and standard 

deviation.  

 [INSERT TABLE 2 HERE] 

Nationals teams vs. individual clubs 

An important difference in the design of primary studies concerns the dependent variable in Equation 

(1). The return variable in studies on national teams is commonly a broad national stock market index. 

In contrast, for publicly traded individual clubs, authors examine either return reactions of the club’s 

stock price or a broad stock market index. The choice of the return variable affects the interpretation of 

the results. For publicly traded clubs exists a direct economic channel of their sporting success to 

influence their stock price, because successful teams generate higher profits and hence are more 

valuable (Brown and Hartzell 2001; Gerlach 2011). Accordingly, rational arguments might explain 

movements in the clubs’ stock prices within a range that corresponds to the cash flow changes induced 

by the game. In contrast, except of firms which are connected with national teams (e.g., as a sponsor), 

index reactions after soccer games of national teams can hardly be justified by direct cash flow 

changes of firms included in the stock index. Therefore, most authors interpret abnormal return 

reactions after matches of national teams to be driven by investor sentiment (among others, Edmans, 

Garcia, and Norli 2007). 

Due to these fundamental differences between national teams and individual clubs, we split our 

sample into two homogeneous subsets: (1) studies examining national teams’ results, (2) studies 

analysing the impact of individual clubs. Because of differences in study design, some moderator 
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variables described in the following subsections can only be analysed for one of the two subsamples 

(see also Table 2).12 

Regional differences 

Since many studies report results for multi-country data sets, e.g., Edmans, Garcia, and Norli (2007) 

investigate soccer matches from 39 countries, a major proportion of estimates cannot be clearly 

assigned to a single country. To still capture regional differences, we code four dummy variables 

indicating whether a study includes matches of the main FIFA13 continental championships (Asian 

Cup, Copa América, European Championship)14 or the FIFA World Cup (omitted base category).  

For the sample of individual clubs, a clustering based on world regions is meaningless as more than 

95% of the observations include matches from European countries. Thus, we decided to introduce 

another moderator variable indicating whether a study examines clubs from one of the four major 

European soccer nations (England, Italy, Germany, and Spain)15. 

Match-related study characteristics 

To control for match-related differences, a moderator (Important games) is equal to one if an 

observed return estimate refers to knock-out games16 or final games of national teams, or to games in 

the UEFA Champions League, Euro League, or relegation and promotion matches of individual clubs. 

This variable is motivated by the argument that soccer matches are of different importance and thus 

should trigger different stock market reactions (Edmans, Garcia, and Norli 2007). To capture the 

surprise effect (among others, Palomino, Renneboog, and Zhang 2009), another dummy (Unexpected 

outcome) takes a value of one if an estimate refers to an unexpected match result (e.g., if betting odds 

expect a win, however the actual result is a loss).17 This dummy variable can only be coded if a 

primary study reports separate results for unexpected match outcomes. A further variable captures the 

venue effect (among others, Benkraiem, Louhichi, and Marques 2009) and shows if an estimate 

                                                        
12 It should be noted that also the expected sign of the moderator variables might be different for the two subgroups. 
13 The Fédération Internationale de Football Association is the world soccer association. 
14 None of the studies in our sample include matches of the other FIFA continental cups (Africa Cup, North America Cup or Nations Cup). 
15 The selection of the top soccer nations follows Edmans, Garcia, and Norli (2007), who analyze seven nations as top soccer countries. Due 

to missing observations for individual clubs from Argentina, Brazil, or France, we had to exclude three of the seven nations from the 
classification. 

16 Knock-out games are defined as games after the group session in national cups like the FIFA World Cup. 
17 Primary studies typically measure market expectations by the implicit probabilities observed from betting markets. 
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explicitly refers to matches played on the home ground (Home games) or the opponent’s ground 

(Away games). The omitted control group is a dummy variable identifying studies, which do not 

account for differences in the playing ground. 

Data characteristics 

As the results for the soccer match effect might change over time, we include a dummy variable 

(Before 2005) measuring whether a study’s average observation period refers to the time period before 

2005.18 Another variable (Event window > 1 day after match) indicates whether an estimate measures 

the return effect on the first trading day after a match or the lagged effect at a later point in time. 

Furthermore, we also control whether the number of games examined in the primary studies 

systematically affects the reported return effects (No. of games). A further aspect discussed in the 

literature concerns the size effect. If investor sentiment exists, a stronger return reaction of stocks with 

small market capitalization would be expected (among others, Fung et al. 2015). This effect may be 

reasoned by a home bias (French and Poterba 1991). Accordingly, domestic investors are more 

involved in firms with small market capitalization and thus small companies are more likely to be 

subject to sports sentiment. To capture the size effect, a dummy is included for the case that the 

reported estimates explicitly refer to small caps (Small stocks). Another dummy is coded for large caps 

(Large stocks). The omitted control group is a dummy variable indicating studies, which do not 

account for differences in market capitalization. 

Estimation characteristics and design of analysis 

To account for differences in the estimation technique, we code a dummy variable (GARCH model) 

that is equal to one if authors apply GARCH-type models to estimate Equation (1). For the subsample 

of individual clubs, an additional moderator (Stock index) indicates whether the dependent variable in 

Equation (1) refers to a stock market index or the stock price of publicly traded clubs. As the model 

specification might affect the reported results, we add three dummies to control for the model setup: 

                                                        
18 The break point 2005 is chosen based on a graphical analysis of the structural changes of the soccer match effects over time. 
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(1) market factor included (Market factor)19, (2) day-of-the-week effects included (Day-of-the-week), 

(3) correction for autocorrelation (Serial correlation). 

Publication characteristics 

If native authors are fans of the soccer team investigated in their study, they might be willed to see a 

positive return effect after wins and a weaker effect after losses. A dummy variable denotes if at least 

one co-author is native to the country under examination (Native co-author). We classify authors as 

native, if they were born or obtained an academic degree in the country under examination. To 

consider aspects of study quality not captured by the data and methodology variables, we control for 

the number of Google Scholar citations normalized by the study’s age (No. of citations).  

V. Empirical results 

National teams 

Analysis of publication bias 

Figure 1 shows the funnel plots for wins and losses of national teams.  

[INSERT FIGURE 1 HERE] 

For wins (Panel A), the graph appears to be rather symmetric. For lost matches (Panel B), we can 

observe that the majority of estimates fall into the left side of the plot, while the right side is truncated. 

This asymmetry serves as a first visual indication of selection for negative return reactions after losses. 

Accordingly, literature seems to overestimate the loss effect by systematically discarding zero and 

positive returns after losses. However, as visual inspections from the funnel plots are vulnerable to 

subjective interpretation, we continue with a statistical test of funnel plot asymmetry and thus 

publication bias. 

The MRA model reported in Equation (2) is the most common statistical funnel asymmetry test 

(Egger et al. 1997).20 The estimate for the slope coefficient (>?) measures the presence and size of 

publication bias. The constant represents the mean soccer match effects corrected for publication bias. 

                                                        
19 For national teams, this variable is coded to be 1 if the market model includes a measure for a global market effect (e.g., MSCI world 
index is included in the examination of matches of the US national team on the S&P 500). For individual clubs, this variable is coded to be 1 
if the market model includes a stock market index (e.g., FTSE 100 index is included in the examination of a UK soccer club’s stock price). 
20 The idea of the funnel asymmetry test follows from rotating the axes of the funnel plots in Figure (1) and inverting the values on the new 
horizontal axis (Stanley and Doucouliagos 2012). A significant estimate of the slope coefficient then provides formal evidence for funnel 
asymmetry. 
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Table 3 reports the results of the funnel asymmetry test for national teams using the four alternative 

estimation methods (WLS, FE, ME, and WLS with alternative weights), whereas the WLS regression 

(model 1) represents our baseline model. The other three models serve as a robustness test. For the 

interpretation in the following sections, we refer to the results from the baseline models. 

[INSERT TABLE 3 HERE] 

The statistical tests of publication bias underline the previous suspicion from the funnel plots. For 

wins (Panel A), there is neither evidence for publication bias, nor a significant mean soccer match 

effect after correcting for selective reporting. In contrast, the bias coefficient in the subsample of lost 

matches (Panel B) is statistically significant ()HI = −1.0181; K < 0.01;	model 1b). The negative sign 

of the coefficient suggests that there is a preference in the literature to report strong loss effects and to 

omit zero or positive stock market responses. Regarding the extent of publication bias, we follow the 

guidelines by Doucouliagos and Stanley (2013) and classify the estimate of )HI , which is larger than 

1, as ‘substantial selectivity’.21 When looking at the estimate for the intercept, it becomes apparent that 

the mean soccer match effect corrected for publication bias is about −5 basis points ()* = −0.0464; 

K > 0.05 ; model 1b). Nevertheless, this effect is insignificant. As there is no loss effect after 

correcting for publication bias, our meta-analysis results are in line with Klein, Zwergel, and Heiden 

(2009). This contradicts with previous studies interpreting significant index movements after soccer 

games of national teams as evidence for sports sentiment (among others, Ashton, Gerrard, and Hudson 

2011; Edmans, Garcia, and Norli 2007). The findings are robust across the different MRA 

specifications (models 2-4). 

The magnitude of publication bias can also be illustrated by comparing the uncorrected average 

effects (reported in Table 2) with the corrected effects represented by the intercept values in Table 3. 

For wins, the arithmetic average is −5 basis points. After correction for publication selection, the 

estimate becomes positive with a value of 4 basis points in the baseline model (1a). Therefore, it 

seems questionable why the arithmetic average effect for wins is negative. Under the rationality 

paradigm we would expect a zero effect and under the sports sentiment hypothesis we would expect 
                                                        
21 According to Doucouliagos and Stanley (2013), publication bias can be classified as ‘little to modest’ if the bias coefficient is statistically 
insignificant or )HI < 1; ‘substantial’ if )HI  is statistically significant and 1 ≤ )HI ≤ 2; and ‘severe’ if )HI  is statistically significant and 
)HI > 2. These guidelines hold for the test of publication bias without including further moderator variables (Equation 2). 
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stock returns to rise due to a positive mood effect. One possible explanation for this result might be 

that most primary studies measure wins and losses in the same model (see Equation 1). If researchers 

search for negative loss effects as evidence for sports sentiment and therefore adjust their models until 

they find a significant loss effect, also the estimates of the win coefficient in Equation (1) might be 

biased downwards. The funnel plot of the win effects (Figure 1) endorses this assumption. If authors 

would prefer positive win effects, we would expect more estimates to fall into the right side of the 

plot. However, the funnel appears at least symmetric or there is even a slightly larger proportion of 

dots in the left side of the funnel.  

For losses of national teams, the arithmetic average is −33 basis points. Comparing this value with 

the corrected mean effect of the baseline model (1b) reveals that, due to publication bias, the mean 

effect is exaggerated by a factor close to 7.  

Beside the existence of a significant return reaction, literature often interprets differences in the size 

of the effects after wins and losses as indicator for non-rational investor behaviour. The asymmetry 

effect refers to larger absolute values for ). compared to )R in Equation (1). This phenomenon can be 

explained by the fact that people’s reference point is that their team wins22, which causes biased ex 

ante expectations for the match outcome, which are corrected after the game result is known (Edmans, 

Garcia, and Norli 2007). Regarding the findings from Table 3, we cannot find any evidence for an 

asymmetry in the sample of national teams. Hence, the strong asymmetry effect that can be observed 

from the simple average effects (Table 1) vanishes after correcting for publication bias. This serves as 

further evidence against the sports sentiment hypothesis.  

Analysis of heterogeneity 

As we can see from the study overview in Table 1, estimates for the soccer match effect substantially 

differ both within and between studies. In this section, we attempt to relate the differences in the 

estimates to differences in the design of the primary studies. Table 4 reports the results of the multiple 

MRA model (Equation 3), where the models (5a) and (5b) represent our baseline for interpretation. 

The other two models (ME and WLS with alternative weights) serve as a robustness test. It should be 

                                                        
22 Bernile and Lyandres (2011) show that investors overestimate the winning probability by nearly 5 percentage points. 
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noted that, in contrast to the basic MRA (Equation 2), the estimated values of the intercept cannot be 

directly interpreted as mean soccer match effect, because they are now conditional on the values of the 

moderators. Hence, there is a wide range of mean values, depending on the desired conditions and the 

resultant variable manifestations. Consequently, for the multiple MRA model, we do not interpret the 

results of the intercept term. 

[INSERT TABLE 4 HERE] 

Regarding the results for )HI, we find in the baseline model (5b) that even after controlling for 

various aspects of study design, the bias coefficient in the subsample of lost games of national teams 

still shows significant evidence for publication bias. As the guidelines for the interpretation of the bias 

coefficient by Doucouliagos and Stanley (2013) refer to the case without including additional 

moderator variables, they cannot be applied equivalently to the model including further variables. 

However, the primary goal of the multiple MRA model is not the test of publication bias, but rather 

the analysis of residual heterogeneity beyond publication bias.  

For wins (Panel A), the results of the additional moderator variables are weak. Therefore, we 

conclude that the heterogeneity of the estimates in the funnel plot is largely driven by random 

variability. Regarding the subsample of lost matches (Panel B), several interesting findings can be 

observed. The time dummy (Before 2005) indicates that the size of the negative loss effect is, on 

average, −11 basis points larger compared to studies examining games in more recent time periods. 

This serves as evidence that the loss effect decreases over time, which is in line with the finding by 

Ashton, Gerrard, and Hudson (2011). Moreover, the positive and significant coefficients for the Large 

Stocks variable imply that the negative loss effect is reduced by 9 basis points for estimates referring 

to stocks with large market capitalization. Previous studies support the finding that large stocks are 

less affected by investor sentiment (Baker and Wurgler 2006). Furthermore, the method choice seems 

to have an impact on the reported results. GARCH-type regressions find more negative loss effects 

(about −25 basis points) compared to studies applying regression-based event studies via OLS or 

simple average abnormal return models. Furthermore, if authors correct their estimation for day-of-

the-week effects (serial correlation), they find, on average, −21 basis points larger (19 basis points 
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smaller) negative loss effects. Finally, the dummy variable Native co-author reveals that the 

nationality of the authors systematically influences their findings, i.e., native authors tend to report 

that lost matches of national teams have a less negative impact of about 19 basis points.  

With respect to the robustness of the findings for the moderator variables, the ME models (6a and 

6b) support the inferences from the baseline models. The WLS models with alternative weights (7a 

and 7b) produces different results. For wins, there is some evidence that the nationally of the authors 

increases the win effect. For losses, most of the effects disappear and only the Large stocks variable 

shows significance. 

Regarding the overall fit of the models represented by the adjusted TU statistics, the correction for 

publication bias and the inclusion of the moderator variables helps to explains to 18% (52%) of the 

variation in the existing research results for wins (losses) of national teams. In comparison, Nelson and 

Kennedy (2009) find that, in the field of economics, the median adjusted R² statistics across 125 

previous meta-analyses is 44%. 

Individual Clubs 

Analysis of publication bias 

Figure 2 shows the funnel plots for the sample of individual clubs.  

[INSERT FIGURE 2 HERE] 

In both graphs, we observe larger variability of the estimates compared to the funnel plots of national 

teams. The estimates for the win effect (Panel A) seem quite symmetrically distributed around the 

most precise estimates. In contrast, in the plot for lost matches (Panel B), there are many estimates 

with low precision dispersed around the bottom and only few estimates with high precision that are 

close to zero. Again, the plot indicates that there might be a tendency to report negative loss effects. 

However, this interpretation is subjective. Therefore, we continue with the results of the statistical 

funnel asymmetry test (Equation 2), which are reported in Table 5. 

[INSERT TABLE 5 HERE] 

For wins (Panel A), there is some evidence for a tendency of authors to prefer reporting positive 

stock market returns. )HI  shows significance at least at 10% in the baseline model (8a) with a t-
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statistic of 1.93. Thus, publication bias cannot be neglected for wins, although evidence is weak. This 

is supported by the fact that the magnitude of the bias coefficient is 1.020. According to Doucouliagos 

and Stanley (2013), this finding can be interpreted as ‘substantial selectivity’. After correcting the 

mean soccer match effect after wins for publication selection, we find an insignificant mean return, 

which is illustrated by the coefficient of the constant term ()* = 0.0615; K > 0.05; Model 8a). This 

effect is about 10 times smaller than the simple average, which accounts for 62 basis points. The 

alternative models support the evidence for publication bias (models 9a and 11a) and the non-

existence of a significant mean return after wins of individual clubs (models 9a, 10a and 11a). 

In Panel B, the baseline model suggests no presence of publication bias. According to the results for 

the intercept, the mean effect corrected for publication bias is significant ()* = −0.3876; K < 0.05; 

model 8b), which implies that there is a negative stock market response to losses of individual clubs. 

Compared to the simple average, which accounts for −98 basis points (see Table 2), publication bias 

causes an overestimation that is about twice as large as the uncorrected mean. However, even after 

correction, the effect is still remarkably different from zero. The finding of a negative loss effect is in 

line with two of the three alternative models (9b and 10b). In contrast, models (9b) and (11b) show 

strong evidence for publication bias with coefficients above 1. In summary, there is no clear picture 

regarding the estimates of the bias coefficient. 

Comparing the results for the mean returns after wins and losses exhibits a strong asymmetry effect 

for individual clubs. This finding is consistent with past studies documenting asymmetry in stock 

market responses between good and bad news (Dimic et al. 2017; Scholtens and Peenstra 2009). 

Edmans, Garcia, and Norli (2007) explain this finding by the asymmetric structure of international 

competitions. For example, a loss in a second leg match in the round of the last 16 in the UEFA 

Champions League leads to the elimination of a team, which offers information to investors that the 

club will not earn additional price money from this tournament in the current season. In contrast, a win 

in this knock-out game merely pushes a team to the next round of the competition. Altogether, the 

existence of an asymmetry effect is a challenge for market efficiency and thus might be interpreted as 

evidence for sports sentiment (Bernile and Lyandres 2011). 
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Analysis of heterogeneity 

Table 6 reports the results of the extended MRA model (Equation 3) including additional variables 

that are suspected to be in charge of the large variation of soccer match estimates across studies. 

[INSERT TABLE 6 HERE] 

The estimates for the bias coefficient )HI  indicate selective reporting after wins (Panel A) and losses 

(Panel B). Accordingly, publication bias is detected even when we include different aspects of study 

design. 

Regarding the moderator variables, we can conclude for wins (Panel A) that studies examining clubs 

from one of the top four soccer nations report, on average, smaller loss effects of −51 basis points in 

the baseline model (12a). This result is somewhat challenging, as other studies find that return effects 

are stronger in countries in which soccer is most popular and of large economic importance (e.g., 

Edmans, Garcia, and Norli 2007). If the return reaction to club matches is driven by sports sentiment, 

our results indicate that this sentiment-driven reaction is less pronounced in the top soccer nations. As 

the coefficient for the time dummy (Before 2005) is positive and statistically significant for wins, there 

seems to be a tendency for larger win effects in the 1990s and earlier 2000s. The estimate for the Stock 

index variable is also significant, i.e. studies examining the impact of individual clubs on stock indices 

find lower returns after wins than authors focusing on the reaction of the clubs’ stock price. According 

to the baseline model (12a), the index effect is about 74  basis points smaller. Moreover, studies 

controlling for serial correlation in their event study, find stronger win effects.  

In Panel B, the coefficient for Home games provides strong evidence that losses on the home ground 

increase the negative loss effect by −35 basis points. If markets are efficient, we would expect no 

overall difference between home and away games. Thus, the result might be interpreted as further 

evidence for mood-related investor behaviour (Bernile and Lyandres 2011). Also the number of games 

explains differences across studies. According to the baseline model (12b), studies with more matches 

in their sample (No. of games), report loss effects that are, on average,	−20 basis points smaller than 

studies with fewer games in their sample. There is also evidence that the Exclusion of outliers 

systematically produces less negative loss effects. This finding is intuitive, as the exclusion of extreme 
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observations reduces the chance to find large effects. From the coefficient for Native co-author, we 

might conclude that authors, who are native to the country under examination, tend to report more 

negative loss effects. The negative sign of the coefficient implies that native authors favour more 

pronounced return reactions of clubs. The direction of the effect is different for national teams and 

individual clubs. 

From the two alternative models, we can derive for Panel A that there is additional support in at least 

one of the robustness tests for the effects identified for the variables Top soccer league, Before 2005, 

and Stock index. In addition to the baseline model, the alternative models (13a and 14a) suggest that 

controlling for day-of-the-week effects leads to stronger return reactions after wins. In Panel B, we 

find indication for the robustness of the results for No. of games, Exclusion of outliers, and Native co-

author. 

In summary, the overall fit of the models shows that the correction for publication bias and the 

inclusion of the moderator variables explain 33% (41%) of the variation in the existing research results 

of wins (losses), compared to 10% (11%) in the basic MRA without controlling for the moderator 

variables (see Table 5).  

VI. Conclusions 

This study applies meta-regression analysis to integrate and systematically analyse 37 empirical 

studies on the impact of soccer matches on stock returns. Our results reveal that literature suffers from 

severe publication bias, especially when looking at stock returns after lost matches. Accordingly, 

positive and insignificant estimates of the loss effect are less frequently reported. because researchers 

prefer to find a significant negative loss effect, which often serves as evidence for the existence of a 

sports sentiment effect and thus behavioural aspects in asset pricing. After correcting for publication 

bias, we find that the mean return effect of national teams is statistically insignificant for both wins 

and losses. This result provides evidence against the hypothesis that stock markets are driven by sports 

sentiment. For individual clubs, losses are associated with significantly negative postgame returns, 

while wins are followed by near zero returns. This asymmetry in the stock market response of 

individual clubs might be interpreted as an indicator for non-rational investor behaviour.  
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Besides the analysis of publication bias, we conduct a multiple meta-regression analysis and identify 

various aspects of study design like regional differences in the data set, time period under 

examination, and the design of empirical analysis to explain the wide variation in previous study 

outcomes. Two effects are especially strong: first, the return effects after losses of national teams and 

wins of individual clubs are larger for the time before 2005; second, stock market reactions after 

matches of individual clubs are systematically lower in the top soccer nations (England, Germany, 

Italy, and Spain). 

In summary, the selective reporting of strong and significant negative returns after losses distorts the 

view about the true underlying effect. If the simple average across studies, which is uncorrected for 

publication bias, represents the common impression about the impact of soccer games on stock 

markets, our analysis uncovers that this view is highly exaggerated. These findings should be 

considered for future analyses on the relationship between soccer matches and stock markets in 

particular and sports sentiment in general.   
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Table 1. The meta data set 

Author(s) Object of study 
Sample 
period Countries 

No. of 
matches 

Panel A: Wins Panel B: Losses 

Total no. of effects  
[Significant effects] 

Mean 
return 
(%) 

Std. Dev.  
(%) 

Total no. of effects  
[Significant effects] 

Mean 
return 
(%) 

Std. Dev.  
(%) 

Allouche and Sebastien (2008) Clubs 1998-2001 England 681 26 [15] 0.55 0.84 21 [16] -0.70 0.80 

Ashton, Gerrard, and Hudson (2011) National teams 1984-2009 England 290 24 [3] 0.05 0.21 24 [1] -0.29 0.19 

Benkraiem, Louhichi, and Marques (2009) Clubs 2006-2007 6 countries (Europe) 745 12 [3] 0.08 0.62 12 [3] -0.48 0.95 

Berkowitz and Depken (2017) Clubs 1992-2008 England 951 3 [2] 0.42 0.21 6 [6] -1.58 0.79 

Bernile and Lyandres (2011) Clubs 2000-2006 8 countries (Europe) 626 13 [9] 1.31 1.28 17 [8] -0.72 0.99 

Berument and Ceylan (2012) Clubs 1977-2007 4 countries (Global) 1,543 2 [2] 0.80 0.70 2 [2] -0.33 0.28 

Berument, Ceylan, and Onar (2013) Clubs 1987-2011 Turkey 385 3 [1] 0.65 0.07 3 [3] -1.39 0.05 

Botha and de Beer (2011) National teams 1990-2010 South Africa 249 2 [0] 0.01 0.02 0 [0] - - 

Castellani, Pattitoni, and Patuelli (2015) Clubs 2007-2009 10 countries (Europe) 2,157 25 [13] 0.63 0.87 25 [17] -1.22 0.81 

Demir and Danis (2011) Clubs 2002-2009 Turkey 915 27 [1] 0.06 0.59 27 [22] -1.62 0.60 

Demir and Rigoni (2017) Clubs 2003-2010 Italy 114 3 [3] 1.56 0.12 3 [2] -0.83 0.02 

Demirhan (2013) National teams 1988-2011 Turkey 239 1 [0] -0.10 0.00 1 [0] -0.50 0.00 

Dimic et al. (2017) Clubs 2000-2013 6 countries (Europe) 4,347 42 [33] 0.78 0.71 42 [41] -1.42 0.35 

Dobson and Goddard (2001) Clubs 1997-1999 England 164 8 [4] 10.23 13.78 26 [11] -3.96 7.06 

Duque and Ferreira (2005) Clubs 1998-2002 Portugal 340 1 [1] 1.47 0.00 1 [1] -1.00 0.00 

Edmans, Garcia, and Norli (2007) National teams 1973-2004 39 countries (Global) 1,162 36 [2] -0.01 0.07 40 [24] -0.18 0.10 

Floros (2014) Clubs 2006-2011 3 countries (Europe) 179 4 [0] -0.07 0.25 4 [1] -0.48 1.25 

Fotaki, Markellos, and Mania (2009) Clubs 1997-2004 2 countries (Europe) 4,793 1 [1] 0.23 0.00 1 [1] -0.22 0.00 

Fung et al. (2015) Clubs 1999-2011 Turkey 278 90 [14] -0.13 0.73 90 [11] 0.08 0.73 

Gallagher and O'Sullivan (2011) National teams 1989-2012 Ireland 95 12 [2] 0.07 0.32 13 [2] -0.30 0.28 

Gerlach (2011) National teams 1974-2002 32 countries (Global) 328 0 [0] - - 3 [3] -0.39 0.02 

Jørgensen, Moritzen, and Stadtmann (2012) Clubs 2009-2011 Denmark 121 3 [0] 0.02 0.01 0 [0] - - 

Kang and Park (2015) National teams 1983-2012 Korea 166 6 [1] 0.17 0.25 6 [5] -0.58 0.29 

Klein, Zwergel, and Heiden (2009) National teams 1990-2006 13 countries (Europe) 295 18 [2] 0.40 1.01 22 [0] -0.06 0.28 
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Author(s) Object of study 
Sample 
period Countries 

No. of 
matches 

Panel A: Wins Panel B: Losses 

Total no. of effects  
[Significant effects] 

Mean 
return 
(%) 

Std. Dev.  
(%) 

Total no. of effects  
[Significant effects] 

Mean 
return 
(%) 

Std. Dev.  
(%) 

Kolaric, Pusic, and Schiereck (2015) National teams 1998-2012 41 countries (Global) 1,466 46 [2] -0.06 0.18 46 [6] -0.15 0.18 

Majewski (2014) Clubs 2001-2014 Italy 481 0 [0] - - 1 [1] -1.09 0.00 

Majewski and Majewska (2014) Clubs 2004-2014 Germany 1,337 3 [3] -0.60 1.10 0 [0] - - 

Morrow (1999) Clubs 1996-1997 England 26 1 [0] 1.02 0.00 2 [1] -2.14 1.16 

Nicolau (2011) Clubs 2000-2006 Spain 215 1 [1] 0.07 0.00 1 [1] -0.19 0.00 

Nicolau (2012) National team 2010-2010 Spain 7 3 [3] 0.54 0.40 2 [2] -0.87 0.99 

Palomino, Renneboog, and Zhang (2009) Clubs 1999-2002 2 countries (Europe) 916 32 [13] 0.80 0.73 32 [16] -1.00 0.68 

Renneboog and Vanbrabant (2000) Clubs 1995-1998 2 countries (Europe) 840 38 [10] 0.62 1.23 40 [14] -0.82 1.57 

Scholtens and Peenstra (2009) Clubs 2000-2004 5 countries (Europe) 1,274 7 [4] 0.39 0.39 7 [7] -1.69 0.75 

Stadtmann (2006) Clubs 2000-2004 Germany 174 5 [1] 1.67 0.92 8 [2] -1.89 1.12 

Vieira (2012) National teams 2008-2010 31 countries (Global) 64 18 [4] -0.09 0.70 18 [3] -0.64 0.67 

Vieira (2013) National teams 2007-2008 14 countries (Europe) 31 30 [9] -0.43 0.62 30 [11] -0.61 0.66 

Zuber et al. (2005) Clubs 1997-2000 England 1,072 2 [0] -0.14 0.01 2 [0] 0.31 0.02 

Overall 548 [162] 0.38 2.13 578 [244] -0.76 1.85 

The table reports an overview of the 37 studies included in the meta-analysis sample. Object of study denotes if the study examines the soccer match impact of national teams or individual clubs. Sample period refers to the 
observation period of the data set (e.g., if the study examines games of the FIFA World Cup 2014, but the estimation of the expected return starts 250 days prior to the cup, the sample period is 2013-2014). Countries denotes 
the countries for which soccer matches are analysed in the primary studies’ samples. Matches represents the total number of soccer matches in each study. The columns (6) – (11) contain the summary statistics for the effects 
extracted from the primary studies. Total no. of effects denotes the number of estimates extracted from each study. The number of effects that is found to be statistically significant, at least at the 5% level, is reported in brackets. 
Mean return (%) and Std. Dev. (%) refer to the study-specific mean and standard deviation of the reported stock return effects (both in percentage values). Missing information was requested from the study authors.  



Table 2.  Variable definition and descriptive statistics 

 
Panel A: National teams  Panel B: Individual clubs 

Wins  Losses  Wins  Losses 

Variables Description Mean Std.  
Dev.  Mean Std.  

Dev.  Mean Std.  
Dev.  Mean Std.  

Dev. 

Effect The return estimate reported in the primary study -0.05 0.51  -0.33 0.42  0.62 2.60  -0.98 2.24 
SE The standard error of the return estimate 0.42 1.35  0.47 1.61  0.53 0.83  0.63 0.76 
Regional differences            

Asian Cup† = 1 if the estimate’s sample includes matches from the 
Asian Cup 

0.28 0.45  0.29 0.46       

Copa América† = 1 if the estimate’s sample includes matches from the 
Copa América 

0.28 0.45  0.29 0.46       

UEFA Euro† = 1 if the estimate’s sample includes matches from the 
European Championship 

0.69 0.46  0.72 0.45       

World Cup† = 1 if the estimate’s sample includes matches from the 
FIFA World Cup (base category) 

0.64 0.48  0.66 0.48       

Top soccer 
league* 

= 1 if the estimate’s sample includes soccer clubs from 
England, Italy, Germany, or Spain 

      0.35 0.48  0.39 0.49 

Match-related characteristics            

Important games = 1 if the estimate refers to highly important matches 0.22 0.42  0.22 0.41  0.17 0.38  0.17 0.38 

Unexpected outcome = 1 if the estimate refers to unexpected match results 
with market expectations observed from betting odds 

0.02 0.12  0.06 0.24  0.11 0.32  0.11 0.31 

Home games* = 1 if the estimate refers to matches played on the club’s 
home ground 

      0.05 0.21  0.04 0.20 

Away games* = 1 if the estimate refers to matches played on the 
opponent’s ground 

      0.05 0.21  0.06 0.23 

Mixed ground*  = 1 if the estimate does not consider differences in the 
playing ground (base category) 

      0.91 0.29  0.90 0.29 

Data characteristics            

Before 2005 = 1 if the estimate refers to an average observation 
period [(End year of data – start year)/2] before 2005 

0.46 0.50  0.49 0.50  0.44 0.50  0.49 0.50 

Event window >  
1 day after match* 

= 1 if the estimate measures the return reactions at the 
second day after a match or a later point in time 

      0.24 0.43  0.25 0.43 

No. of games The logarithm of the number of games covered by the 
sample 

3.74 1.34  3.51 1.27  4.45 1.41  4.06 1.33 

Exclusion of outliers = 1 if return outliers are removed from the sample 0.08 0.27  0.07 0.26  0.26 0.44  0.24 0.43 

Small stocks† = 1 if the estimate explicitly refers to companies with 
small market capitalization 

0.06 0.24  0.06 0.25       

Large stocks† = 1 if the estimate explicitly refers to companies with 
large market capitalization 

0.04 0.19  0.03 0.18       

Mixed stocks† = 1 if the estimate does not consider differences in the 
market capitalization of the firms (base category) 

0.90 0.30  0.91 0.30       

Estimation characteristics and design of analysis            

GARCH model = 1 if the estimate is derived from a GARCH-type event 
study model (base category: dummy regression or 
average abnormal return event study model) 

0.10 0.30  0.09 0.29  0.12 0.33  0.11 0.32 

Stock index* = 1 if the estimate refers to abnormal returns of a stock 
market index (base category: returns refer to the club’s 
stock price) 

      0.27 0.44  0.26 0.44 

Market factor  = 1 if the model controls for market-wide effects 0.62 0.49  0.64 0.48  0.95 0.21  0.96 0.19 

Day-of-the-week  = 1 if the model controls for Day-of-the-week effects 0.73 0.45  0.73 0.44  0.40 0.49  0.38 0.49 

Serial correlation = 1 if the model controls for first-order serial correlation 0.88 0.32  0.90 0.30  0.53 0.50  0.52 0.50 

Publication characteristics            

Native co-author = 1 if at least one co-author is native to the country 
under examination 

0.24 0.43  0.23 0.42  0.68 0.47  0.68 0.47 

No. of citations The logarithm of [(Google Scholar citations)/(age of the 
study) + 1], collected in September 2017 

1.16 1.51  1.22 1.54  1.33 0.74  1.48 0.86 

Variables marked with a cross (†) are only considered in the sample of national teams. Variables marked with an asterisk (*) are only considered 
in the sample of individual clubs.  
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Table 3. Test of publication bias and true effect beyond [National teams] 

 Panel A: Wins  Panel B: Losses 

 
(1a) 

WLS 
(Baseline) 

(2a) 
FE 

(3a) 
ME 

(4a) 
WLS  

(Alt. weights) 

 (1b) 
WLS 

(Baseline) 

(2b) 
FE 

(3b) 
ME 

(4b) 
WLS  

(Alt. weights) 

SE -0.4356 -0.2025 -0.4173 -0.3175  -1.0181*** -1.0501*** -0.8642*** -1.1720*** 
(Publication bias) (-1.31) (-0.56) (-1.25) (-0.97)  (-8.01) (-5.36) (-6.79) (-8.30) 
Constant  0.0407 0.0057 0.0282 0.0422  -0.0464 -0.0410 -0.073 -0.0302 
(Effect beyond bias) (0.91) (0.11) (0.64) (1.51)  (-1.00) (-1.25) (-1.64) (-1.25) 

Adj. !" 0.02 - 0.04 0.02  0.33 - 0.60 0.43 
No. of estimates 196  202 
No. of studies 11  10 

The table presents the results of the meta-regression model from Equation (2) for all studies including estimates for the soccer match effect of 
national teams. The estimates for SE measure the presence and degree of publication bias. The constant quantifies the true soccer match effect 
corrected for publication bias. Estimations in models (1) – (3) are conducted by weighted least squares with the inverse of the estimates’ standard 
errors used as weights to correct for heteroscedasticity. Model (2) additionally incorporates study-level fixed effects to consider unobservable 
heterogeneity. Model (3) is a mixed effects model with random study-level effects estimated by maximum likelihood. Model (4) applies 
alternative weights (inverse of estimates’ standard errors multiplied with the inverse number of estimates observed from a study) to avoid a 
dominating influence of studies reporting a high number of estimates. For all models, standard errors are clustered at the study-level to account 
for within-study dependencies arising from multiple estimates reported in the same study. t-statistics are reported in parentheses. 

***, ** and * denote significance at the 1%, 5% and 10% level.  
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Table 4. Multiple meta-regression results [National teams] 

 Panel A: Wins  Panel B: Losses 

 
(5a) 

WLS 
(Baseline) 

(6a) 
ME 

(7a) 
WLS  

(Alt. weights) 

 (5b) 
WLS 

(Baseline) 

(6b) 
ME 

(7b) 
WLS  

(Alt. weights) 

Constant -0.3404 -0.4482 -0.3211  -0.2242 -0.2010 -0.2291 
 (-1.10) (-1.35) (-1.22)  (-1.63) (-1.47) (-1.26) 

SE (Publication bias) 0.0610 0.2136 0.1237  -0.6079** -0.6037** -0.7682** 
 (0.18) (0.60) (0.45)  (-2.96) (-2.93) (-2.86) 
Asia Cup -0.0149 0.0142 -0.0447  -0.0262 -0.0302 -0.0664 
 (-0.31) (0.24) (-0.68)  (-1.27) (-1.27) (-1.38) 
Copa América 0.0851 0.0837 0.1876  0.0292 0.0284 -0.0151 
 (1.11) (0.89) (1.45)  (1.14) (1.01) (-0.21) 
UEFA Euro  -0.0464 -0.0734 -0.0658  0.0219 0.0255 0.1252 
 (-0.68) (-1.02) (-0.91)  (0.25) (0.28) (1.00) 
Important games 0.0416 -0.0025 -0.0094  0.0060 0.0066 0.0305 
 (0.67) (-0.03) (-0.10)  (0.15) (0.16) (0.52) 
Unexpected outcome 0.2744 0.3079* 0.2702  -0.0177 -0.0156 0.0044 
 (1.55) (1.91) (1.71)  (-1.29) (-1.04) (0.19) 
Before 2005 -0.0903 0.0036 -0.0826  -0.1065** -0.1435** -0.1164* 
 (-0.48) (0.02) (-0.89)  (-3.01) (-2.92) (-1.92) 
No. of games 0.0309 0.0399 0.0180  0.0039 -0.0002 -0.0015 
 (0.78) (0.85) (0.47)  (0.30) (-0.02) (-0.09) 
Exclusion of outliers -0.0159 -0.0096 -0.0323  -0.0082 -0.0096 -0.0362 
 (-0.75) (-0.32) (-0.84)  (-0.41) (-0.44) (-0.98) 
Small stocks -0.0662 -0.0609 -0.0117  -0.1912* -0.1877* -0.1919 
 (-0.57) (-0.45) (-0.09)  (-2.15) (-2.10) (-1.78) 
Large stocks 0.0075 -0.0220 -0.0287  0.0863*** 0.0884*** 0.1023*** 
 (0.20) (-0.34) (-0.38)  (6.49) (6.29) (3.80) 
GARCH model 0.0064 -0.0346 -0.0443  -0.2546** -0.2412** -0.1048 
 (0.03) (-0.27) (-0.50)  (-2.68) (-2.88) (-0.73) 
Market factor 0.1684 0.1657 0.1246  0.1159 0.1397 0.1334 
 (1.25) (1.25) (1.27)  (1.47) (1.79) (1.35) 
Day-of-the-week -0.2326 -0.2448 -0.2662*  -0.2088** -0.2170** -0.1100 
 (-1.04) (-1.37) (-2.04)  (-2.86) (-2.99) (-1.22) 
Serial correlation 0.1688 0.2072 0.2383  0.1914** 0.1744* 0.1012 
 (0.78) (1.22) (1.78)  (2.29) (1.89) (0.75) 
Native co-author 0.2980 0.2909 0.3178**  0.1888** 0.2030** 0.0976 
 (1.31) (1.63) (2.29)  (2.52) (2.83) (0.80) 
No. of citations 0.0210 0.0109 0.0212  0.0055 0.0145 0.0062 
 (0.46) (0.30) (1.07)  (0.56) (1.10) (0.35) 

Adj. !" 0.18 0.16 0.23  0.52 0.70 0.58 
No. of estimates 196  202 
No. of studies 11  10 

The table presents the results of the meta-regression model from Equation (3) for all studies including estimates for the soccer match effect of 
national teams. Explanatory variables and descriptive statistics are reported in Table 2. Estimations in models (5) and (6) are conducted by 
weighted least squares with the inverse of the estimates’ standard errors used as weights to correct for heteroscedasticity. Model (6) is a mixed 
effects model with random study-level effects estimated by maximum likelihood. Model (7) applies alterative weights (inverse of estimates’ 
standard errors multiplied with the inverse number of estimates observed from a study) to avoid a dominating influence of studies reporting a 
high number of estimates. For all models, standard errors are clustered at the study-level to account for within-study dependencies arising from 
multiple estimates reported in the same study. t-statistics are reported in parentheses.  

***, ** and * denote significance at the 1%, 5% and 10% level.  
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Table 5. Test of publication bias and true effect beyond [Individual clubs] 

 Panel A: Wins  Panel B: Losses 

 
(8a) 

WLS 
(Baseline) 

(9a) 
FE 

(10a) 
ME 

(11a) 
WLS  

(Alt. weights) 

 (8b) 
WLS 

(Baseline) 

(9b) 
FE 

(10b) 
ME 

(11b) 
WLS  

(Alt. weights) 

SE 1.0201* 0.8297** 0.5691 1.2246*  -0.9905 -1.0827** -0.5517 -1.9826*** 
(Publication bias) (1.93) (2.70) (1.20) (1.91)  (-1.49) (-2.58) (-0.93) (-4.89) 
Constant  0.0615 0.1075 0.5691 -0.0022  -0.3876** -0.3550** -0.5229** -0.0538 
(Effect beyond bias) (0.96) (1.45) (1.20) (-0.11)  (-2.45) (-2.39) (-2.34) (-0.99) 

Adj. !" 0.10 - 0.15 0.09  0.11 - 0.34 0.30 
No. of estimates 352  376 
No. of studies 24  24 

The table presents the results of the meta-regression model from Equation (2) for all studies including estimates for the soccer match effect of 
individual clubs. The estimates for SE measure the presence and degree of publication bias. The constant quantifies the true soccer match effect 
corrected for publication bias. Estimations in models (1) – (3) are conducted by weighted least squares with the inverse of the estimates’ standard 
errors used as weights to correct for heteroscedasticity. Model (2) additionally incorporates study-level fixed effects to consider unobservable 
heterogeneity. Model (3) is a mixed effects model with random study-level effects estimated by maximum likelihood. Model (4) applies 
alternative weights (inverse of estimates’ standard errors multiplied with the inverse number of estimates observed from a study) to avoid a 
dominating influence of studies reporting a high number of estimates. For all models, standard errors are clustered at the study-level to account 
for within-study dependencies arising from multiple estimates reported in the same study. t-statistics are reported in parentheses. 

***, ** and * denote significance at the 1%, 5% and 10% level.  
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Table 6. Multiple meta-regression results [Individual clubs] 

 Panel A: Wins  Panel B: Losses 

 
(12a) 
WLS 

(Baseline) 

(13a) 
ME 

(14a) 
WLS  

(Alt. weights) 

 (12b) 
WLS 

(Baseline) 

(13b) 
ME 

(14b) 
WLS  

(Alt. weights) 

Constant -0.1891 -0.4684 -0.0897  0.3915 0.7503 0.1151 
 (-0.73) (-1.08) (-0.38)  (0.93) (1.14) (0.29) 

SE (Publication bias) 1.1441** 1.0366** 0.9770  -1.2765** -1.0543** -1.5758*** 
 (2.46) (2.17) (1.43)  (-2.45) (-2.37) (-4.73) 
Top soccer league -0.5060*** -0.1445 -0.6047***  0.3089* 0.2941 0.4451*** 
 (-2.82) (-0.46) (-5.81)  (1.75) (1.29) (5.13) 
Important games -0.1885 -0.0849 -0.1160  -0.2619 -0.2676 -0.1048 
 (-1.41) (-0.46) (-1.01)  (-1.55) (-1.42) (-1.05) 
Unexpected outcome 0.0431 0.0194 -0.1810  0.0292 -0.0290 0.5690 
 (0.17) (0.09) (-1.04)  (0.21) (-0.16) (1.45) 
Home games -0.1068 -0.1873** 0.0868  -0.3538*** -0.2928 -0.3303 
 (-1.41) (-2.28) (0.91)  (-2.94) (-1.57) (-1.70) 
Away games 0.0362 0.0589 0.1389  -0.0484 0.0692 0.0218 
 (0.53) (0.77) (1.12)  (-0.56) (0.57) (0.12) 
Before 2005 0.4041*** 0.1846 0.5142***  0.2329 0.1477 -0.0534 
 (3.18) (0.60) (3.81)  (0.88) (0.65) (-0.22) 
Event window > 1 day after match -0.2437 -0.3957** -0.1284  0.2368 0.2288 0.1058 
 (-1.42) (-2.41) (-0.98)  (0.95) (0.76) (0.73) 
No. of games 0.0715 0.0564 0.0916*  -0.2009*** -0.1454 -0.1767*** 
 (1.20) (0.89) (1.96)  (-3.36) (-1.66) (-3.02) 
Exclusion of outliers -0.4475* -0.9917* 0.0155  1.1705*** 1.5695*** 0.6281* 
 (-1.79) (-2.03) (0.05)  (3.37) (4.37) (2.05) 
GARCH model -0.0376 -0.0031 -0.1785  0.1071 -0.4201*** 0.1365 
 (-0.45) (-0.03) (-1.26)  (0.93) (-4.13) (0.88) 
Stock index -0.7399*** -0.4059 -1.0698***  0.1912 0.3768 0.2081 
 (-3.18) (-0.67) (-6.11)  (0.66) (1.25) (0.54) 
Market factor -0.0748 0.3235 -0.5770***  0.1162 -0.4908 0.4562*** 
 (-0.34) (0.79) (-2.81)  (0.48) (-1.67) (3.85) 
Day-of-the-week 0.2977* 0.4525** 0.4400***  -0.3675* -0.5163** -0.3264 
 (1.88) (2.25) (3.17)  (-1.77) (-2.41) (-0.93) 
Serial correlation 0.3556** 0.4519** 0.0490  0.1288 0.1621 0.4863*** 
 (2.79) (2.22) (0.53)  (0.75) (0.80) (3.33) 
Native co-author 0.2362 -0.0841 0.5578***  -0.4487** -0.4625*** -0.3136* 
 (1.09) (-0.37) (3.52)  (-2.46) (-2.94) (-1.95) 
No. of citations -0.1381 -0.0245 0.0020  -0.0443 -0.0795 -0.1525* 
 (-1.31) (-0.21) (0.03)  (-0.65) (-0.91) (-1.86) 

Adj. !" 0.33 0.30 0.39  0.41 0.53 0.48 
No. of estimates 352  376 
No. of studies 24  24 

The table presents the results of the meta-regression model from Equation (3) for all studies including estimates for the soccer match effect of 
individual clubs. Explanatory variables and descriptive statistics are reported in Table 2. Estimations in models (5) and (6) are conducted by 
weighted least squares with the inverse of the estimates’ standard errors used as weights to correct for heteroscedasticity. Model (6) is a mixed 
effects model with random study-level effects estimated by maximum likelihood. Model (7) applies alterative weights (inverse of estimates’ 
standard errors multiplied with the inverse number of estimates observed from a study) to avoid a dominating influence of studies reporting a 
high number of estimates. For all models, standard errors are clustered at the study-level to account for within-study dependencies arising from 
multiple estimates reported in the same study. t-statistics are reported in parentheses.  

***, ** and * denote significance at the 1%, 5% and 10% level.  
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Figure 1. Funnel plots [National teams] 

	 	
In the absence of publication selection, the funnels should be symmetrically distributed around the most precise estimates, which are 
clustered around the top of the funnel. The dashed lines in red show the sample means. 
 

Figure 2. Funnel plots [Individual clubs] 

	 	
In the absence of publication selection, the funnels should be symmetrically distributed around the most precise estimates, which are 
clustered around the top of the funnel. The dashed lines in red show the sample means. 
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