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Abstract

Rare event probabilities play an important role in the understanding of the behaviour
of biochemical systems. Due to the intractability of the most natural Markov jump
process representation of a system of interest, rare event probabilities are typically es-
timated using importance sampling. While the resulting algorithm is reasonably well
developed, the problem of choosing a suitable importance density is far from straight-
forward. We therefore leverage recent developments on simulation of conditioned jump
processes to propose an importance density that is simple to implement and requires no
tuning. Our results demonstrate superior performance over some existing approaches.
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1 Introduction

Simulating discrete biochemical networks via stochastic simulations in recent years has become
routine. The default algorithm for many practitioners was developed over four decades ago by
Gillespie (1977). This algorithm simulates a single stochastic realisation from the Markov jump
process (MJP) representation of a system of interest. Typically, multiple realisations are generated
in order to estimate state probabilities. Given the intractability of the MJP, the importance of
the stochastic simulation algorithm (SSA) cannot be understated.

Multiple improvements have been proposed to the default. For example, Gibson and Bruck
(2000) use efficient data structures, whereas other authors McCollum et al. (2006); Slepoy et al.
(2008) have leveraged clever sorting strategies. It is also possible to speed up a single stochastic
simulation by grouping sets of reactions together and simulating on a multi-core CPU(Gillespie,
2012).

Despite these improvements in computational efficiency, the problem of estimating probabilities
of rare events remains challenging. While an ensemble simulation approach can in principle be
routinely applied, the number of simulations required to attain a certain level of accuracy can be
computationally prohibitive.

The weighted stochastic simulation algorithm (wSSA) was developed by Kuwahara and Mura
(2008) to alleviate the computational burden associated with calculating rare event probabilities,
that is, estimating p(x0, x

′; t′), the probability of reaching x′ before time t′, given x0 at time t = 0.
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The general idea is to carefully weight or bias key reactions, which will reduce the total number
of simulations required (relative to a vanilla Monte Carlo approach based on the SSA) to give
an estimator that attains a given level of accuracy. As an aside, while these simulations can be
used to estimate the probability of interest, they can not be regarded as valid realisations from
the system of interest. The wSSA can be seen as an importance sampler, and this connection
was made explicitly by Gillespie et al. (2009), who further extended the wSSA by proposing to
select suitable biasing parameters by minimising the variance of the resulting importance sampling
estimator. The need for state-dependent biasing parameters was discussed by Roh et al. (2010)
who proposed to partition each reaction depending on whether it should be encouraged or not, and
specified state-dependent propensity functions for each reaction group. An automated approach
to biasing parameter selection was presented by Daigle et al. (2011) with a subsequent extension to
state-dependent bias in Roh et al. (2011). In the latter two contributions, a cross entropy method
is used to continually refine biasing parameters. Consequently, previous work in this area either
requires the specification of additional tuning parameters or additional simulations.

Our novel approach is the specification of an importance density that is simple to implement and
requires no additional tuning. We leverage recent developments on simulation of conditioned jump
processes to derive a propensity function that takes into account the rare event of interest. We
then use this propensity inside the SSA to generate trajectories that are guided towards the rare
event x′, thereby increasing the likelihood of hitting x′ before time t′. We find that the proposed
approach outperforms competing methods in a variety of settings. Limitations are also discussed.

The remainder of this article is organised as follows. In Section 2, we discuss some recent
developments around the wSSA algorithms. Section 3 will consider a simple two-state model,
where it is possible to derive analytical expressions for the optimal weights. Following these
insights, we will derive our new method in 4 and compare its performance with other methods in
Section 5 using three examples of increasing complexity.

2 The wSSA Algorithm

Consider a reaction network involving u species X1,X2, . . . ,Xu and v reaction channels R1,R2, . . . ,
Rv such that

u∑
j=1

pijXj −→
u∑
j=1

qijXj , i = 1, . . . , v

where the pij and qij are non-negative integers known as stoichiometric coefficients. Let Xj,t

denote the (discrete) number of species Xj at time t, and let Xt be the u-vector Xt = (X1,t, X2,t,
. . . , Xu,t)

T . The time evolution of Xt is most naturally described by a Markov jump process
(MJP), so that for an infinitesimal time increment dt and a propensity function (or instantaneous
hazard) hi(xt), the probability of a type i reaction occurring in the time interval (t, t + dt] is
hi(xt)dt. Under the standard assumption of mass action kinetics, hi is proportional to a product
of binomial coefficients. Specifically

hi(xt) = ki

u∏
j=1

(
xj,t
pij

)

and we suppress explicit dependence of hi on the rate constant ki. Values for k = (k1, k2, . . . , kv)
T ,

the initial system state X0 = x0 and the u × v stoichiometry matrix S whose (i, j)th element is
given by qji − pji, complete specification of the Markov process. Despite the intractability of the
probability mass function governing the state of the system at any time t (as satisfies the chemical
master equation), generating exact realisations of the MJP is straightforward via a technique
known in this context as the stochastic simulation algorithm (SSA) (Gillespie, 1977) . In brief, if
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the current time and state of the system are t and Xt respectively, then the time to the next event
will be exponential with rate parameter

h0(xt) =
v∑
i=1

hi(xt),

and the event will be a reaction of type Ri with probability hi(xt)/h0(xt) independently of the
inter-event time.

We suppose that interest lies in p(x0, x
′; t′), that is, the probability that the system starting at

the initial value x0 at time 0 will first reach the state x′ at some time t in the interval (0, t′]. This
probability can be written as the expectation

E
{
I(x′ ∈ X(0,T ])

}
(1)

where the indicator function I(x′ ∈ X(0,T ]) takes the value 1 if t ≤ T and XT = x′ at some
stopping time T ∈ (0, t′]. It takes the value 0 otherwise. Note that the expectation is with respect
to the probability law of the MJP over the interval (0, t′], denoted p(x(0,t′]|x0). Then, a simple
Monte Carlo procedure for (unbiasedly) estimating the expectation in (1) is to generate (say) N
independent draws x(1), . . . , x(N) of x(0,T ] via the SSA and set

p̂(x0, x
′; t′) =

1

N

N∑
j=1

I(x′ ∈ x(j)).

However, it is well known that when dealing with rare events, the corresponding estimator will
have high variance (for a given N), since relatively few draws of the MJP will attain the condition
for setting the indicator equal to 1 (see Kuwahara and Mura, 2008).

The weighted SSA (wSSA) constructs an importance sampling estimate of p(x0, x
′; t′). A key

ingredient of this approach is a suitable importance density q(x(0,t′]|x0). Given N independent

draws x(1), . . . , x(N) of x(0,T ] from q(x(0,T ]|x0), the importance sampling estimate is

p̂(x0, x
′; t′) =

1

N

N∑
j=1

w
(j)
T I(x′ ∈ x(j)) (2)

where the weight function is

w
(j)
T =

p(x
(j)
(0,T ]|x0)

q(x
(j)
(0,T ]|x0)

. (3)

The importance density should be chosen so that samples drawn from it are “more likely” to
meet the attainment condition. Hence, the choice of importance density is crucial for devising

an estimator with low variance. In what follows, we take q(x
(j)
(0,t′]|x0) to be the probability law

associated with an MJP whose propensity function is h̃i(xt) for reaction i = 1, . . . , v. In this case,
the weight function can be explicitly calculated as follows. We let rj denote the number of reaction
events of type Rj , j = 1, . . . , v, and define nr =

∑v
j=1 rj as the total number of reaction events

over the interval (0, T ]. Reaction times (assumed to be in increasing order) and types are denoted
by (ti, νi), i = 1, . . . , nr, νi ∈ {1, . . . , v} and we take t0 = 0 and tnr = T . The complete-data
likelihood over (0, T ] is

p(x(0,T ]|x0) =

{
nr∏
i=1

hνi
(
xti−1

)}
× exp

{
−

nr∑
i=1

h0
(
xti−1

)
∆ti

}
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where ∆ti = ti − ti−1 is the dwell time preceding the ith reaction firing (see Wilkinson, 2012).
An expression for q(x(0,T ]|x0) is obtained similarly. Hence the weight function is

wT =

{
nr∏
i=1

hνi
(
xti−1

)
h̃νi
(
xti−1

)}× exp

{
−

nr∑
i=1

[
h0
(
xti−1

)
− h̃0

(
xti−1

)]
∆ti

}
. (4)

Computation of an estimate p̂(x0, x
′; t′) is then straightforward by performing N independent runs

of the SSA with hi(xt) replaced by h̃i(xt). The number MN of runs that reach state x′ prior to
time t′ is obtained, and each such run is assigned a weight using (4). The weights are then used
as in (2) to estimate p(x0, x

′; t′).
It remains that we specify a suitable form of h̃i(xt) to be used in the importance sampler.

Previous approaches (Kuwahara and Mura, 2008; Gillespie et al., 2009) have used h0(xt) to update
the inter-event times and h̃i(xt) = αhi(xt) to update the reaction events, for some tuning parameter
α. Roh et al. (2011) use αhi(xt) to update both the inter-event times and reaction events. In the
following section we motivate the need for the scaling parameter α to be time-dependent before
presenting our novel approach in Section 4.

3 Discrete two state model

Consider a simple, discrete-time, two state model. Suppose X can only take that the values 0 or
1. The probability of remaining in state 0 is p0. The probability of moving from state 0 to 1 is
p1 = 1− p0. The state X = 1, is an absorbing state.

The system commences with X = 0, at time t = 0. Hence, the probability that the system will
first reach the state 1 at some time t in the interval (0, t′] is

p(0, 1; t′) = 1− pt′0 .

Suppose we wish to encourage absorption, i.e. reaching state 1 by time t′. An importance sampling
strategy is to weight the probability of a transition from 0 to 1, by α.

Hence at time t, assuming we have not reached state 1, we draw Xt according to the probability
mass function with

Pr(Xt = 0) = q0 =
p0

p0 + αp1

and
Pr(Xt = 1) = q1 =

αp1
p0 + αp1

.

Then, the associated weight should be multiplied by one of

w0 =
p0
q0

or w1 =
p1
q1

depending on the transition type. The expected weight at time t′ is given by

E[Wt′ ] = q1w1 + q1q0w1w0 + q1q
2
0w1w

2
0 + . . .

= q1w1

t′−1∑
i=0

wi0q
i
0

= 1− pt′0 . (5)

Hence, the importance weights can be used to unbiasedly estimate p(0, 1; t′) for any α > 0.
However, as Gillespie et al. (2009) showed, the efficiency of the method can vary dramatically
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with the choice of α. To optimise the choice α, we minimise the variance of the estimate. For this
model, we can derive an analytical expression for the second moment, namely

E[W 2
t′ ] = q1w

2
1 + q1q0(w1w0)

2 + q1q
2
0(w1w

2
0)2 + . . .

= q1w
2
1

t′−1∑
i=0

qi0w
2i
0

=
p21
q1

t′−1∑
i=0

p2i0
qi0

=
(1− p0)2

1− q0
q0(1− p2t

′
0 q−t

′

0 )

q0 − p20
. (6)

To obtain an optimal value of α, we need to minimise

V ar(Wt′) = E[W 2
t′ ]− E[Wt′ ]

2. (7)

Since E[Wt′ ] does not depend on α, minimising V ar(Wt′) is equivalent to minimising E[W 2
t′ ]. The

crucial insight from equation 6, is that E[W 2
t′ ] explicitly depends on t′. This implies that the

optimal value of α varies over time. This highlights that the methods proposed by Kuwahara and
Mura (2008); Gillespie et al. (2009); Roh et al. (2010) are not optimal, since they assume a fixed
value of α for all times t ∈ [0, t′).

For the case when t′ →∞, the expectation simplifies to

E[W 2
∞] =

(1− p0)2(q0 − p0)(p0 + q0)

(q0 − 1)2(q0 − p20)2
.

This is minimised by q0 = p0, i.e. setting α = 1. This makes intuitive sense. Essentially as
t′ increases, the probability of hitting the target approaches 1. Hence, every simulation will
eventually hit the target and so adjusting the probabilities is not needed.

For the general case, we can minimise E(W 2
t′) by solving

d

dq0
E[W 2

t′ ] = 0 (8)

for q0. After some differentiation we have that

t′p2t
′

0 q−t
′

0

(1− q0)(q0 − p20)
+

q0(1− p2t
′

0 q−t
′

0 )

(1− q0)2(q0 − p20)
− q0(1− p2t

′
0 q−t

′

0 )

(1− q0)(q0 − p20)2
+

1− p2t′0 q−t
′

0

(1− q0)(q0 − p20)
= 0 . (9)

Although equation (9) cannot be solved analytically, a standard numerical solver can be used to
obtain q0 for a given value of t′. Suppose that p0 = 0.9 and interest lies in hitting X = 1 by
time t′ = 5. The optimal value of α (and therefore q0) can be calculated for t = 0, 1 . . . , 4, under
the assumption that for each t, we have not yet reached the absorbing state. For example, if at
t = 4 we have not yet reached state 1, the optimal α is the value that minimises E[W 2

t′ ] with
t′ = 5 − t = 1. Figure 1 shows that as t increases, and approaches t′ = 5, the optimal value of α
increases accordingly. When t = 0, α = 2.2. This corresponds to q1 = 0.20 (p1 = 0.1). However,
when t = 4, i.e. the last possible time at which Xt can be pushed towards state 1, α = 13.51 and
q1 = 0.60.
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Figure 1: Optimal values of α against t for the simple two-state model, with p0 = 0.9 and t′ = 1.

4 Guided wSSA

To obtain an importance density q(x(0,T ]|x0), a suitable form of h̃i(xt) (for use in the SSA) is
required. We appeal to the recent literature on the sampling of jump processes that are conditioned
to match some value at a given future time (Golightly and Wilkinson, 2015). Essentially, we seek
a tractable approximation of the expected number of reaction events in an interval of the form
(t, t′]. The resulting expression is used as the propensity function in the SSA, giving draws from
the corresponding q(x(0,T ]|x0).

In what follows we assume that
x′ = F Txt′ (10)

for some constant matrix F of dimension u×uo, with uo denoting the number of components of x′.
Hence, we allow for the rare event of interest to depend on a linear combination of the components
of the MJP. For simplicity, consider the generation of a single draw from the importance density
q(x(0,T ]|x0). Suppose that we have simulated as far as time t ∈ [0, T ). Let ∆Rt denote the number
of reaction events over the time t′−t = ∆t. We approximate ∆Rt by assuming a constant reaction
hazard over ∆t. A Gaussian approximation to the corresponding Poisson distribution then gives

∆Rt ∼ N (h(xt)∆t , H(xt)∆t)

where H(xt) = diag{h(xt)}. By linearity of (10) and using Xt = S∆Rt, we have that

X ′|Xt = xt ∼ N
(
F T (xt + S h(xt)∆t) , F

TS H(xt)S
TF∆t

)
.

Hence, the joint distribution of ∆Rt and X ′ (conditional on xt) can be obtained approximately as(
∆Rt
X ′

)
∼ N

{(
h(xt)∆t

F T (xt + S h(xt)∆t)

)
,

(
H(xt)∆t H(xt)S

TF∆t
F TS H(xt)∆t F TS H(xt)S

TF∆t

)}
.

Taking the expectation of ∆Rt|X ′ = x′ and dividing the resulting expression by ∆t gives an
approximate conditioned hazard as

h̃(xt) = h(xt) +H(xt)S
TF
(
F TS H(xt)S

TF∆t
)−1 × (x′ − F T [xt + S h(xt)∆t]

)
.
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Algorithm 1: Guided wSSA

Input: N and x0
1: mN ← 0
2: for n = 1 to N do
3: t← 0, ∆t← t′ − t, x← x0, w ← 1
4: evaluate all hj(x) and calculate h0(x)
5: while t < t′ do
6: if x′ = F Tx then
7: mN ← mN + w
8: break out of the while loop
9: end if

10: evaluate all di as in (11)
11: if all di > 0 then

12: set h̃(x) = h(x)
13: else

14: set h̃(x) using (4)
15: end if
16: generate two uniform U(0, 1) RNs r1 and r2
17: τ ← −h̃−10 (x) ln(r1)

18: j ← smallest integer satisfying
∑j

i=1 h̃i(x) ≥ r2h̃0(x)

19: w ← w × [hj(x)/h̃j(x)]× exp{[h̃0(x)− h0(x)]τ}
20: t← t+ τ , ∆t← t′ − t x← x+ Sj

21: update h(x) and h0(x)
22: end while
23: end for
24: return p̂(x0, x

′; t′) = mN/N

Using h̃(xt) inside the SSA requires calculation of the conditioned hazard function in (4) after
every reaction event. The cost of this calculation will be dictated by the dimension, uo, of x′,
given that a uo × uo matrix must be inverted. We anticipate that it will often be the case that
uo << u, for example when one gene is of primary interest in a larger system. Nevertheless,
to avoid unnecessary computational cost, we suggest that at time t, a pre-simulation check is
performed. We have approximately that

e(xt) = E
(
X ′|Xt = xt

)
= F T (xt + S h(xt)∆t) .

Hence, we compare E (X ′|Xt = xt) to x′ by computing

di = (ei(xt)− x′i)× sgn(x′i − [F Tx0]i), i = 1, . . . , uo (11)

where, for example, [F Tx0]i denotes the ith component of F Tx0. Hence if all values di are positive,
no additional push towards x′ is necessary and we take h̃(xt) = h(xt), thus avoiding calculation of
the inverse of a uo × uo matrix. We note that x′i − [F Tx0]i need only be computed once, and that
the calculation of e(xt) should be inexpensive, since it solves simple operations of the pre-specified
quantities S and F , and the current hazard h(xt). Algorithm 1 gives the full wSSA (denoted
“guided wSSA”) scheme based on the conditioned hazard function described above. Lines 10–15
describe the pre-simulation check.

The construction of the conditioned hazard is based on an assumption that the hazard function
is constant over diminishing time intervals (t, t′] and that the number of reactions over this interval
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is approximately Gaussian. The performance of the construct is therefore likely to be reduced if
applied over time horizons during which the reaction hazards vary substantially. Additionally, the
Guassian assumption is likely to be unreasonable in low count scenarios, although we note that
in such scenarios, simply using the SSA is likely to computationally feasible. In what follows we
investigate the performance of the proposed approach in three examples.

5 Examples

We consider three applications of increasing complexity. We compare and contrast the guided
wSSA with vanilla use of the SSA, the wSSA of Kuwahara and Mura (2008) and the state-
dependent wSSA of Roh et al. (2010). Following Gillespie et al. (2009), we compare the accuracy
of each method by computing the sample variance of the unnormalised importance weights. That
is the sample variance of

W (j) = w
(j)
T I(x′ ∈ x(j)), j = 1, . . . N

where w
(j)
T is given by (3). We denote the resulting quantity by σ2. All methods were coded in R

and run on were run on a desktop computer with an Intel Core i7-4770 processor at 3.40GHz

5.1 Single species production and degradation

Our first example is taken from Kuwahara and Mura (2008) (and see also Gillespie et al. (2009)
and Roh et al. (2010)). The system contains two reactions

R1 : X1
k1−−−→ X1 + X2 and R2 : X2

k2−−−→ ∅

where k1 = 1 and k2 = 0.025. The initial state is x0 = (1, 40)T we wish to estimate p(x0, F
Txt′ ; t

′)
with t′ = 100, F T = (0, 1) and x′ = F Txt′ = 80. That is, the probability that X2,t reaches x′ = 80
before time t′ = 100 given an initial state of x0 = (1, 40)T at t = 0. This is a well known model and
the steady state population of X2,t follows a Poisson distribution with parameter λ = k1x1,t/k2
where x1,t = 1 for all times t. Since the initial state X2,0 is set at the equilibrium value, X2,t

fluctuates around 40 with a standard deviation of
√

40. Hence, x′ = 80 is the upper 10−6%
quantile of the equilibrium distribution.

Figure 2 shows 3 trajectories that meet the attainment condition, generated using the guided
wSSA (Algorithm 1). For this example, the pre-simulation check is performed at time t by com-
puting e(xt)− x′ where

e(xt) = x2,t + (k1x1,t − k2x2,t)(t′ − t). (12)

If x′ − e(xt) < 0, we take h̃1(xt) = h1(xt) and h̃2(xt) = h2(xt). If x′ − e(xt) > 0, we use (4) to
obtain

h̃1(xt) = h1(xt) + h1(xt)
x′ − e(xt)
v(xt)

(13)

and

h̃2(xt) = h2(xt)− h2(xt)
x′ − e(xt)
v(xt)

(14)

where v(xt) = (k1x1,t + k2x2,t)(t
′− t). In this case, the propensity of reaction R1 is increased and

the propensity of reaction R2 is decreased.
Based on the trajectories in Figure 2, we computed the ratio h̃1(xt)/h̃2(xt). We additionally

computed the same quantity under the wSSA method of Kuwahara and Mura (2008), given by

1.85× h1(xt)

h2(xt)
=

1.85

0.025× x2,t
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corresponding to h̃1(xt) = 1.85h1(xt) and h̃2(xt) = h2(xt). Hence the Kuwahara/Mura approach
is to bias reaction R1 by increasing its propensity. We also display the ratio of unaltered hazard
functions

h1(xt)

h2(xt)
=

1

0.025× x2,t
which we refer to as the baseline. We see that the propensity ratios under the baseline and
Kuwahara/Mura approach exhibit a decreasing trend, and although the latter is able to increase
the propensity of reaction R1, neither method is able to adapt to changes in xt. The guided wSSA,
on the other hand, is able to adjust the relative propensity depending on the behaviour of xt. For
example, in simulation 2 (middle column of Figure 2), the trajectory appears to be fairly constant
between the values 60–65 between times 55–75. The guided wSSA therefore gives a sharp increase
in relative propensity in order to meet the attainment condition.

We ran guided wSSA and the wSSA of Kuwahara/Mura for N = 105 trajectories and computed
the sample variance σ2 of the importance weights. For comparison, we also ran the vanilla SSA
approach (using the unaltered relative propensity function given above), which required N = 108

to give a reasonable number of trajectories that meet the attainment condition. This gave variances
of 1.1× 10−12 for guided wSSA, 1.5× 10−10 for the Kuwahara and Mura approach and 2.7× 10−7

for the vanilla SSA approach. Hence, guided wSSA outperforms wSSA by two orders of magnitude
and SSA by five orders of magnitude.

5.2 Two-state conformational transition

The following simple reaction network, initially described by Kuwahara and Mura (2008), models
two conformational isomers, that is, isomers that can be inter-converted by rotation about single
bonds. This model has two reactions

R1 : X1
k1−−−→ X2 and R2 : X2

k2−−−→ X1

where k1 = 0.12 and k2 = 1. The initial state is set to x0 = (100, 0)T . For this particular system
we wish to estimate p(x0, F

Txt′ ; t
′) with t′ = 10, F T = (0, 1) and x′ = F Txt′ = 30. That is,

the probability that given x0 = (100, 0)T , the value of x2,t reaches x′ = 30 before time t′ = 10.
The steady state population of X2,t is approximately 11, so the rare event of x′ = 30 by time
t′ = 10, is around three times larger than it’s equilibrium value. Since this system is closed, we
can numerically calculate this probability to obtain

p(x0, x
′; t′) = 1.191× 10−5 .

Since the steady state population of X2,t is less than the target value of 30, we can bias the system
by either increasing the rate of reaction R1 or decreasing the rate of reaction R2.

The implementation of the guided wSSA follows closely the approach described in Section 5.1.
The pre-simulation check calculates e(xt) − x′ where e(xt) is given by (12). For the non-trivial
case of x′ − e(xt) > 0, h̃1(xt) and h̃2(xt) are given by (13) and (14) respectively. We compare the
output of the guided wSSA against that of the wSSA described by Kuwahara and Mura (2008)
and the state-dependent approach of Roh et al. (2010)). For the former, the first reaction R1, was
encouraged via the biasing parameter γ. This corresponds to

h̃1(xt) = γh1(xt) and h̃2(xt) = h2(xt) .

The optimal biasing parameter was estimated Roh et al. (2010) by selecting the value of γ that
minimised the variance of the estimator of p(x0, x

′; t′). This resulted in γ = 1.4. The Roh et al.
method encourages reaction R1 with the state-dependent biasing parameter

γ(ρ(xt)) =

{
1 if ρ(xt) ≥ ρ0

g(ρ(xt)) if ρ(xt) < ρ0
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Figure 2: Top panel (a): 3 trajectories using the guided SSA that attain x′ = 80 by t′ = 100.

Bottom panel (b): ratios h̃1(xt)/h̃2(xt) against time t (where xt is given in the top
panel) under the guided wSSA (black) and Kuwahara/Mura approach (green). The
ratio of unaltered hazards h1(xt)/h2(xt) is also shown (red line).

where

g(ρ(xt)) =
γmax − 1

(ρ0)2
(ρ0 − ρ(xt))

2 + 1

and ρ(xt) = h1(xt)/h0(xt). As discussed in Roh et al. (2010), g(ρ(xt)) has the desirable properties
that g(0) = γmax, the maximum biasing value allowed, and g(ρ0) = 1, to avoid over-perturbing
the system beyond a relative propensity of ρ0. For this example, the authors suggest ρ0 = 0.5 and
γmax = 20.

Figure 3 shows the sample variance σ2 of the importance weights obtained from four runs of
each method (and additionlly, the vanilla SSA approach) using N = 105. The guided wSSA and
Roh et al. approaches give comparable variances whereas the wSSA of Kuwahara/Mura gives
variances that are typically at least two orders of magnitude greater than those exhibited by the
former. Simply using the SSA gives importance weights whose variance is around four orders of
magnitude greater than the guided approach. We stress the automatic nature of the guided wSSA
approach - no tuning parameters are required. For further comparison, we also display results for
t′ = 30.
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Figure 3: A plot of σ2 for the two-state conformational model. Each of the four points is calculated
using N = 105 for the guided wSSA and two competing methods. Upper panel (t = 10):
The variance associated with estimating p((100, 0)T , 30; t′ = 10) and lower panel (t = 30):
p((100, 0)T , 30; t′ = 30).

5.3 Motility Regulation

In this section we consider a simplified model of a key cellular decision made by the gram-positive
bacterium Bacillus subtilis (Sonenshein et al., 2002). This decision is whether or not to grow
flagella and become motile (Kearns and Losick, 2005). The B. subtilis sigma factor sigD is key
for the regulation of motility. Many of the genes and operons encoding motility-related proteins
are governed by sigD, and so understanding its regulation is key to understanding the motility
decision. The gene for sigD is embedded in a large operon containing several other motility-
related genes, known as the fla/che operon. Transcription of the operon is strongly repressed by
the protein CodY, which is encoded upstream of fla/che. CodY inhibits transcription by binding
to the fla/che promoter. Since CodY is upregulated in good nutrient conditions, this is thought
to be a key mechanism for motility regulation. For simplicity we focus here on one gene under the
control of sigD, that is hag, which encodes the protein flagellin (or Hag), the key building block
of the flagella. The reaction network has u = 9 species and v = 12 reactions and is encoded as
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Figure 4: Ten stochastic realisations of the motility regulation model. The rare event of interest
is indicated (see bottom left).

follows:

R1 : codY→ codY + CodY

R2 : CodY→ ∅
R3 : flache→ flache + SigD

R4 : SigD→ ∅
R5 : SigD hag→ SigD + hag + Hag

R6 : Hag→ ∅
R7 : SigD + hag→ SigD hag

R8 : SigD hag→ SigD + hag

R9 : CodY + flache→ CodY flache

R10 : CodY flache→ CodY + flache

R11 : CodY + hag→ CodY hag

R12 : CodY hag→ CodY + hag

Values of the rate constants are taken to be

k = (0.1, 0.0002, 1, 0.0002, 1.0, 0.0002, 0.01, 0.1, 0.02, 0.1, 0.01, 0.1)T
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Figure 5: Motility regulation model: expectation (left panel) and variance (right panel) of the
importance weights. Each of the eight points is calculated using N = 106 for guided
wSSA N = 108 for SSA.

and the initial values of

(codY, CodY, flache, SigD, SigD hag, hag, Hag, CodY flache, CodY hag)

are
x0 = (1, 10, 1, 10, 1, 1, 10, 1, 1)T .

Figure 4 gives ten realisations of the system with these settings. Note that trajectories for each
species are inherently discrete. Since the guided wSSA is based on a normal approximation of the
MJP, we anticipate that these parameter settings provide a challenging scenario for the proposed
methodology.

Given the importance of CodY in motility regulation, we assume that interest lies in the esti-
mation of p(x0, F

Txt′ ; t
′) with t′ = 10, F T = (0, 1, 0, . . . , 0) and x′ = F Txt′ = 20. That is, the

probability that given x0 as above, the value of CodY reaches x′ = 20 before time t′ = 10. Given the
size of the reaction network, tuning a weighted SSA approach is likely to be difficult. We therefore
compare guided wSSA with a vanilla SSA approach, since neither method requires tuning. For
guided wSSA, we used N = 106 and for SSA we used N = 108, with the latter required to produce
a reasonable number of trajectories that met the attainment condition. Our results are reported
in Figure 5. The computational cost of guided wSSA versus SSA scales roughly as 2 : 1 for this
example. We note however that this is computational effort that is well worth spending, since the
guided wSSA gives values of σ2 (the variance of the importance weights) that are typically three
orders of magnitude smaller than when using the SSA.

6 Conclusions

Simulation-based approaches to rare event probability estimation can be computationally pro-
hibitive. The weighted stochastic simulation algorithm (wSSA) aims to avoid wasteful simulation
by using an importance sampler to push trajectories towards the rare event of interest. The re-
sulting biased trajectories are appropriately weighted, and the weights are averaged to give an
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unbiased estimator of the rare event probability. Constructing the importance sampler usually
requires insight into the underlying reaction system, careful tuning or additional simulations.

In this paper we have introduced an importance sampler that requires no tuning. We have
leveraged the tractability of a Gaussian approximation to the Markov jump process to construct a
propensity function that is conditioned on the rare event event occurring at a future time. Use of
this propensity inside the SSA gives the guided wSSA. Our experiments suggest that the guided
wSSA can provide a practical approach to rare event probability estimation, by comprehensively
outperforming the unweighted SSA method, and giving comparable results to other wSSA ap-
proaches, without the need for laborious determination of suitable tuning parameters. While the
Gaussian approximation (on which the conditioned propensity is based) is likely to be unsatisfac-
tory when species exhibit inherently discrete behaviour, our findings suggest that the guided wSSA
is relatively robust in such low-count number scenarios. Nevertheless, improving the efficiency of
the guided wSSA (e.g. by leveraging more accurate moment-closure based approximations to the
MJP) remain the topic of future work.
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