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ABSTRACT Universal variational functionals of densities,
first-order density matrices, and natural spin-orbitals are ex-
plicitly displayed for variational calculations of ground states
of interacting electrons in atoms, molecules, and solids. In all
cases, the functionals search for constrained minima. In par-
ticular, following Percus

Q[p] = min (IIT+ Veeifp)
is identified as the universal functional of Hohenberg and Kohn
for the sum of the kinetic and electron-electron repulsion
energies of an N-representable trial electron density p. QIPJ

all antisymmetric wavefunctions I' which yield the
fixed p. Q1p] then delivers that expectation value which is a
minimum. Similarly,

W[y] = min (¶7'VeeI')
is shown to be the universal functional for the electron-electron
repulsion energy of an N-representable trial first-order density
matrix y, where the actual external potential may be nonlocal
as well as local. These universal functions do not require that
a trial function for a variational calculation be associated with
a ground state of some external potential: Thus, the v-repre-
sentability problem, which is especially severe for trial first-
order density matrices, has been solved. Universal variational
functionals in Hartree-Fock and other restricted wavefunction
theories are also presented. Finally, natural spin-orbital func-
tional theory is compared with traditional orbital formulations
in density functional theory.

This paper addresses the problem of generating adequate
representations of the electronic structure of atoms, molecules,
and solids without explicit recourse to many-particle wave-
functions. Instead, electron densities and first-order density
matrices (one-matrices) are used directly for ground-state
variational calculations. Densities and one-matrices are com-
putationally attractive because their dimensions are smaller
than those of the full wavefunctions.

Formal justification for utilizing the three-dimensional
electron density directly in variational calculations arises from
the important theorems of Hohenberg and Kohn (1). Consider
N electrons in a local external potential v. The Hamiltonian
is ~~N

H.= T + Vee + v
i=l

[1]
where T and Vee are, respectively, the kinetic and electron-
electron repulsion operators. Assume that one wishes to solve
variationally for the ground-state energy of H. Hohenberg and
Kohn proved (1) that for this purpose there exists a valid uni-
versal functional, F[p], which delivers the sum of the kinetic
and electron-electron repulsion energies of each trial electron
density p.

The F[p] of Hohenberg and Kohn is defined only for those
trial p that are v-representable. A v-representable* p is one that
is associated with an antisymmetric ground-state wave function
of some Hamiltonian Hi' with local external potential v'. Spe-
cifically, iV is formed from H by replacing 6 with 6' giving~~~N

H = T + Vee + N v
i=l

[2]
where v' may or may not equal v.

According to Hohenberg and Kohn (1),

F[p] = sum of the kinetic and electron-electron repulsion
energies of that antisymmetric ground-state

of H1' that yields p. [3]

F[p] is universal in that the same value is delivered for a given
trial v-representable p no matter what external potential is
actually under consideration.
A limitation of F[p] is that it is undefined for any p that is not

v-representable. Furthermore, Gunnarsson and Lundquist (2)
stated, "As pointed out by Hohenberg and Kohn ... it has not
been proved that an arbitrary density distribution containing
an integral number of electrons can be realized by some ex-
ternal potential. When applying the variational principle ...
one might therefore go outside ... range of definition." (See
footnote 12 of ref. 1 and footnote 35 of ref. 2.) Accordingly, a
purpose of this paper is not only to explicitly display F[p] but
also to extend the domain of F[p] to include all N-representable
p (consult ref. 3 for abstracts of talks by the author on this subject
in April 1979). Specifically, it shall be demonstrated that there
exists a proper universal variational functional, called Q[p],
which delivers the sum of kinetic and repulsion energies and
which does not require p to be v-representable, only N-repre-
sentablet (4). The existence of Q[p] justifies density functional
theory for all N-representable p. Furthermore, it will be seen
that

F[p] = Q[p] t4]
when p is v-representable.

Natural spin-orbitals (4-12), first defined by LUwdin (6), are

* The expression "v-representability" was first used by E. G. Larson
at the Boulder Theoretical Chemistry Conference, June 1975.

t An N-representable function is one that may be obtained from some
antisymmetric wavefunction (4). By the definitions, it follows that
N-representability is a weaker condition than v-representability.
Moreover, Gilbert (5) has argued that the N-representability con-
dition is rather easily satisfied by a trial p. Now, it is certainly possible
that essentially all N-representable densities are v-representable with
respect to some interacting Hamiltonian. A proof, however, is not
in print, to my knowledge. In any case, an important part of the
present article concerns one-matrices, and only a small fraction of
one-matrices are v-representable.
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eigenfunctions of the one-matrix. The corresponding eigen-
values are called occupation numbers. Natural spin-orbitals
yield the most rapidly convergent series expansion t-o the de-
matrix. Interest in functional theories of one-matrices and
corresponding natural spin-orbitals has grown only recently.
By such theories, I mean those which, in principle, lead to the
exact one-matrix, -y(x Ix'), natural spin-orbitals, &j, and occu-
pation numbers, ni, of the ground-state wavefunction for the
interacting system under consideration. Such theories have
recently been considered by Gilbert (5), Berrondo and Goscinski
(13), Parr et al. (14), and Donnelly and Parr (15). Donnelly and
Parr (15) discussed extensively the properties of an energy
functional of the one-matrix, with respect to local external
potentials, and they derived the Euler equations associated with
the exact ground state.

In the present paper, the proper universal variational func-
tional of the one-matrix and corresponding natural spin-orbitals,
Wky(x Ix')] = W[ni, 4i'i], is presented for the electron-electron
repulsion energy. The interacting Hamiltonians of interest may
contain nonlocal as well as local external potentials. In any case,
it will be shown that the functional W["y] does not require v-
representability, only N-representability.

It is hoped that the formal explicit displays of Q[p] and W[y]
will lead to accurate and computationally feasible approxi-
mations to these functionals.

Q[p]: A universal functional of the electron density
Following is the definition of Q[p] which shall be shown to be
the proper universal variational functional of all N-represen-
table p for the sum of kinetic and repulsion energies:

Q[p] = min (PI'pT + Vee I Ip). [5]

Q[p] searches all antisymmetric wavefunctions Jp which yield
the fixed trial p, where p need not be v-representable. Q[p] then
delivers that expectation value which is a minimum. Further-
more, an upper bound to Q[p] is provided by an expectation
value of T + Vee with any antisymmetric ' which yields p.
The definition for Q[p] in Eq. 5 is in the spirit of Percus' recent
definition (16) of a universal kinetic energy functional for in-
dependent fermion systems.

For Q[p] to be a valid universal variational functional, it is
necessary to prove the following two theorems for N-repre-
sentable p:
THEOREM I.

5 drv(r)p(r) + Q[p] 2 Egs. [6]
THEOREM II.

d'rv(r)pg.s.(r) + Q[Pg.s.] = Eg.s. [7]

where Pg.s. and Egs. are, respectively, a ground-state density
and the ground-state energy of H.

It is convenient to establish additional notations to facilitate
the proofs. Namely, call *P n that wavefunction that satisfies
the righthand side of Eq. 5. Then, it follows that

Q[Ph (mjninJ1+ VeeI'min) [8]
and

Q[Pg.e. ] = ('pmginT + Vee nuI'n ). [9]
Proof of Theorem I:
By the definition in Eq. 8,

fdAt(ri)p(r) + Q[p]
= fbd16(r)p(r) + (*Ip'in IT + Veel'' in), [10]

or, with V = Z =1(i), it follows that

fdf5(')p(i) + Q[P] = (TPinjV + T + VeeIIPin) [11]

But, by the variational principle,

( VMinnV + T + VeeI|I in) > Eg.s..
Addition of the last two equations completes the proof.
Proof of Theorem II:
By the variational principle,

Eg.S. S ( P*2isnIV + t +
-

I *pmg..S),

[12]

[13]

or

('Ig.s.IV + T + VeeI Ig.s.)
< ('pgI' V + T + Vee I pgI.). [14]

or

fd 3(Opg~s. (19 + ('Ig.s. IlT + Vee Ig.s )
< f dii(r')pg.s. () + ( *Pmif IT +

which leads to

('I'g.s.T + VeeI1g<s)< (*Pg'lt + Vee Ipg'i). [16]
But, the definition of IP'gj, dictates that

('I'g.s. t + Veei~g.s.)2 ( I'mfiIT + Vee Ipg'I'). [17]

The last two equations hold simultaneously if and only if

( Ig.s. IT + Vee I4g.s.) = (IPgI| + VeeI|I'g,), [18]
or

('g.s. IT + Vee I'g.e.) = Q[pg.s.]. [19]

Now,

('g.s.[V + lT + VeeI Ig.e.) = Eg.s., [20]

or

fdf6(b)pg.s.(f) + ("g.. IT + Vee I "g.s.) = Eg.s. [21]
Finally, substitution of Eq. 19 into Eq. 21 completes the proof.
Furthermore, Eq. 19 implies F[p] = Q[p] when p is v-repre-
sentable. Also, observe that the possible degeneracy of *g.e.
clearly does not affect the proof. (See also footnote 3 of ref.
14.)
Observe that "g.,. = 'PgL, which means *g.e. may be ob-

tained directly from pg... even if the external potential is un-
known; find that wavefunction which yields pg.e. and minimize
the expectation value of T_ + Vee (3). If *g.s. is degenerate, then
all of the ground-state wavefunctions may be obtained, one at
a time, by the above procedure.

Universal functionals in Hartree-Fock and in other
restricted wavefunction theories
The proofs of the preceding section can be directly mapped
onto the Hartree-Fock problem. The Hartree-Fock analogue
to Q[p], which shall be denoted P[p], is

P[p] = min ((PIT + VeeI4p); 4ps
= single determinants. [22]

Note that Eq. 22 also enables one to abstract a Hartree-Fock
ground-state wavefunction from a Hartree-Fock ground-state
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densityt. Furthermore, observe that the geminal product an-
alogue (18) to P[p] would require that the 4's be restricted to
geminal product wavefunctions. Similarly, Eq. 22 may be ex-
tended to any other formalism where the implied wavefunc-
tions are restricted to have a specific structure.

W[y]: A universal functional of the first-order density
matrix and natural spin-orbitals
Following is the definition of W['y(x Ix')] which is the proper
universal variational functional of all N-representable 'y(x I x')
for the repulsion energy:

W['y(x~x')] = min (IVeeI'Be). [23]
W[-y] searches all antisymmetric wavefunctions *I' that yield
the fixed trial y, where -y need not be v-representable. W[y]
then delivers that expectation value which is a minimum.
W[y] is a valid universal functional for all N-representable

y in that the following conditions are satisfied:

Egs.. < fdx[-1/2V2 + vhy(xlx') + W[y(xlx')] [24]
and

Eg.s. = fdx[-/2,V2 + At~g...(xlx') + W[yg.s.(xlx')]. [25]
The assertions made in Eqs. 24 and 25 will not be proved be-
cause the proofs are analogous to those of Theorems I and II.
Observe that the external potential v may be nonlocal as well
as local and that a spin-dependent Hamiltonian may be used.
Therefore, Eq. 23 unifies several formulations (5, 13-15, 19,
20). Also, note that Ivg... can be degenerate.

Eqs. 24 and 25 imply a corresponding natural spin-orbital
functional theory (5, 14, 15). Substitution of T(x I x') = Fini-
''(x)TI(x') into Eqs. 24 and 25 gives

Eg... S Ejnsjdx~ s(x)*[-lkV2 + v]'I''(x) + W[ni, 'i]
[26]

and

Eg9s. = E2nfJS dxIfs(x)*[lI/2V2 + 3]'f's (x)
+ W[nf8'If']. [27]

For N-representability with respect to a pure state, it is neces-
sary but not sufficient (4-11) that 0 < ni < 1. In any case,
minimization of Eq. 26 by proper optimizations of the n s and
'is yields the exact ground-state energy with the corresponding
set of exact occupation numbers and natural spin-orbitals.
Traditional orbital formulations in density functional
theory§
Natural spin-orbital functional theory (5, 14, 15), as given by
Eqs. 26 and 27, should be compared with traditional orbital
formulations in density functional and spin-density functional
theories, as developed by Slater (22, 23), Kohn and Sham (24),
Gaspar (25), and others (2, 19, 20, 26). Based upon the Hohen-
berg-Kohn theorems (1), Kohn and Sham (24) helped justify
these orbital formulations by deriving a set of self-consistent
equations, analogous to the Hartree equations, that exactly solve
the interacting fermion problem. The Kohn-Sham formalism

t While the present paper was being refereed, an article (17) by P. W.
Payne appeared, entitled "Density Functionals in Unrestricted
Hartree-Fock Theory," where ideas similar to Eq. 22 were put
forth.

§ It should be pointed out that a new orbital functional theory has re-
cently been proposed which corrects the local spin-density approx-
imation for exchange and correlation by subtracting the residual
self-interaction of each orbital (21).

yields, in principle, the exact Eg... and pg... The computational
results have been generally encouraging and, at times, im-
pressive (see, for instance, references 2, 23, and 27-34). Unlike
Eq. 27, these formalisms, however, neither yield exact
ground-state one-matrices nor their corresponding set of exact
natural spin-orbitals. In particular, the Kohn-Sham one-matrixi
does not equal Nf I*g.,.(1', 2 ... N) Ig.s.(1, 2, . . . N)dx2 ...
dXN.

Concluding remarks
Universal variational functionals of densities, one-matrices, and
natural spin-orbitals have been explicitly displayed by Eqs. 5,
22, and 23. These equations have similar structures. Existing
functional theories are thereby united. In all cases, thefunc-
tionals search for constrained minima. Accurate approxima-
tions to the functionals must be parameterized to duplicate these
searches.
The v-representability problem has been solved. One can

now confidently use existing Euler equations without being
concerned about whether or not the functions in the immediate
neighborhood of the optimum functions are v-representable.
(Consult footnote 35 of ref. 2). The v-representability constraint
is particularly severe if the trial function is a one-matrix. Only
a small fraction of one-matrices are v-representable . In par-
ticular, if more than one density matrix yields a v-representable
density with respect to a nondegenerate ground state, then by
Hohenberg and Kohn (1), only one of these density matrices
can be v-representable (15). For instance, no idempotent one-
matrix is v-representable. It is fortunate, indeed, that v-repre-
sentability is not required after all.

Eq. 23unifies several one-matrixfunctional theories. For
a variational calculation involving a local external potential,
Donnelly and Parr (15) proved that W[y] exists by demon-
strating that its existence is implied in the original Hohen-
berg-Kohn theorem (1). Berrondo and Goscinski (13) added
a nonlocal external potential to the N-body Hamiltonian and
then obtained a variational principle involving the one-matrix
for a local external potential by eliminating the nonlocal ex-
ternal source. Gilbert (5) proved the existence of W[,y] for a
nonlocal external potential by extending the original Hohen-
berg-Kohn theorem to the nonlocal situation. The present
paper identifies Eq. 23as the universalfunctional implied in
all three of the above theories.

Perhaps we should actively search for approximations to that
universal functional of Zy(x Ix') which is displayed in Eq. 23. It
might turn out that accurate computationally useful approxi-
mations to W['y] are possible because W[y] appears to be less
complicated, in a formal sense, than either Q[p] or the ex-
change-correlation functional (24), Exc[p]. In particular, W[y]
does not contain any kinetic energy, while it can be shown that
E,,c[p] in traditional orbital formulations must contain a small
positive kinetic energy contribution, and Q[p] must, of course,
contain all the kinetic energy. Also, more information is con-
tained in oy than in p. On the other hand, y itself is more com-
plicated than p and it is somewhat more difficult to keep y
N-representable (37).

I thank Dr. R. G. Parr and his research group, Drs. J. P. Perdew, J.
Harris, W. E. Palke, G. Handler, D. W. Smith, M. Frucht, and the
referees, for their interest, valuable discussions, and suggestions.

I A density matrix method has been put forth recently (35, 36). This
method, however, is in the spirit of the Kohn-Sham formulation in
that idempotent one-matrices are generated. The exact ground-state
one-matrix, therefore, is not obtained because the latter cannot be
idempotent.
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