[^0]
relations on iterated reduced powers*

By José Adem
Princeton University
Communicated by S. Lefschetz, May 12, 1953

In this note we present the generalization of the relations on iterated squares ${ }^{1}$ to the case of iterated cyclic reduced powers of arbitrary prime period p. As in the case $p=2$, the new relations are used to solve some particular problems.

Throughout this paper we will use the definitions and notation recently introduced by Steenrod. ${ }^{2}$

1. For any complex K and odd prime p, the cyclic reduced power operations are homomorphism $\mathscr{P}^{s},(s=0,1, \ldots)$,

$$
\rho^{s}: H^{q}\left(K ; Z_{p}\right) \rightarrow H^{q+2 s(p-1)}\left(K ; Z_{p}\right)
$$

They satisfy the following properties: $\mathscr{\rho}^{s} f^{*}=f^{*} \mathscr{P}^{s}$, where f is a map of one complex into another; $\mathcal{P}^{0}=$ identity; if $q=\operatorname{dim} u$ is even, $\mathscr{p}^{q / 2} u=$ u^{p} (in cup-product sense); $\mathfrak{P}^{s} u=0$ when $s>q / 2$.

As in the case of squares, an iterated cyclic reduced power is a composition of two or more of the \mathscr{P}^{s}, e.g., $\mathcal{P}^{r} \mathbb{P}^{s} \mathscr{P}^{t}$.

Let δ^{*} be the coboundary operator associated with the exact coefficient sequence $0 \rightarrow Z \rightarrow Z \rightarrow Z_{p} \rightarrow 0$. Our main result is the following

Theorem 1.1 For all $0 \leq r<s p$ the iterated cyclic reduced powers satisfy the following set of relations ${ }^{3}$

$$
\begin{align*}
& \mathcal{P}^{r} \mathcal{P}^{s}=\sum_{i=0}^{[r / p]}(-1)^{r+i}\binom{(s-i)(p-1)-1}{r-i p} \mathcal{P}^{r+s-i} \mathcal{P}^{i}, \tag{1.2}\\
& \mathcal{P}^{r} \delta^{*} \mathcal{P}^{s}=\sum_{i=0}^{[r / p]}(-1)^{r+i}\binom{(s-i)(p-1)}{r-i p} \delta^{*} \mathscr{P}^{r+s-i} \mathcal{P}^{i}+ \tag{1.3}\\
& {[(r-1) / p]} \\
& \sum_{i=0}^{(-1)^{r+i+1}\binom{(s-i)(p-1)-1}{r-i p-1} \mathcal{P}^{r+s-i} \delta^{*} \mathscr{P}^{i}, \quad(\bmod p)} .
\end{align*}
$$

where (-) denotes the binomial coefficient with the usual conventions.
An induction argument based on (1.2) proves the following
Theorem 1.4. The set $\left\{\mathcal{P}^{p^{k}}\right\}$ with $k=0,1, \ldots$, form a base in the sense that any other \mathbb{P}^{r} can be expressed as a sum of iterated cyclic reduced powers with exponents powers of p.

For example,

$$
\begin{aligned}
& \mathcal{P}^{r}=\frac{1}{r!}\left(\mathcal{P}^{1}\right)^{r} \quad \text { for } 0<r<p . \\
& \mathcal{P}^{2 p}=\frac{1}{2}\left(\mathcal{P}^{p}\right)^{2}+\frac{1}{2}\left(\mathcal{P}^{1}\right)^{p-1} \mathcal{P}^{p} \mathcal{P}^{1}
\end{aligned}
$$

where $\left(\mathcal{P}^{j}\right)^{r}$ means \mathcal{P}^{j} iterated r times.
Again, an induction using formula (1.2) proves
Theorem 1.5. The iterated powers of the type $\mathcal{P}^{i_{1}} \ldots \rho^{i_{r}}$ with $i_{1} \geq p i_{2}$, $\ldots, i_{r-1} \geq p i_{\tau}$ and $c=i_{1}+\ldots+i_{r}$, form an additive base for all iterated powers $\rho^{j_{1}} \ldots \rho^{j_{n}}$ where $j_{1}+\ldots+j_{n}=c$.
2. For the particular values $r=1, s=2^{k}-1$, formula (1.2) becomes

$$
\mathcal{P}^{1} \mathcal{P}^{2^{k}-1}=2^{k} \mathcal{P}^{2^{k}},
$$

therefore, if $\operatorname{dim} u=2^{k+1}$ we have

$$
\begin{equation*}
u^{p}=\frac{1}{2^{k}} \mathcal{P}^{1} \mathcal{P}^{\mathcal{2}^{k}-1} u \quad(\bmod p) \tag{2.1}
\end{equation*}
$$

where u^{p} is the p-power of u in the cup-product sense.
Let $H(K)$ denote the integral cohomology ring of a complex K. We say that $H(K)$ is a truncated polynomial ring on u if $H(K)$ is generated by the cup-product powers of u and each power is of infinite order. The height of u is the minimal integer n such that $u^{n}=0$.

Theorem 2.2. If $H(K)$ is a non-trivial truncated polynomial ring on u then $\operatorname{dim} u=2^{k+1}$. Moreover, if $\operatorname{dim} u \geq 8$ then the height of u is at most 3 .

We will show how this theorem is implied by our relations on reduced powers. Let $q=\operatorname{dim} u$. First, that q cannot be odd follows from the commutative law for cup-products. Now, if q is not a power of 2, then, because $\left\{\mathrm{Sq}^{2}\right\}$ is a base for squares, ${ }^{1}$ we have $u \smile u=\mathrm{Sq}^{\boldsymbol{q}} u=0(\bmod 2)$, and this is a contradiction. Finally, suppose $q=2^{k+1}$. Using (2.1) for $p=3$, we have

$$
u \smile u \smile u=(-1)^{k} \mathcal{P}^{1} \mathcal{P}^{2^{k}-1} u \quad(\bmod 3)
$$

and $\operatorname{dim} \mathscr{P}^{P^{k}-1} u=3 \cdot 2^{k+1}-4$. Therefore $u \smile u \smile u=0 \bmod 3$, unless $3 \cdot 2^{k+1}-4$ is a multiple of 2^{k+1}. That is the case only if $k=0,1$.

Let S^{r-1} be a sphere bundle with S^{s-1} as fiber. Examples are known for the following forms of r and $s: r=s$; all $r, s=1 ; r=2 n, s=2 ; r=$ $4 n, s=4 ; r=16, s=8$.

Corollary 2.3. The other possible values of r and s for which S^{r-1} can be a sphere bundle with fiber S^{s-1} are of the form $r=2^{k+1}$ and $s=2^{k}$, ($k \geq 4$).

Proof: If S^{r-1} is fibered by S^{8-1}, it follows from Gysin's sequence for sphere bundles that the integral cohomology ring of the base space B is a truncated polynomial ring, generated by the characteristic class u of dimension s. Then $r=n s$ for some integer n and $\operatorname{dim} B=s(n-1)$; therefore the height of u is n. If $n>3$, then 2.3 follows from 2.2. If $n=3$ and $f: S^{r-1} \rightarrow B$ is the projection, adjoin an r cell E^{r} to B by means of f, so that $M=B \cup e^{r}$ is a manifold. By duality $H(M)$ is a truncated polynomial ring generated by u with height 4 . This contradicts 2.2.
3. Our proof of relations (1.2), (1.3) is purely algebraic. The relations are obtained as homology relations on the symmetric group $S_{p^{2}}$ of degree p^{2}, and makes full use of the general definition for reduced power operations found recently by Steenrod. ${ }^{2}$ We will indicate briefly this method. Let G be a p-sylow group of $S_{p^{2}}$ and $\theta: G \rightarrow S_{p^{2}}$ the inclusion homomorphism. For each $C \in H_{i}\left(G ; Z_{p}\right)$ we have a reduced power operation. If $u \in H^{q}(K$; Z_{p}) then $u^{p^{\mathbf{2}}} / C \epsilon H^{p^{2} q-i}\left(K ; Z_{p}\right)$.

To obtain the relations we first identify the operations induced by some cycles of $H_{i}\left(G ; Z_{p}\right)$ with sums of cyclic reduced powers. The relations are then obtained, according to the general principle of Steenrod, ${ }^{2}$ as elements on the kernel of $\theta_{*}: H_{i}\left(G ; Z_{p}\right) \rightarrow H_{i}\left(S_{p^{2}} ; Z_{p}\right)$, i.e., if $\theta_{*}\left(C_{1}-C_{2}\right)=$ 0 , then $u^{p^{2}} / C_{1}=u^{p^{2}} / C_{2}$.

[^1]
[^0]: * This investigation was supported by a grant from the National Foundation for Infantile Paralysis.
 ${ }^{1}$ Bertani, G., and Weigle, J., J. Bact., 65, 113 (1953).
 ${ }^{2}$ Adams, M. H., in Methods in Medical Research, Chicago, 1950.
 ${ }^{8}$ Dulbecco, R., J. Bact., 59, 329 (1950).
 ${ }^{4}$ Jacob, F., personal communication.
 - We wish to thank Ciba S.A., Basel, Switzerland, who put at our disposal the chlorohydrate of methyl bis- β-chlorethylamine, called Dichlorene, used in these experiments.
 ${ }^{6}$ See Lwoff, A., Ann. Inst. Past., 84, 225 (1953).
 ${ }^{7}$ Hayes, W., J. Gen. Microb., 8, 72 (1953).
 ${ }^{8}$ Cavalli, L. L., Lederberg, J., and Lederberg, E. M., Ibid., 8, 89 (1953).

[^1]: * The research summarized in the present note has been supported at various times by the following institutions: Instituto de Matemáticas de la Universidad Nacional and Instituto Nacional de la Investigación Cientifica, Mexico City, and the Guggenheim Foundation.
 ${ }^{1}$ Adem, J., these Proceedings, 38, 720-726 (1952).
 ${ }^{2}$ Steenrod, N. E., Ibid., 39, 213-223 (1953).
 ${ }^{3}$ I have heard that H. Cartan has obtained relations of the same type, using methods quite different from mine.

