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3. In a recent papers it was shown that the factors in the numerator of expres-
sion (1.1) do not represent hooks in [X], and, dividing them out, we have

A =tn! (3.1)
H

where H is the product of the lengths of all the hooks in [X]. This formula is of
general interest, since it gives a simple interpretation for the quotient n!/fX. Note
that expression (2.2) is the special case of expression (3.1) appropriate to the skew
diagram [X1] [X2]- - - v [XNI.

It should be remarked in conclusion that an operator approach to the reduction
of the skew diagram [X] - [,A ] is also available. Indeed, Feit's formula was devised
to yield

A-A<_ ,., = nil| zig , (3.2)
where zij = 1/(X1 - j -,u + i)!, with the same conditions as before. Setting
p = 0 when r and r + 1 appear in disjoint constituents of a standard skew diagram
yields the matrices of the induced representation corresponding to any [X]- [is].
It is interesting to compare these ideas with the corresponding theory of Schur
functions {X} as developed by D. E. Littlewood.4 One might add that this operator
approach does yield the enumeration of standard tableaux without the intervention
of any other machinery. Moreover, the relation (2.3) provides an immediate
proof that the character of a cycle of length n in [n -r, PIt is (- 1)r; thus the
motion of a hook derives its significance directly from the raising operator which
has proved so important in the modular theory.5

1 W. Feit, Proc. Am. Math. Soc., 4, 740-744, 1953; F. D. Murnaghan, The Theory of Group
Representations (Baltimore, 1938), Chaps. V, VII.

2 G. de B. Robinson and 0. E. Taulbee, these PROCEEDINGS, 40, 723-726, 1954.
3 J. S. Frame, G. de B. Robinson, and R. M. Thrall, Can. J. Math., 6, 316-324, 1954.
4 D. E. Littlewood, The Theory of Group Characters (Oxford, 1940), chap. vi.
6G. de B. Robinson and 0. E. Taulbee, these PROCEEDINGS 41, 596-598, 1955.

ON A GENERALIZATION OF THE NOTION OF MANIFOLD
BY I. SATA1KE

TOKYO UNIVERSITY

Communicated by A. A. Albert, March 7, 1956

In the following, I shall introduce a notion of V-manifold, which is a generaliza-
tion of the notion of manifold as well as of that of quotient space of a manifold with
respect to a properly discontinuous group of transformations. I shall also indicate
how de Rham's theorem and Poincar6's duality theorem can be generalized to the
case of V-manifolds.

1. Let Q3 be a Hausdorff space. A local uniformizing system (l.u.s.) { 7, G, sp}
for an open set U c Q is by definition a collection of the following objects:
1: a connected open subset of R .
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G: a finite group of linear transformations of C onto itself. We assume that
the set of all fixed points of G is of dimension <n - 2.so: a continuous map C7 U such that so o = sfor all a e G. Then sinduces
a map from the quotient space G\C7 onto U, which we assume to be a homeo-
morphism.

Let { C1, G, VI, { C7', G',Ip'} be l.u.s. for U, U', respectively, and let U c U'. By
an injection X: { 7, G, }V } C' G', a'} we mean a C'-isomorphism X from C
onto a subdomain of C;' such that for any a e G there exists a' e G' satisfying the
relation X o a = a' o X and such that p = (p' o X. Then a' is uniquely determined
by a, and the correspondence a- a' defines an isomorphism from G into G'. If
U = U', then the C'-isomorphism X: 17 7C' and the associated isomorphism
G G' become onto, and X-' is also an injection { C', Gt, cp'}Y

- { C, G, p}. In
this case { C, G,Gs}, C', U',GP'} are said to be equivalent.
By the definition above we can prove the following:
LEmMA 1. Let X, 1i be two injections { C, G, so} - {IC', G', p'}. Then there

exists a uniquely determined a' e G' such thaty = 0-'o X.
If X: {C1, G, pI} - { C', G, v/'}, X': { C/', G', p'} - {IC', G", op'} are injections,

then X' o X becomes an injection { C, G, p} - {IC, G#, Opt}.
2. DEFINITION. A CO V-manifold is a composite concept formed of a connected

Hausdorff space !6 and a family a of l.u.s. for open sets in 23 satisfying the following
conditions:

(1) Let {I C, ,Gp}, { C', G', Vp'} E a be l.u.s. for U, U', respectively, and let
U c U'. Then there exists an injection X: { C, G, VI { C', G', (p'}.

(2) The a-uniformized open sets, i.e., the open sets U for which there exist l.u.s.
C6, G, VI e a, form a basis of open sets in !3.
Two families a, a' of l.u.s. satisfying conditions 1 and 2 are said to be equivalent

if a u a' satisfies condition 1. Equivalent families are regarded as defining one
and the same V-manifold structure on Q.

In a similar way, we can also define real or complex analytic V-manifolds. A
V-manifold is called orientable if we can assign an orientation of C7 for each
C, G, VIs} e a such that every possible injection X in condition 1 preserves these

orientations. Thus a complex analytic V-manifold is always orientable.
An ordinary manifold is a special case of V-manifold where every group G in C1, G,

so e a reduces to the unity group. Moreover, it can easily be proved that if t
is an analytic manifold and (M is a properly discontinuous group of analytic auto-
morphisms of Z3, then the quotient space possesses canonically an analytic
V-manifold structure.

3. Let Q3 be a C' V-manifold with a defining family a of l.u.s.. For { C7, G,
(p} e a, we denote by DUP the module of all G-invariant Cn-forms of degree p on
C7. Let { 7, G, V}, {I C', U', o'} e be l.u.s. for U, U', respectively, U c U',
and let X be an injection { C, G, Gp -s { C7', G', p'}. Then it is quite clear that for
any c e DjgP, we have X o AeDP. Since X o a' = X for a' EG' and Xis determined
up to a' e G' by Lemma 1, the correspondence e-X & o X is independent of the
choice of X. Denoting this homomorphism DU',P-- Di by X*UU,we have X*ji = 1,
and X*ETE° *uIjw = XBFru for {C, G, } C G',VI'}{ C, U',p}. In
particular, if U = U', then X*U,: D '&P D t? is an isomorphism onto.
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Hence the system IDUr, X*6r'} ({ C, G,G.} e a) defines a sheaf Dv on Q which
we call the sheaf of germs of Co-forms of degree p on !3. For any open set U c Z
an element w of the module DuP of the sections of DP on U is called a Co-form of
degree p on U. A Co-form f of degree 0 on U can be regarded as a (real-valued)
function on U, which we call a Co-function. If U is uniformized by { C, G. so} e a,
then DuP is isomorphic to D&P in a canonical way. We can define the operations
d, A on the graded module Du = DuP in a natural manner.

p
4. Let U be another C' V-manifold defined by a family M of l.u.s.
DEFINITION. A map ffrom Q3 into 53 is called a Co-map if the following conditions

are satisfied: Let x e Q, and let V be a neighborhood of f(x) which is uniformized
by { V, H, A1 e Ma; then there exists a neighborhood U of x uniformized by { C, G, (p}
eand a C-map f from C into V such that f o so = 41 of.

Clearly this definition does not depend on the choice of the families a, S. More-
over we can prove the following lemma.
LEMMA 2. The notations being as above, let Co e DVP. Then C o f is independent

of the choice off satisfying the above condition.
It follows, in particular, that X o f e DUP. Furthermore, suppose that {C',

G. }4 e ay I PI, H., 4,1 It{ 8GI (p) {/ 61Y G. sp},A:I A,; HI 4,} {

H', #'} and that there exists a Co-map f': 17' -A1-' such that f o (p' = Ot o f'.
Then, for X E DkP, we have X of' o X = Co ,u of.

Hence, if U c Q, V c Qi are any open sets such that f(U) c V andco eDeP
we can define X of eDuP. It is clear that (dw) of = d(w of), (co A q) o f = (w o f) A
( o f)

5. A C' singular simplex s = [f; ao, ..., a,] of dimension p in Q3 is defined as
usual by a Ca-map f from a neighborhood of a Euclidean simplex [ao, ..., a,]
into QB. Then we define the integral fs X of a Co-form co of degree p on s by the
formula

fJs = f[ao,. . . ap] Wof
If the carrier of s is contained in U uniformized by { C, G, (,} e a and f is a C -map
from a neighborhood of [ao, ..., ap] into C such that f = (p o f, then

s = f o,
where i = [f; ao, ..., ap,] is a C' singular simplex in C and X = w o so e Du'. We
can prove Stoke's formula.
We denote by S = E Sp the graded module (with boundary operator b) of

p

locally finite C' singular chains in QA.
6. Now let $ be a paracompact C' V-manifold. Then, for any (open) covering

U = { U,} , . I of V3, we can construct a locally finite C'-partition of unity {i} . 1
such that the support of ft is contained in Us.
We call a Ca-map 4D: U X R U a Cm-retraction if 4b(x, t) = x for t > 1, and

xo for t _ 0. If I C, G, p} e a is such that C is a Euclidean ball, then C has a
Cm-retraction i such that b(o-x), t) = u($(i, t)) for a e G, and so U = so(C) has
a CG-retraction b defined by c1 o (ep X 1) = p o b. Hence open sets in 93 having
a C -retraction form a basis of open sets in 9.3. We can prove easily
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LEMMA 3. For any covering U = { UjJ e of Q3, there exists a covering
U' = { U/'}lj, E such that

(1) Each U/' has a CP-retraction.
(2) There exists a map T: J -- I such that if Uj0' n ... n Uj, 0, then

Us,' c U,10 n ... n UP.
7. Let HP(U, R) and HI(U, R) be the Cech cohomology and homology group,

respectively, of a covering U of Q8 with coefficients in R. We can prove by the
method of Weill that for any covering U there exists a canonical homomorphism

HP(U, R) ---HP(D%),
which is an isomorphism onto if U is a simple covering, i.e., if every U£O n ... n

Ui,, Uf, e U, has a Cm-retraction.
Let HP(Q3, R) be the inductive limit group of HP(U, R). Then, by Lemma 3,

we can prove
THEOREM 1. HP(D%) is isomorphic to HP(QB, R) canonically.
Next, let H(Q($, R) be the projective limit group of H,(U, R); then we have,

similarly,
THEOREM 2. Hp(S) is isomorphic to Hp(QB, R) canonically.
We have quite analogous results, restricting cochains and chains to finite ones

in the construction of HP(Q3, R) and Hp(Q3, R), respectively, and also restricting
Co-forms and C -chains to those with compact supports in defining HP(D%) and
H,(S), respectively.

Since HP(3, R) and H,(QB, R), one of which is constructed in the restricted
sense, are mutually dual, the same relation holds between HP(Dz) and H,(S).
Writing this duality explicitly, we can see that the inner product is given by the
integral f c, cw being a closed Co-form of degree p and t a C'-cycle of dimension
p. We have thus the first and second theorems of de Rham.

8. Let Q3 be orientable. Then, for w e D%' with a compact carrier, we can define
the integral fJ co as follows: if the carrier of w is contained in U uniformized by

1, G, sp} e a, we put

where X = cw o so and NG is the order of G. Let fij I be a locally finite C'-
partition of unity such that the support of fi is contained in an a-uniformized
open set Ui. For general c, we put

fed= srf
i e I

Then we can prove easily that this definition does not depend on the choice of {fi.
From what has been proved above, it follows that QB is a "homological manifold"

for real coefficients. This means that every x e Q3 has arbitrarily small open
neighborhoods, each one of which has the same cohomology with compact carriers
(over real coefficients) as the space R'. Then, assuming for simplicity that V is
compact, we can prove (again by Weil's method) the following theorem:
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THEOREM 3. Hn-P(DV3) is isomorphic to H,(Q3, R) canonically.
Hence HP(D%) and Hn-P(D%) are mutually dual. We can see that the inner

product is given by the integral 1f% co A a, co and q being closed Cm-forms of degree
p and n - p, respectively. We have thus the duality theorem of Poincar6 on
Betti groups.

I A. Weil, "Sur les th6orbmes de de Rham," Comm. Math. Helv., 26, 119-145, 1952.
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The kinetic energy for a system of N particles is

T = ZEmiri2, (1)
2,

where mj is the mass of the ith particle and r 'is its position. Very often it is
desirable to separate off the kinetic energy of the center of mass and express the
relative kinetic energy in terms of a set of relative co-ordinates. There are many
different ways of defining the relative co-ordinates, each having characteristic ad-
vantages for a particular type of physical problem. For the motion of an N-
particle system in configuration space, it is most convenient to define the relative
co-ordinates Q 2y Q 3, ..., Q N, so that the kinetic energy becomes

T = [Q12 + Q22+ Q32+ ... +Q2] (2)2

Here 1/2Q12 is the kinetic energy of the center of mass, and Q'i itself is the square
root of the mass of the system times the co-ordinate of the center of mass. If we let

Mk =ml+ m2 + m3 + -+ k, (3)

then

Q 1 = (MN) f/Eml {. (4)

In order to convert the kinetic energy from the form of equation (1) to that of
equation (2), it is necessary to make the transformation

(M,),/2Ski Q k) ~~~~~~~(5)
k

where the coefficients S,. form a unitary matrix, so that

E SkiS i = Sjk
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