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Various results concerning the order of growth of the first and higher
derivatives of univalent and of bounded functions analytic in the unit
circle are known. Among these we mention Koebe's distortion theorem
(Verzerrungssatz) in the univalent case and Schwarz's Lemma and the
results of 0. Szaszl in the bounded case. A consequence of these results

for a function f(z) analytic in IzI < 1 is If'(z)l = o(( 1)3) in the case

that f(z) is univalent and f(ff (z) = 1( Zl)n in the case that f(z) is

bounded. These relations, however, give no information as to the condi-
tions under which If(") (Zk) I(1 - Zk I)n tends to zero for a given se-
quence of points IZk I in the unit circle. In the univalent case an answer
to this question is contained in the following result due to J. E. Littlewood
and A. J. Macintyre :2 Let f(z) be analytic and univalent in IzI < 1 and let
it omit there the value w. Then in IzI < 1 the following inequality is satisfied:

If'(Z)I(j - IZ12) < 4 1 W - f(z) 1.
The purpose of the present note is to summarize the principal results re-

cently obtained by the authors in the study of the relation

|f )(Zk)I(1 lzkl)n- Oas k -- c, where Izkl < 1,
in the case that the analytic function f(z) is univalent, or is bounded, or
omits two values in lzl < 1. The method involves primarily the system-

Zk + ~

atic and detailed study of the function (Pk(',) = f(Zk + . The detailed

exposition will be published at a later date.
Let w = f(z) be analytic in Izi < 1 and let R denote the Riemann con-

figuration over the w-plane- onto which this function maps the region
z < 1. Let wo be an arbitrary point of R. Then the radius of the largest
smooth circle (boundary not included) with center at wo and wholly con-

tained in R is called the radius of univalence of R at wo and will be denoted
by Dj(wo). The following theorem can be easily proved:

Let f(z) be regular and univalent in IzI < 1, zo any point of z < 1, and
wo = f(zo). Then

D1(wo) _ If'(zo)1(j - 1zo12) 4D,(wo). (1)
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Each of these inequalities is sharp and the second one is another form of
the Littlewood-Macintyre inequality. An immediate consequence of this
theorem is the corollary:

Let f(z) be regular and univalent in z < 1, zn any sequence of points iia
Izi < 1, and wn = f(zn). Then a necessary and sufficient condition that

lim fI(Z1) I(1 - zn ) = 0 (2)
n -c 0

is that
lim Di(wn) = 0, (3)

71 -o0

and a necessary and sufficient condition that f'(zn) (1 - Zn |) be bounded is
that D1(wn) be bounded.
From this theorem it follows for a univalent and bounded function

f(z) that f'(z) = o(1- uniformly in the circle Izl < 1 as lzl -1. In

this connection the following theorem is appropriate:
Let f(z) be regular and univalent in the circle IzI < 1. Then

lim f'(z)J(j - |z|)/2 = 0

for all points eia of the circumference z = 1 with the exception of at most a set
of Lebesgue measure zero, where z in the above limit is taken in any angle less
than 7r with vertex in ei' and bisected by the corresponding radius.
For univalent functions the second part of inequality (1) admits of ex-

tensions to all higher derivatives, for instance

If() (zO)j(l tzoI2)n < 4* e n! (Izol + n)(1 + IzoI)n-2Dj(wo).
For n = 2 or 3 the factor e in the right side may be omitted; the resulting
inequalities are sharp. Obviously, DI(wk) O-0, wk = f (Zk), implies

f(n) (Zk)|(l - IZkI) |-)0. (4)

Examples can be constructed to show that the limit in (2) and in (4) can
be approached arbitrarily slowly even if f(z) is univalent and continuous in
ZI - 1.
The situation is entirely analogous for bounded functions:
Let f(z) be regular and bounded in ZIi < 1:

f(z) < M,
let {zn} be any sequence of points in zIi < 1, and let wn = f(zn). Then a
necessary and sufficient condition for (2) is (3).

Indeed, for any zo (IzoI < 1) we have

Dj(wo) ._ f'(zo)j(l - 1zo12) < \/8AMID(wo), (5)
wherewo = f(zo).
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The situation for the higher derivatives of bounded functions is some-
what more complicated than in the univalent case. We need the following
definitions:

Let R be a Riemann surface (configuration) over the w-plane, let wo be
any point of R not a branch point of order greater than p - 1. Suppose
that Cp is a simply connected region on R which contains wo in its interior,
lies over the circle w -wol < p, and covers this circle precisely p times.
We call such a,region a p-sheeted circle of center wo and radius p; the value
p = o is not excluded. The radius of p-valence Dp(wo) of a Riemann sur-
face R at a point wo belonging to R is defined as follows:

(a) For p = 1, Dp(wo) = Dj(wo).
(b) If wo is a branch point of order greater than p - 1 (p > 1), then

Dp(wo) = 0.
(c) For any other point wo, the number Dp(wo) is the radius of the largest

p-sheeted circle with center wo contained in R if such a circle exists, and is
otherwise Dp l (wo).

With this definition we prove:
Let I fn(z) I be a sequence offunctions analytic in the unit circle z < 1 and

converging uniformly in every closed subregion of |z < 1 to an analytic func-
tion f(z). Let zo be any point in the circle zI < 1 and set wn = fn (zO), wo =
f(zo). Let Dp(wO) and Dp(wo) pertain to the images of IzI < 1 by the maps
w = fn(z) and w = f(z), respectively. Then

lim Dp(ww) = Dp(wo).
12 -*0 co

As an analogue of the inequalities (5) we obtain:
Let f(z) be regular and bounded in Iz! < 1: f(z) _ M, let zo be any point

of IzI < 1 and wo = f(zo). Let p be a positive integer. Then there exist two
positive constants Xp depending only on p and Ap depending on p and M such
that we have

XApD,(wo) < k! |:i (-1) vv!(v)(k1)2.(1 - |zo2)k

f(k-P)zol < A,[D,(wo)I2 (6)

Consequently, for any sequence IznI(IznI < 1), a necessary and sufficient
condition for

lim f'k)(Z)I(1 - IZnl)k = 0 (k = 1,2, . . ., p)
n a

with wn = f(zn), is that
lim D(ww.) = 0.

1n - co
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The last part of this theorem may also be inferred from the preceding
theorem. Constants X, and A, for which (6) holds can be explicitly de-
termined.

Schottky's theorem enables us to extend the above results for bounded
functions to the case of functions f(z) omitting two values provided the
sequence w,, = f(z,) is bounded. The case Jw,j -> o can be treated by
other methods.
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1. Introduction.-The most valuable definitions of differentials of func-
tions in the classical differential calculi of finite as well as of infinite dimen-
sional spaces are those that give the differential as a "first order approxi-
mation" to the difference. In this paper we give a definition of such a
differential for functions whose arguments are in a linear topological space
T1 and whose values are in a linear topological space T2, not necessarily the
same2 as T1. Some of the fundamental properties of this differential are
given as well as the properties of other related topological differentials.
We wish to emphasize here the fact that the spaces T1 and T2 are not

necessarily metric-not even metrizable-and that the differential calculus
in linear topological spaces has important applications to general differen-
tial geometry, general dynamics and general continuous group theory.

2. Topological M-Differential.-By a linear topological space we shall
mean an abstract linear space with a Hausdorff topology in which the func-
tions x + y and ax are respectively continuous functions of both variables.

Let T, and T2 be any two linear topological spaces. A function l(x) on
T1 to T2 is termed linear if it is additive and continuous-hence homogene-
ous of degree one.

DEFINrM1ON OF M-DIFFERENTIAL.3 Let f(x) be a function with values in
T2 and defined on a Hausdorff neighborhood S,,, of xo eT1. The function f(x)
will be said to be M-differentiable at x = x0 and f(xo; Ax) will be called an M-
differential of f(x) at x = x0 with increment Ax if

(1) there exists a linear function f(xo; Ax) of Ax with arguments in T1 and
values in T2
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