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ON MECHANICAL SELF-EXCITED OSCILLATIONS

BY N. MINoRsKY

DAVID TAYLOR MODEL BASIN, NAVY DEPARTMENT

Communicated August 28, 1944

1. Introduction.-Self-excited oscillations, particularly electrical ones,
form the object of numerous studies in recent years. Mechanical oscilla-
tions of this kind have been less explored although they are frequently ob-
served in practice.
The object of this note is to describe a typical phenomenon of this kind

observed during experimental work on the antirolling stabilization of
ships by the activated tanks method. The problem of the antirolling sta-
bilization of ships itself does not form the object of the note and only a few
words will be sufficient to explain the principal details of these experiments.

2. Experimental Arrangement and Principal Data.-The principal fea-
tures of ship stabilization by tanks can be conveniently studied both theo-
retically and experimentally by means of two coupled pendula of which
one P is a rigid physical pendulum and the other P' is a pendulum consist-
ing of a liquid (water, oil, etc.) filling a U-tube connected to two tanks and
secured to the rigid pendulum P so as to obtain an oscillation coplanar with
the latter.

In the experiments described here the activation of the ballast was ac-

complished by means of an axial variable pitch pump inserted in the U-
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channel of the liquid pendulum. The impeller pump was kept running at
a constant speed and the activation was accomplished by controlling the
blade angle a of the runner by a control equipment' responsive to the
angular motion of P.

Let 0 be the angle of P and so the relative angle formed by the levels of
P' with respect to P. The rate of flow of the ballast is then proportional to
so. The following experimental results will be of importance.

1. It was found that the roll-quenching efficiency is greatest when the
following cond7i-tion of control is fulfilled

a!=XB& (1)

that is, when the blade angle a is made to vary in proportion to the angular
acceleration # of the rigid pendulum. The coefficient of proportionality X
could be adjusted by changing the amplification factor of an electronic cir-
cuit controlling the blade angle, a.

2. For a steady harmonic actuation of the ballast by the impeller pump
it is observed that there exists the following relation:

Vp = eS (2)

between the rate of flow s and the angular acceleration 6; this means in
view of (1) that the rate of flow 9b and the blade angle a are approximately
proportional to each other or,

a = X/i = 89° (3)

the coefficient e changes somewhat according to conditions.
3. Moreover, from numerous tests, it. has been ascertained that the

force imparted by the impeller pump to the liquid column increases more or
less linearly with a for small values of a and increases less than in propor-
tion for larger values of a. The moment M of the' force created by the
impeller and applied to P' can be, therefore, approximated by a relation

M = M1a -Msa3 (4)

where M1 and M3 are independent of a. The form of the curves approxi-
mated by this expression varies somewhat for different conditions.

3. Phenomenon of Self Excitation.-It has been ascertained that when
the coefficient X of amplification is made large enough, a self-excited os-
cillation of relatively high frequency sets in and superimposes itself on the
normal stabilizing action. If the coefficient X continues to increase further,
self-excited oscillation exhibits the presence of harmonics. If, however,
X is decreased gradually, at a certain point X = >o the self-excited oscilla-
tion disappears. During the experiments the parasitic fluttering of the
blades had a frequency nearly five times that of the oscillatory process
which the equipment is intended to quench.

VOL. 30, 1944 309



ENCINEERNG: N. MINORSKY

The interesting feature of the phenomenon lies in the fact that it may
originate also when the pendulum P is almost at rest. In fact it is suf-
ficient to disturb the pendulum at rest very little, e.g., by touching it
slightly, to be able to release violent surges of water in the tanks with the
corresponding blade angle oscillations, which persist indefinitely. The
pendulum P also begins to oscillate with the same high frequency but
with an amplitude of a fraction of one degree whereas the oscillation of P'
is generally very appreciable and with strong amplification may reach the
value of about 20 to 25 degrees. In what follows we shall investigate the
problem in this particular case which is relatively simple.

4. Differential Equations.-The fact that during the self excitation
from rest the amplitude of motion in the 0 coordinate is very small, makes it
possible to neglect the effect of the passive component of coupling between
P and P' since this component depends on the existence of a finite oscilla-
tion in the 0 degree of freedom, and consider only the active component of
coupling, i.e., the action of the moment M due to the pump on P' and the
reaction of this moment on P.
The simplified differential equations of the system in this case are:

jsp + kO + co= M; IS+Kd+CO= -M (5)

where j, k and c for the liquid pendulum P' and 1; K and C for the rigid
pendulum P are certain constants, the physical significance of which is suf-
ficiently obvious. The left-hand terms of these equations are linearized
somewhat which has no further influence on what follows. The neglect of
the passive component of the coupling as just mentioned is in the fact that
the first equation contains only the relative coordinate so instead of the ab-
solute one p - 0 since in this particular case 0 is very small.

Equations (5) are thus written down with the knowledge of the principal
features of the phenomenon and our purpose will be to fit these features into
the form of solutions we are going to obtain. Using the equations (4) and
(3) we obtain

jqo + (k-ml)bo +ma3f3 + Co= 0 (6)
I + Kd + CO -mlo +m (7)

where mI = M1X/e and m3= M3X3/E3. (8)
It is seen.that owing to the neglect of the passive component of coupling

equations (6) and (7) do not form actually a coupled system since equation
(6) contains only o.. Hence, if we succeed in solving the non-linear equa-
tion, s will appear as a known function in (7) which will permit determining
0 and through the equation (1) of control we shall be able to establish the
condition of coupling.

Thus, the principal interest centers on the equation (6). It is noted
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that for a sufficiently small value of X, the coefficient ml is also small so
that k - in1> 0. In such a case it is apparent that no self excitation is
possible in the qo degree of freedom since equation (6) shows that the liquid
pendulum P' has a purely dissipative damping of a combined velocity, and
velocity-cube type. The really interesting case arises when the parameter
X is increased so as to make the coefficient k - ml < 0 which case we shall
consider from now on. Physically this means that the energy imparted
by the blades outweighs the dissipation of energy caused by the velocity
damping k'o.

In order to bring the problem within the scope of non-linear mechanics
we shall assume that the damping terms are relatively small in comparison
with the inertial (fr,o) and stability (cso) terms which is sufficiently justified
by the actual order of magnitude of these quantities. This permits writing

ml-k = As; ma = ,uq

where ,u is a small parameter (, > 0) and s > 0 and q > 0 are certain con-
stants of the order of j and c. With these conventions equation (6) can be
written

jf + C(P + JA Slo + qo') = 0. (9)

This equation is of the Rayleigh type. By differentiating it becomes of the
Van der Pol type in q and thus may be shown' to have the approximate
solution

= 1 4(m1 - k) cos (cot + 4,o)
CO 3m.3

4(ml - k) sin (wot + to). (10)
3m,3

Substituting this value for s into equation (7) one easily obtains 0 since
this equation is linear. Since the term me3s contains the third harmonic it
is apparent that the oscillation of P will also contain that harmonic and in
view of equations (1) and (3) this harmonic will also appear in the so oscilla-
tion. The amplitudes of these harmonics are small if the ratio m3/m1 is
small as we have assumed. We shall limit this study to the first approxima-
tion only assuming that ma = 0 in equation (7). Since the phase 4,&o is
clearly of no interest here we can write

Th+K~+C0=-m~b=mo < (ml - k) i
- AicW~I# + K6 + CO = MJO = ml 3 ) ei 3 Ae3

where A = ml44(ml- k); whence the approximate expression for the
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amplitude Oo is

00=MI 4(m1 - k)
IWo2 3m8

and the amplitude of the angular acceleration is then

=m= k) (11)

The blade angle is given by equation (1)

ao= XJo.

It is seen that the blade angle generally increases with the amplification
factor but not exactly in proportion to X since by equations (8) both ml
and m3 are functions of X. It is generally observed that the blade angle a
increases with the amplification factor but the observation is handicapped
owing to the presence of harmonics which are left out in this study.

6. Critical Value of Parameter.-We shall now attempt to establish
analytically the principal feature of the phenomenon mentioned at the be-
ginning of Section 3, namely, a rather sudden appearance of self excitation
at a certain value X = Xo of the parameter when it is increased from small
values as well as its sudden disappearance at the same value X = Xo, when X
is gradually decreased from larger values.

Although this fact has been discussed to some extent in Section 4 we shall
analyze it now from a more general standpoint resulting from the theory
of Poincar6-Liapounoff.2 Only equation (6) will interest us here because
equation (7) does not present any difficulty.

Putting ml = Xa1 and m = X,3a3 where a, and a3 are certain positive con-
stants at least within the range of the experiment as follows from (8) we
write equation (6) in the form

ijP + (k- Xa1)0 + ma03 + cp = 0. (6a)

This equation is equivalent to the following system of differential equations

~oy
-g(X)y- -m ya (12)

where

g(X) = (k - Xal)/j and M3' =ma/j.
We shall investigate the conditions of stability of the liquid pendulum

when at rest. Liapounoff has shown that for this purpose it is legitimate
to neglect the non-linear term in the second equation (12) which gives
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y = -g(X)y wo2so (13)
We can now apply the classical method of Poincare which consists in in-

vestigating the singularities of the system (13) as a function of the pa-
rameter. In this case there is clearly one singular point of interest, viz.,
= y = 0. The characteristic equation is

S2 + g(X)S +wo2 = O (14)

and its roots are

81, a= -g(X)/2 2(X)- 2(15)

There are four possibilities according to the sign of g(X)/2 and of the
quantity under the square root.

If > wo the roots are real and of the same sign which corresponds
2

to a nodal point of the system. This case is to be discarded because the
experiment always shows that a self-excited oscillation builds itself up in a
series of swings and never reaches a steady state aperiodically which would
require a pump of an enormous power. Hence, we have to consider the

Ig(X)
case when 2 < coo in which case the roots are conjugate complex and

the singularityp = y = 0 is a focal point, stable if g(X) > 0 and unstable if
g(X) < 0. The value X = Xo for which g(Xo) = 0 and which separates the
stable focal points from the unstable ones is thus the critical or bifurcation
value of the parameter X (Poincare).

Since g(X) is monotone decreasing with X increasing and is positive for
small X, it follows that by gradually increasing the value of the parameter
X the original stable focal point for X <, Xo becomes unstable for X > Xo.
From the theory of Poincare it follows that for the critical value X = Xo

for which a stable singularity becomes unstable there may appear at least
one stable limit cycle which means a stationary oscillation. The proof of the
existence of a limit cycle is rather laborious and requires the investigation of
a series expansion satisfying the non-linear system (12). This need not be
done here since we know that the self-excited oscillation exists for X ) Xo
and the theory of the first approximation gives the answer in a simple
manner.

7. Conclusion.-It is seen that the principal features of the phenomenon
in question are consistently explained on the basis of non-linear mechanics.
In fact, if one had to follow purely linear methods it would be impossible
even to predict the existence of a phenomenon of this nature.
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FIRST PROOF THAT THE MERSENNE NUMBER
M157 IS COMPOSITE

By H. S. UHLER

SLOANE PHYsics LABORATORY, YALE UNIVERSITY

Communicated September 9, 1944

The form of a Mersenne number is Mp = 2P - 1 where p is prime. Just
three hundred years ago Mersenne published, in effect, the statement that
the only values of p not greater than 257 which make M, prime are 2, 3, 5,
7, 13, 17, 19, 31, 67, 127 and 257. The prime or composite character of all
of the 55 numbers included under this conjecture, except the six corre-
sponding, respectively, to p = 157, 167, 193, 199, 227 and 229, had been in-
vestigated prior to the year 1935. Contrary to Mersenne's surmise it was
found that for p 67 and 257 Mp is composite, and that Mp is prime for
p = 61, 89 and 107. The data presented above have been derived from a
comprehensive paper by R. C. Archibald.1
The present contribution marks the first fruits of a friendly suggestion

made last year by Professor Archibald and seconded by Professor D. H.
Lehmer that the author turn his attention to problems of factorization in
general, beginning with the special problem of the character of the six
heretofore uninvestigated Mersenne numbers.
The modem technique of this problem is based explicitly upon the fol-

lowing theorem, discovered by E. Lucas and clarified by D. H. Lehmer,2
namely: "The number N = 2n - 1, where n is an odd prime, is a prime if,
and only if, N divides the (n - 1)-st term of the series,

S, = 4, 52 = 14, S3 = 194, . I. Sk, **

where Sk = 52 - - 2."
Since the number M167, which is the subject of the present study, equals

182 68770 46663 62864 77546 06040 89535 37745 69915 67871 and since the
above theorem requires that this 48-digit number be used as a divisor 149
times (8 to 156, inclusive) it should be obvious that the prospective inves-
tigator wotld focus attention upon this aspect of the computation. The
procedure followed by R. E. Powers3 in showing that M241 is composite ap-
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