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ABSTRACT

Cutting-edge acousto-optic devices require optically transparent thin films, which possess a high index of refraction and large elasto-optic
coefficients. For the wide near-infrared to ultraviolet spectral region, the mainstream technology employs lithium niobate crystals, which
interferes with the vital demands of global sustainability. Here, we demonstrate unprecedented elasto-optic properties in thin films of sus-
tainable and environmentally friendly strontium titanate [SrTiO3 (STO)]. Compared to cubic STO, a nearly twofold increase in elasto-optic
coefficients is achieved in epitaxial tetragonal STO films, which concurrently exhibit excellent transparency and a high index of refraction
at wavelengths from 400 to 1700 nm. The room-temperature non-polar state is evidenced by the thermo-optical behavior of the films. The
obtained enhancement is related to the tetragonal antiferrodistortive phase of STO. It is suggested that such films can form a platform for

future sustainable acousto-optic materials.

© 2021 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0075614

Controlling light propagation in solids by mechanical strain
or an electric field constitutes the basis for a vast variety of mod-
ern optical devices." A change in the index of refraction by strain,
or the elasto-optic effect, enables important acousto-optic devices
and applications.”” The key parameters of a material for premium
devices are both the high index of refraction and large elasto-
optic coefficients in the material’s transparency spectral range.”
Because thin films allow for increased power density and a longer
interaction length, thin-film devices possess significant advantages
over their bulk counterparts.”* Correspondingly, for the wide near-
infrared (NIR) to ultraviolet (UV) spectral region, thin layers of
lithium niobate [LiNbO3 (LNO)] on insulating substrates (LNOI)
empower present-day devices.” '’ The LNOI structures are pre-
pared by cutting LNO slices from bulk crystals, bonding the slices to
low-index substrates, and final polishing. In addition to the related
nonproductive and environmentally harmful waste of LNO, the con-
stituent elements of LNO—Li and Nb—belong to the so-called crit-
ical elements, whose abundance on the Earth is very small, but the
demand is growing. Furthermore, the presence of Nb in LNO has
a strongly deleterious impact across all environmental indicators,
which are considered today.!" We note that the widely studied epi-
taxial LNO films'” cannot resolve the environmental and sustain-
ability issues of LNO. Here, we demonstrate an alternative route

toward elasto-optic films using perovskite oxide SrTiOs (STO),
which is free of these issues.

For STO, compared to LNO, the constituent Sr is 25 times
more abundant than Li, whereas Ti is 445 times more abundant
than Nb: it is the ninth most abundant element in the Earth’s crust.
Strontium is commonly present in natural minerals and food and
is essential for life. Neither the biological role nor the environmen-
tal effects have been reported for titanium. The human body can
tolerate Ti in large doses. Similar to LNO, STO is a wide bandgap
material, ensuring high transparency in the NIR-UV range, where it
possesses a high index of refraction. The maximal elasto-optic coef-
ficients (for the wavelength 600 nm) are ~0.15 in STO and ~0.18
in LNO, suggesting that for some devices (e.g., modulators), STO
crystals are nearly as well suited as LNO (Table S1 of the supplemen-
tary material). Importantly, in contrast to fundamental and tech-
nical difficulties in the synthesis of epitaxial LNO films,'” perfect
epitaxial films of STO have been grown on a variety of substrates,
including commercial silicon ones.'”'* A hypothetical epitaxial STO
film, where the elasto-optic coefficient could be enhanced to ~0.3,
would totally surpass LNO (Table S1 of the supplementary material).
Here, we achieved such an enhancement using epitaxial stabi-
lization of a non-polar tetragonal antiferrodistortive (AFD) phase
of STO.
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In bulk unstressed STO crystals, the transition from the cubic
paraelectric (PE) phase to the tetragonal AFD phase occurs on cool-
ing at ~104 K. The PE-AFD transition was theoretically suggested
to modify the electronic band structure and, consequently, optical
properties of STO,'”'® whereas negligibly small optical changes were
experimentally detected in crystals.”'® However, the optical proper-
ties of the AFD phase can be markedly more sensitive to strain than
those of the PE phase,'® which can raise elasto-optic coefficients.
Furthermore, in contrast to the low-temperature AFD phase in crys-
tals, the high-temperature AFD phase can be stabilized in epitaxial
films, grown on compressive substrates.'” ! In this work, we verified
the conceived possible advancement as follows.

Cube-on-cube-type epitaxial films of STO were grown on
(001)(Lag.3Sro.7)(Alp.g5Tag35)O3 (LSAT) substrates, which impose
biaxial compressive in-plane misfit strain and hence induce out-of-
plane lattice elongation and tetragonality in the films. We note that
LSAT substrates enable an in-plane lattice parameter of 3.868 A,
which is close to that of ~3.840 A for STO on Si substrates. There-
fore, our observations are relevant for potential commercial STO/Si
films. The films were grown by pulsed laser deposition in oxygen
ambience. The films were tetragonal perovskite, with the epitaxial
relationship (001)[100]STO||(001)[100]LSAT and a longer crystal
axis normal to the substrate surface. By controlling gas pressure, the
coherent films with thicknesses up to ~150 nm were obtained and
the out-of-plane tensile strain was tuned from ~0.5 to ~1.7% (Table
S2 of the supplementary material). The presence of oxygen vacan-
cies facilitated coherency and raised the out-of-plane strain above
the misfit level. The detailed analysis and multiscale modeling of the
growth were presented in Ref. 22.

The optical properties of the films, reference STO crystal, and
LSAT substrate were studied using variable angle spectroscopic
ellipsometry. The bare LSAT single-crystal substrate was investi-
gated to ensure accurate studies of the properties of the films. We
used an epitaxially polished (001)-oriented single-crystal STO sub-
strate (MTI Corp.) as the reference crystal. The measurements were
performed on a Woollam vacuum ultraviolet (VUV) ellipsometer
at room temperature, in dry nitrogen atmosphere, and at photon
energies of (0.75-8.8) eV. The high-temperature measurements were
performed in air at photon energies of (0.75-6.5) eV. The details of

scitation.org/journal/apm

Typical examples of ellipsometric spectra and fitted data are given in
Fig. S1 of the supplementary material.

The dielectric functions (¢* = & + ie;) and optical constants
(index of refraction #, extinction coefficient k, and absorption coef-
ficient ) were determined as a function of wavelength (or photon
energy) in the STO films and crystal (Fig. 1 and Figs. S2 and S3 of
the supplementary material).

The films exhibit excellent transparency in the wavelength
range of 400-1700 nm [Figs. 1(a) and 1(b) and Fig. S2 of the supple-
mentary material]. Moreover, compared to the crystal, the absorp-
tion edge is shifted to shorter wavelengths in the films [Fig. 1(a)]. In
the transparency spectral range, the index of refraction is large (>2.2)
and depends on the strain in the films [Fig. 1(c)].

The elasto-optic behavior of the tetragonal STO/LSAT films can
be described by”* **

A("flz) = (prin + priz2)su + pussss w0 g (1)

Here, 711 and p1122, p1122, and p1133 are the index of refraction and the
elasto-optic coefficients, respectively.””* The biaxial in-plane strain
is s, = s11, and the out-of-plane strain is s. = s33 correspondingly.
As mentioned above, the AFD transition has no detectable effect on
the index of refraction in the absence of strain.'”'® Therefore, the
index of refraction in the crystal, ng, is used in (1). The index of
refraction n is extracted from the ellipsometric data.

In agreement with expression (1), the experimentally deter-
mined refraction alterations A(n™%) increase linearly with the out-
of-plane strain s. [Fig. 2(a)]. The coefficients pii133 and (piin
+ p1122) were determined from the linear fits for different wave-
lengths [Figs. 2(b) and 2(c)]. We emphasize that the extracted pi133
is insensitive to the choice of the reference ng in (1). The films pos-
sess a very large positive p1133 [Fig. 2(b)], whose magnitude exceeds
those of p11 in bulk STO and p1133 in bulk LNO. The negative sign of
the sum (p1111 + p1122) in the films [Fig. 2(c)] is typical for tetragonal
perovskite oxides.”’

The coefficients p1133 and (p1111 + pii122) bear a weak wave-
length dispersion compared to that in crystals of LNO or STO.?® The
dispersion was analyzed using the phenomenological relationship,”®

" 2 -
the measurements and data processing can be found in Refs. 23-25. P =lpl (1 —-n 2) =pp +xA7 (2)
1 0.01 2.6
(a) (b) (c)
F‘E ——crystal
© —s_=0.5%
I = ] 24¢ .
S —crystal —crystal —s. =1.7%
3 —S=05% —s,=05%
—S.= 1.7% \ . SC =1.7%
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FIG. 1. (a) Absorption coefficient, (b) extinction coefficient, and (c) index of refraction as a function of wavelength in the strained STO films. Data for the reference crystal

are shown by thin curves.
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FIG. 2. (a) Refraction variations A(n=2) as a function of strain s; at different wavelengths. Straight lines show fits. The wavelengths are 1200, 1000, 800, 600, 500, and
400 nm from the lower line up. (b) and (c) Elasto-optic coefficients (b) p1133 and (c) — (1111 + p1122) as a function of wavelength.

where p* is the normalized elasto-optic coefficient and the dis-
persion constant k is material-specific.’® The linear relationships
between p* and A% are valid for both (p1133)* and (p1111 + priz2)*
in the AFD STO films (Fig. 3), similar to the linear dependences in
bulk STO and LNO.? The dispersion constants were found from
the linear fits in Fig. 3. In the STO films, the constant « for the coeffi-
cient (p1133)” is ~0.015 x 1072 m?, which is two orders of magnitude
smaller than that of ~1.1 x 1072 m? in LNO.” The constant « for the
coefficients (p1111 + p1122)” is 0.04 x 1072 m? in the tetragonal STO
films. For comparison, the dispersion constant is ~0.5 x 102 m? in
the STO crystal.”*

The enhanced elasto-optic coefficients, which possess relatively
weak wavelength dispersion, together with the large index of refrac-
tion and excellent transparency of the AFD STO films, affirm that
such films can be competitive elasto-optic materials (Table I of the
supplementary material).

We relate the obtained enhanced elasto-optic properties to the
tetragonal non-polar AFD phase of STO. This phase is in perfect
agreement with the up-to-date strain-temperature phase diagram of
STO,”! according to which our films are expected to experience a
ferroelectric transition on cooling below ~200 K. However, to prove
the room-temperature non-polar state in the films, we inspected
their thermo-optical behavior, namely, the index of refraction as
a function of temperature. For perovskite oxide ferroelectrics and
the related crystals, it is well established that the appearance of

(a) (b) 104
0.45]

([71133)*

(p1111+p1122)*

0.40

0 2 4 6 0 2 4 6
A% (10° nm?) A% (10° nm?)

FIG. 3. Wavelength dispersion relationships for the normalized elasto-optic coeffi-
cients (a) (pr133)* and (b) (o111 + p1r2z)*. Straight lines show fits.

spontaneous crystal polarization manifests itself optically.”” *
Specifically, the index of refraction in the transparency range
exhibits a linear behavior [n(T) o< T] with the negative thermo-
optical coefficient in non-polar phases of perovskite oxide fer-
roelectrics, whereas a deviation from such behavior signifies the
presence of crystal polarization. The positive thermo-optical coef-
ficient is typical for the ferroelectric state. The optical manifesta-
tions of polarization have also been experimentally confirmed both
in thin films and in strain-induced ferroelectric transitions in epi-
taxial films.”®*® Here, the absence of polarization is unambigu-
ously demonstrated by the linear temperature dependence of the
index of refraction [n (T) o< TJ: the negative slope of n(T) in the
films corresponds to that in the non-polar STO crystal (Fig. 4). We
emphasize that the misfit-induced ferroelectric phase transition was
clearly expressed by the change from the high-temperature nega-
tive thermo-optics [n o< T] to the low-temperature positive one
in the strongly strained epitaxial films of STO as well as those of
KTaO3.”° The thermo-optic behavior confirms the non-polar state
of the strained tetragonal STO films studied here.

Explicit microscopic mechanisms of the phenomenal optical
properties of the tetragonal AFD STO films are unknown. To get
a preliminary insight into them, we examined the main optical
interband transitions, which are manifested by the apparent lowest-
energy and strongest critical point (CP) line at ~4.0 eV.”* The second
derivative of the dielectric function indicates a shift of this line to
higher energies with an increase in strain (Fig. 5). This blueshift
conforms to the theoretically shown strain-dependent widening of
the optical gaps in the AFD phase.'® Concurrently, according to
the phenomenological model,”® bandgap widening can drive the
elasto-optic effect. Furthermore, in addition to the strain-stimulated
bandgap behavior, electron-phonon coupling and phonon-related
polarization oscillations can noticeably raise the elasto-optic coeffi-
cients in a non-polar phase of perovskite oxide ferroelectrics.”® As
found before, the presence of strong phonon effects is very likely
in the tetragonal STO films.”* These phonon effects and the related
peculiar phonon hardening”* in the non-polar AFD STO films
await theoretical investigations.

In summary, for the broad spectral range (wavelengths of
400-1700 nm), large elasto-optic coefficients (up to ~0.3) in combi-
nation with high transparency and a large index of refraction (>2.2)
were obtained in epitaxial tetragonal non-polar AFD films of STO.
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FIG. 4. Thermo-optical behavior: index of refraction as a function of temperature at different wavelengths of (a) 1240, (b) 826, and (c) 620 nm in the STO films (strain is

marked on the plots) and crystal. Straight lines show fits.
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FIG. 5. Second derivatives of the (a) real and (b) imaginary parts of the dielectric
function as a function of photon energy in the tetragonal STO films. The out-of-
plane strain is marked on the plots.

Compared to cubic STO, the elasto-optic coefficients are signifi-
cantly enhanced in the films, which was discussed in terms of the
interband and phonon effects. Being environmentally friendly, sus-
tainable, and compatible with silicon substrates, such STO films have
a high potential for future acousto-optic materials.

See the supplementary material for elasto-optic figures of merit,
list of samples, and ellipsometry data.
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