* This investigation was supported by a grant from the National Foundation for Infantile Paralysis.

¹ Bertani, G., and Weigle, J., J. Bact., 65, 113 (1953).

² Adams, M. H., in Methods in Medical Research, Chicago, 1950.

⁸ Dulbecco, R., J. Bact., 59, 329 (1950).

⁴ Jacob, F., personal communication.

⁵ We wish to thank Ciba S.A., Basel, Switzerland, who put at our disposal the chlorohydrate of methyl bis- β -chlorethylamine, called Dichlorene, used in these experiments.

⁶ See Lwoff, A., Ann. Inst. Past., 84, 225 (1953).

⁷ Hayes, W., J. Gen. Microb., 8, 72 (1953).

⁸ Cavalli, L. L., Lederberg, J., and Lederberg, E. M., *Ibid.*, 8, 89 (1953).

RELATIONS ON ITERATED REDUCED POWERS*

By José Adem

PRINCETON UNIVERSITY

Communicated by S. Lefschetz, May 12, 1953

In this note we present the generalization of the relations on iterated squares¹ to the case of iterated cyclic reduced powers of arbitrary prime period p. As in the case p = 2, the new relations are used to solve some particular problems.

Throughout this paper we will use the definitions and notation recently introduced by Steenrod.²

1. For any complex K and odd prime p, the cyclic reduced power operations are homomorphism \mathcal{O}^s , (s = 0, 1, ...),

$$\mathcal{O}^{s}: H^{q}(K; Z_{p}) \rightarrow H^{q+2s(p-1)}(K; Z_{p})$$

They satisfy the following properties: $\mathfrak{O}^s f^* = f^* \mathfrak{O}^s$, where f is a map of one complex into another; $\mathfrak{O}^0 =$ identity; if $q = \dim u$ is even, $\mathfrak{O}^{q/2}u = u^p$ (in cup-product sense); $\mathfrak{O}^s u = 0$ when s > q/2.

As in the case of squares, an *iterated* cyclic reduced power is a composition of two or more of the \mathcal{O}^s , e.g., $\mathcal{O}^r \mathcal{O}^s \mathcal{O}^t$.

Let δ^* be the coboundary operator associated with the exact coefficient sequence $0 \rightarrow Z \rightarrow Z \rightarrow Z_p \rightarrow 0$. Our main result is the following

THEOREM 1.1 For all $0 \le r < sp$ the iterated cyclic reduced powers satisfy the following set of relations³

(1.2)
$$\mathcal{O}^{r}\mathcal{O}^{s} = \sum_{i=0}^{[r/p]} (-1)^{r+i} \begin{pmatrix} (s-i)(p-1) - 1 \\ r-ip \end{pmatrix} \mathcal{O}^{r+s-i}\mathcal{O}^{i},$$

(1.3)
$$\mathcal{P}^{r}\delta^{*}\mathcal{P}^{s} = \sum_{i=0}^{\lfloor r/p \rfloor} (-1)^{r+i} {\binom{(s-i)(p-1)}{r-ip}} \delta^{*}\mathcal{P}^{r+s-i}\mathcal{P}^{i} + \sum_{i=0}^{\lfloor (r-1)/p \rfloor} (-1)^{r+i+1} {\binom{(s-i)(p-1)-1}{r-ip-1}} \mathcal{P}^{r+s-i}\delta^{*}\mathcal{P}^{i}, \pmod{p}.$$

where (-----) denotes the binomial coefficient with the usual conventions.

An induction argument based on (1.2) proves the following

THEOREM 1.4. The set $\{\mathfrak{O}^{p^k}\}$ with k = 0, 1, ..., form a base in the sense that any other \mathfrak{O}^r can be expressed as a sum of iterated cyclic reduced powers with exponents powers of p.

For example,

$$\mathfrak{O}^{r} = \frac{1}{r!} (\mathfrak{O}^{1})^{r} \quad \text{for } 0 < r < p.$$

$$\mathfrak{O}^{2p} = \frac{1}{2} (\mathfrak{O}^{p})^{2} + \frac{1}{2} (\mathfrak{O}^{1})^{p-1} \mathfrak{O}^{p} \mathfrak{O}^{1}$$

where $(\mathcal{O}^{j})^{r}$ means \mathcal{O}^{j} iterated r times.

Again, an induction using formula (1.2) proves

THEOREM 1.5. The iterated powers of the type $\mathcal{O}^{i_1} \ldots \mathcal{O}^{i_r}$ with $i_1 \ge pi_2$, \ldots , $i_{r-1} \ge pi_r$ and $c = i_1 + \ldots + i_r$, form an additive base for all iterated powers $\mathcal{O}^{j_1} \ldots \mathcal{O}^{j_n}$ where $j_1 + \ldots + j_n = c$.

2. For the particular values r = 1, $s = 2^k - 1$, formula (1.2) becomes $\mathcal{O}^1 \mathcal{O}^{2^k - 1} = 2^k \mathcal{O}^{2^k}$.

therefore, if dim
$$u = 2^{k+1}$$
 we have

(2.1)
$$u^{p} = \frac{1}{2^{k}} \mathcal{O}^{1} \mathcal{O}^{2^{k}-1} u \pmod{p},$$

where u^p is the *p*-power of *u* in the cup-product sense.

Let H(K) denote the integral cohomology ring of a complex K. We say that H(K) is a truncated polynomial ring on u if H(K) is generated by the cup-product powers of u and each power is of infinite order. The height of u is the minimal integer n such that $u^n = 0$.

THEOREM 2.2. If H(K) is a non-trivial truncated polynomial ring on u then dim $u = 2^{k+1}$. Moreover, if dim $u \ge 8$ then the height of u is at most 3.

We will show how this theorem is implied by our relations on reduced powers. Let $q = \dim u$. First, that q cannot be odd follows from the commutative law for cup-products. Now, if q is not a power of 2, then, because $\{\operatorname{Sq}^{2^k}\}$ is a base for squares,¹ we have $u \smile u = \operatorname{Sq}^e u = 0 \pmod{2}$, and this is a contradiction. Finally, suppose $q = 2^{k+1}$. Using (2.1) for p = 3, we have

$$u \smile u \smile u = (-1)^k \mathcal{O}^1 \mathcal{O}^{2^k - 1} u \pmod{3},$$

and dim $\mathcal{O}^{2^{k}-1} u = 3 \cdot 2^{k+1} - 4$. Therefore $u \smile u \smile u = 0 \mod 3$, unless $3 \cdot 2^{k+1} - 4$ is a multiple of 2^{k+1} . That is the case only if k = 0, 1.

Let S^{r-1} be a sphere bundle with S^{s-1} as fiber. Examples are known for the following forms of r and s: r = s; all r, s = 1; r = 2n, s = 2; r = 4n, s = 4; r = 16, s = 8.

COROLLARY 2.3. The other possible values of r and s for which S^{r-1} can be a sphere bundle with fiber S^{s-1} are of the form $r = 2^{k+1}$ and $s = 2^k$, $(k \ge 4)$.

Proof: If S^{r-1} is fibered by S^{s-1} , it follows from Gysin's sequence for sphere bundles that the integral cohomology ring of the base space B is a truncated polynomial ring, generated by the characteristic class u of dimension s. Then r = ns for some integer n and dim B = s(n - 1); therefore the height of u is n. If n > 3, then 2.3 follows from 2.2. If n = 3 and $f:S^{r-1} \rightarrow B$ is the projection, adjoin an r cell E^r to B by means of f, so that $M = B \cup e^r$ is a manifold. By duality H(M) is a truncated polynomial ring generated by u with height 4. This contradicts 2.2.

3. Our proof of relations (1.2), (1.3) is purely algebraic. The relations are obtained as homology relations on the symmetric group S_{p^2} of degree p^2 , and makes full use of the general definition for reduced power operations found recently by Steenrod.² We will indicate briefly this method. Let G be a p-sylow group of S_{p^2} and $\theta: G \to S_{p^2}$ the inclusion homomorphism. For each $C \in H_i(G; \mathbb{Z}_p)$ we have a reduced power operation. If $u \in H^q(K; \mathbb{Z}_p)$ then $u^{p^2}/C \in H^{p^2q-i}(K; \mathbb{Z}_p)$.

To obtain the relations we first identify the operations induced by some cycles of $H_i(G; Z_p)$ with sums of cyclic reduced powers. The relations are then obtained, according to the general principle of Steenrod,² as elements on the kernel of $\theta_*: H_i(G; Z_p) \to H_i(S_p^2; Z_p)$, i.e., if $\theta_*(C_1 - C_2) = 0$, then $u^{p^2}/C_1 = u^{p^2}/C_2$.

* The research summarized in the present note has been supported at various times by the following institutions: Instituto de Matemáticas de la Universidad Nacional and Instituto Nacional de la Investigación Científica, Mexico City, and the Guggenheim Foundation.

¹ Adem, J., these PROCEEDINGS, 38, 720-726 (1952).

² Steenrod, N. E., *Ibid.*, **39**, 213–223 (1953).

³ I have heard that H. Cartan has obtained relations of the same type, using methods quite different from mine.