on the derivatives of functions analytic in the UNIT CIRCLE

By J. L. Walsh and W. Seidel

Departments of Mathematics, Harvard University and University of Rochester
Communicated July 5, 1938
Various results concerning the order of growth of the first and higher derivatives of univalent and of bounded functions analytic in the unit circle are known. Among these we mention Koebe's distortion theorem (Verzerrungssatz) in the univalent case and Schwarz's Lemma and the results of O . Szász ${ }^{1}$ in the bounded case. A consequence of these results for a function $f(z)$ analytic in $|z|<1$ is $\left|f^{\prime}(z)\right|=0\left(\frac{1}{(1-|z|)^{3}}\right)$ in the case that $f(z)$ is univalent and $\left|f^{(n)}(z)\right|=0\left(\frac{1}{(1-|z|)^{n}}\right)$ in the case that $f(z)$ is bounded. These relations, however, give no information as to the conditions under which $\left|f^{(n)}\left(z_{k}\right)\right|\left(1-\left|z_{k}\right|\right)^{n}$ tends to zero for a given sequence of points $\left\{z_{k}\right\}$ in the unit circle. In the univalent case an answer to this question is contained in the following result due to J. E. Littlewood and A. J. Macintyre: ${ }^{2}$ Let $\mathrm{f}(\mathrm{z})$ be analytic and univalent in $|z|<1$ and let it omit there the value ω. Then in $|z|<1$ the following inequality is satisfied:

$$
\left|f^{\prime}(z)\right|\left(1-|z|^{2}\right) \leqq 4|\omega-f(z)|
$$

The purpose of the present note is to summarize the principal results recently obtained by the authors in the study of the relation

$$
\left|f^{(n)}\left(z_{k}\right)\right|\left(1-\left|z_{k}\right|\right)^{n} \rightarrow 0 \text { as } k \rightarrow \infty, \text { where }\left|z_{k}\right|<1,
$$

in the case that the analytic function $f(z)$ is univalent, or is bounded, or omits two values in $|z|<1$. The method involves primarily the systematic and detailed study of the function $\varphi_{k}(\zeta)=f\left(\frac{z_{k}+\zeta}{1+\bar{z}_{k} \zeta}\right)$. The detailed exposition will be published at a later date.

Let $w=f(z)$ be analytic in $|z|<1$ and let R denote the Riemann configuration over the w-plane onto which this function maps the region $|\boldsymbol{z}|<1$. Let w_{0} be an arbitrary point of R. Then the radius of the largest smooth circle (boundary not included) with center at w_{0} and wholly contained in R is called the radius of univalence of R at w_{0} and will be denoted by $D_{1}\left(w_{0}\right)$. The following theorem can be easily proved:

Let $\mathrm{f}(\mathrm{z})$ be regular and univalent in $|\mathrm{z}|<1, \mathrm{z}_{0}$ any point of $|\mathrm{z}|<1$, and $\mathrm{w}_{0}=\mathrm{f}\left(\mathrm{z}_{0}\right)$. Then

$$
\begin{equation*}
D_{1}\left(w_{0}\right) \leqq\left|f^{\prime}\left(z_{0}\right)\right|\left(1-\left|z_{0}\right|^{2}\right) \leqq 4 D_{1}\left(w_{0}\right) \tag{1}
\end{equation*}
$$

Each of these inequalities is sharp and the second one is another form of the Littlewood-Macintyre inequality. An immediate consequence of this theorem is the corollary:

Let $\mathrm{f}(\mathrm{z})$ be regular and univalent in $|\mathrm{z}|<1, \mathrm{z}_{\mathrm{n}}$ any sequence of points i_{i} $|\mathrm{z}|<1$, and $\mathrm{w}_{\mathrm{n}}=\mathrm{f}\left(\mathrm{z}_{\mathrm{n}}\right)$. Then a necessary and sufficient condition that

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left|f^{\prime}\left(z_{n}\right)\right|\left(1-\left|z_{n}\right|\right)=0 \tag{2}
\end{equation*}
$$

is that

$$
\begin{equation*}
\lim _{n \rightarrow \infty} D_{1}\left(w_{n}\right)=0 \tag{3}
\end{equation*}
$$

and a necessary and sufficient condition that $\left|\mathrm{f}^{\prime}\left(\mathrm{z}_{\mathrm{n}}\right)\right|\left(1-\left|\mathrm{z}_{\mathrm{n}}\right|\right)$ be bounded is that $\mathrm{D}_{1}\left(\mathrm{w}_{\mathrm{n}}\right)$ be bounded.

From this theorem it follows for a univalent and bounded function $f(z)$ that $\left|f^{\prime}(z)\right|=o\left(\frac{1}{1-|z|}\right)$ uniformly in the circle $|z|<1$ as $|z| \rightarrow 1$. In this connection the following theorem is appropriate:

Let $\mathrm{f}(\mathrm{z})$ be regular and univalent in the circle $|\mathrm{z}|<1$. Then

$$
\lim _{z \rightarrow e^{i \alpha}}\left|f^{\prime}(z)\right|(1-|z|)^{1 / 2}=0
$$

for all points $\mathrm{e}^{\mathrm{i} \alpha}$ of the circumference $|\mathrm{z}|=1$ with the exception of at most a set of Lebesgue measure zero, where z in the above limit is taken in any angle less than π with vertex in $\mathrm{e}^{\mathrm{i} \alpha}$ and bisected by the corresponding radius.

For univalent functions the second part of inequality (1) admits of extensions to all higher derivatives, for instance

$$
\left|f^{(n)}\left(z_{0}\right)\right|\left(1-\left|z_{0}\right|^{2}\right)^{n} \leqq 4 \cdot e \cdot n!\left(\left|z_{0}\right|+n\right)\left(1+\left|z_{0}\right|\right)^{n-2} D_{1}\left(w_{0}\right) .
$$

For $n=2$ or 3 the factor e in the right side may be omitted; the resulting inequalities are sharp. Obviously, $D_{1}\left(w_{k}\right) \rightarrow 0, w_{k}=f\left(z_{k}\right)$, implies

$$
\begin{equation*}
\left|f^{(n)}\left(z_{k}\right)\right|\left(1-\left|z_{k}\right|\right)^{n} \rightarrow 0 \tag{4}
\end{equation*}
$$

Examples can be constructed to show that the limit in (2) and in (4) can be approached arbitrarily slowly even if $f(z)$ is univalent and continuous in $|z| \leqq 1$.

The situation is entirely analogous for bounded functions:
Let $\mathrm{f}(\mathrm{z})$ be regular and bounded in $|\mathrm{z}|<1$:

$$
|f(z)| \leqq M
$$

let $\left\{\mathrm{z}_{\mathrm{n}}\right\}$ be any sequence of points in $|\mathrm{z}|<1$, and let $\mathrm{w}_{\mathrm{n}}=\mathrm{f}\left(\mathrm{z}_{\mathrm{n}}\right)$. Then a necessary and sufficient condition for (2) is (3).

Indeed, for any $\mathrm{z}_{0}\left(\left|\mathrm{z}_{0}\right|<1\right)$ we have

$$
\begin{equation*}
D_{1}\left(w_{0}\right) \leqq\left|f^{\prime}\left(z_{0}\right)\right|\left(1-\left|z_{0}\right|^{2}\right) \leqq \sqrt{8 M D_{1}\left(w_{0}\right)} \tag{5}
\end{equation*}
$$

where $\mathrm{w}_{0}=\mathrm{f}\left(\mathrm{z}_{0}\right)$.

The situation for the higher derivatives of bounded functions is somewhat more complicated than in the univalent case. We need the following definitions:

Let R be a Riemann surface (configuration) over the w-plane, let w_{0} be any point of R not a branch point of order greater than $p-1$. Suppose that C_{p} is a simply connected region on R which contains w_{0} in its interior, lies over the circle $\left|w-w_{0}\right|<\rho$, and covers this circle precisely p times. We call such a region a p-sheeted circle of center w_{0} and radius ρ; the value $\rho=\infty$ is not excluded. The radius of p -valence $\mathrm{D}_{\mathrm{p}}\left(\mathrm{w}_{0}\right)$ of a Riemann surface R at a point w_{0} belonging to R is defined as follows:
(a) For $p=1, D_{p}\left(w_{0}\right)=D_{1}\left(w_{0}\right)$.
(b) If w_{0} is a branch point of order greater than $p-1(p>1)$, then $D_{p}\left(w_{0}\right)=0$.
(c) For any other point w_{0}, the number $D_{p}\left(w_{0}\right)$ is the radius of the largest p-sheeted circle with center w_{0} contained in R if such a circle exists, and is otherwise $D_{p-1}\left(w_{0}\right)$.

With this definition we prove:
Let $\left\{\mathrm{f}_{\mathrm{n}}(\mathrm{z})\right\}$ be a sequence of functions analytic in the unit circle $|\mathrm{z}|<1$ and converging uniformly in every closed subregion of $|z|<1$ to an analytic function $\mathrm{f}(\mathrm{z})$. Let z_{0} be any point in the circle $|\mathrm{z}|<1$ and set $\mathrm{w}_{\mathrm{n}}=\mathrm{f}_{\mathrm{n}}\left(\mathrm{z}_{0}\right), \mathrm{w}_{0}=$ $\mathrm{f}\left(\mathrm{z}_{0}\right)$. Let $\mathrm{D}_{\mathrm{p}}\left(\mathrm{w}_{\mathrm{n}}\right)$ and $\mathrm{D}_{\mathrm{p}}\left(\mathrm{w}_{0}\right)$ pertain to the images of $|\mathrm{z}|<1$ by the maps $\mathrm{w}=\mathrm{f}_{\mathrm{n}}(\mathrm{z})$ and $\mathrm{w}=\mathrm{f}(\mathrm{z})$, respectively. Then

$$
\lim _{n \rightarrow \infty} D_{p}\left(w_{n}\right)=D_{p}\left(w_{0}\right)
$$

As an analogue of the inequalities (5) we obtain:
Let $\mathrm{f}(\mathrm{z})$ be regular and bounded in $|\mathrm{z}|<1:|\mathrm{f}(\mathrm{z})| \leqq \mathrm{M}$, let z_{0} be any point of $|\mathrm{z}|<1$ and $\mathrm{w}_{0}=\mathrm{f}\left(\mathrm{z}_{0}\right)$. Let p be a positive integer. Then there exist two positive constants λ_{p} depending only on p and Λ_{p} depending on p and M such that we have

$$
\begin{array}{r}
\lambda_{p} \cdot D_{p}\left(w_{0}\right) \leqq \sum_{k=1}^{p} \frac{1}{k!} \left\lvert\, \sum_{\nu=0}^{k-1}(-1)^{\nu} \cdot \nu!\binom{k}{\nu}\binom{k-1}{\nu} \bar{z}_{0}^{\nu} \cdot\left(1-\left|z_{0}\right| 2^{k-\nu} .\right.\right. \\
\quad f^{(k-\nu)} z_{0} \mid \leqq \Lambda_{p}\left[D_{p}\left(w_{0}\right)\right]^{2^{-p}} . \tag{6}
\end{array}
$$

Consequently, for any sequence $\left\{z_{n}\right\}\left(\left|z_{n}\right|<1\right)$, a necessary and sufficient condition for

$$
\lim _{n \rightarrow \infty} f^{(k)}\left(z_{\mathrm{n}}\right) \mid\left(1-\left|z_{\mathrm{n}}\right|\right)^{k}=0 \quad(k=1,2, \ldots, p)
$$

with $\mathrm{w}_{\mathrm{n}}=\mathrm{f}\left(\mathrm{z}_{\mathrm{n}}\right)$, is that

$$
\lim _{n \rightarrow \infty} D_{p}\left(w_{n}\right)=0
$$

The last part of this theorem may also be inferred from the preceding theorem. Constants λ_{p} and Λ_{p} for which (6) holds can be explicitly determined.

Schottky's theorem enables us to extend the above results for bounded functions to the case of functions $f(z)$ omitting two values provided the sequence $w_{n}=f\left(z_{n}\right)$ is bounded. The case $\left|w_{n}\right| \rightarrow \infty$ can be treated by other methods.
${ }^{1}$ O. Szász, Math Zeitschrift, 8, 303-309 (1920).
${ }^{2}$ J. E. Littlewood, Proc. London Math. Soc., 23, 507 (1924); A. J. Macintyre, Jour. London Math. Soc., 11, 7-11 (1936).

DIFFERENTIAL CALCULUS IN LINEAR TOPOLOGICAL SPACES ${ }^{1}$

By A. D. Michal
Department of Mathematics, California Institute of Technology

Communicated July 9, 1938

1. Introduction.-The most valuable definitions of differentials of functions in the classical differential calculi of finite as well as of infinite dimensional spaces are those that give the differential as a "first order approximation" to the difference. In this paper we give a definition of such a differential for functions whose arguments are in a linear topological space T_{1} and whose values are in a linear topological space T_{2}, not necessarily the same 2 as T_{1}. Some of the fundamental properties of this differential are given as well as the properties of other related topological differentials.

We wish to emphasize here the fact that the spaces T_{1} and T_{2} are not necessarily metric-not even metrizable-and that the differential calculus in linear topological spaces has important applications to general differential geometry, general dynamics and general continuous group theory.
2. Topological M-Differential.-By a linear topological space we shall mean an abstract linear space with a Hausdorff topology in which the functions $x+y$ and αx are respectively continuous functions of both variables.

Let T_{1} and T_{2} be any two linear topological spaces. A function $l(x)$ on T_{1} to T_{2} is termed linear if it is additive and continuous-hence homogeneous of degree one.

Definition of M-Differential. ${ }^{3}$ Let $\mathrm{f}(\mathrm{x})$ be a function with values in T_{2} and defined on a Hausdorff neighborhood S_{x}, of $\mathrm{x}_{0} \in \mathrm{~T}_{1}$. The function $\mathrm{f}(\mathrm{x})$ will be said to be M -differentiable at $\mathrm{x}=\mathrm{x}_{0}$ and $\mathrm{f}\left(\mathrm{x}_{0} ; \delta \mathrm{x}\right)$ will be called an M differential of $\mathrm{f}(\mathrm{x})$ at $\mathrm{x}=\mathrm{x}_{0}$ with increment $\delta \mathrm{x}$ if
(1) there exists a linear function $\mathrm{f}\left(x_{0} ; \delta \mathrm{x}\right)$ of $\delta \mathrm{x}$ with arguments in T_{1} and values in T_{2}

