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Carbon nanotube/metal oxide based hybrids are envisioned as high performance electrochemical energy storage 

electrodes since these systems can provide improved performances utilizing an electric double layer coupled with fast 

faradaic pseudocapacitive charge storage mechanisms. In this work, we show that high performance supercapacitor 

electrodes with a specific capacitance of ~192 F/g along with a maximum energy density of ~3.8 W h/kg and a power 

density of ~28 kW/ kg can be achieved by synthesizing zinc oxide nanowires (ZnO NWs) directly on top of aligned multi-

walled carbon nanotubes (MWCNTs). In comparison to pristine MWCNTs, these constitute a 12-fold of increase in 

specific capacitance as well as corresponding power and energy density values. These electrodes also possess high 

cycling stability and were able to retain ~99% of their specific capacitance value over 2000 charging discharging cycles. 

These findings indicate potential use of a MWCNT/ZnO NW hybrid material for future electrochemical energy storage 

applications 

 

I. INTRODUCTION 

High performance, cost-effective, and environmentally friendly renewable energy storage devices are 

crucial in order to mitigate the present energy challenge.1–4
 Among various energy storage devices, 

electrochemical capacitors (ECs) or supercapacitors (SCs) are considered as one of the suitable options in 

order to develop energy efficient, robust, sustainable energy storage systems.5,6
 This is largely due to the 

fact that SCs exhibit longer life cycles and faster charge/discharge capability than conventional batteries.7
 In 

general, SC electrodes can be categorized into two groups, primarily based on charge storage mechanisms. 

These include (1) electrical double-layer capacitors (EDLCs), which employ the ion adsorption/desorption 

mechanism and typically use carbonbased materials as electrodes and (2) pseudocapacitors (PCs), which 

undergo rapid surface redox reactions that mainly involve transition metal oxides or electrically conductive 

pol-ymers as active electrode materials.8
 Carbon-based materials, such as multi-walled carbon nanotubes 

(MWCNTs), have been actively used as electrodes to fabricate EDLCs because these materials possess 

higher conductivity, higher chemical stability, larger specific surface area, and are lightweight.9–11 Most of 

these properties are attributed due to the high aspect ratio of the MWCNTs and their nanoscopic sizes. The 

general advantages of the effects of nanostructuring the electrodes in electrochemical applications are well 

known.12
 However, using only carbon-based materials without much structural or chemical modification 

can restrict the SC performance.13
 In order to avoid this, researchers in the past have proposed several 

ways to incorporate various other nanostructures in order to synthesize carbon-based hybrid materials14,15
 

that will have improved functionalities. In recent years, rational design of SC electrodes based on hybrids of 



carbon nanotubes and transition metal oxide has received significant attention since these systems can 

utilize a combined charge storage phenomenon of electrochemical double layer as well as faradaic 

pseudocapacitive mechanisms.16–20 

Several hierarchical and composite structures based on MWCNTs and transition metal oxides 

supercapacitor electro-des have been widely explored in order to impart significant component redox 

reaction in them. For example, various transition metal oxides, such as RuO2,16
 In2O3,17

 V2O5,18
 ZnO,19 and 

NiO,20
 have been successfully used to enhance the capacitive performance of MWCNTs by a few orders of 

magnitude higher compared to those of typical MWCNTs. Among these transition metal oxides, ZnO based 

materials have been utilized in many applications, such as light-emitting materials,21,22
 UV-sensors,23

 gas 

sensors,24,25
 solar cells,26

 and are also shown to have excellent performance as active batteryelectrode 

materials with a high energy density of 650 A/g.27 Several investigations also indicate the possibility of using 

composites of carbon based materials and ZnO for energy applications such as CNT/ZnO19,28
 and 

graphene/ZnO29
 in order to fabricate a high performance supercapacitor. 

In this work, we show a simple chemical bath deposition method (CBD) of fabricating a one-dimensional 

(1D) ZnO nanowire (NW) network on top of aligned MWCNTs. The fabricated MWCNT/ZnO NW structure 

showed very good electrochemical performance with a specific capacitance of ~192 F/g along with a 

maximum energy density of ~3.8 W h/kg and a power density of ~28 kW/kg. These electrodes also showed 

high cycling stability and were able to retain ~99% of their initial specific capacitance value after 2000 

cycles. From the extensive circuit modeling/analysis performed on the information obtained from 

electrochemical impedance spectroscopy (EIS) analysis, it can be inferred that devices made out of these 

hybrids show very low equivalent series resistance (ESR) values of ~4 Ω. To the best of our knowledge, this 

study is the first to demonstrate the synthesis of 1-D ZnO on aligned MWCNTs by using a sequence of 

chemical vapor deposition (CVD)-CBD as electrodes for electrochemical energy-storage applications. 

II. EXPERIMENTAL DETAILS  

A. Reagents and materials 

Hexamethylenetetramine (HMT), zinc nitrate hexahy-drate [(Zn(NO3)2 _ 6H2O], ferrocene [C10H10Fe, 99.9%], 

and xylene [C8H10, 99.9%] were purchased from Fisher Scientific Company and used without further 

purification or treatments. ZnO nanoparticles (NPs) with a diameter of approximately 20 nm were obtained 

from mkNANO. 

B. Measurement tools 

A FEI Quanta FEG 450 SEM system was used to investi gate the surface morphology of the MWCNT/ZnO 

NW hybrid. The SEM system was equipped with an energy dispersive spectroscopy (EDS) detector to 

investigate the energy spectrum and to determine the chemical composition of the materials. Raman 

spectroscopy was performed to provide further details on the MWCNT/ZnO NW structure. The Raman 

spectrum was obtained using a Renishaw InVia confocal Raman microscope with a 50_ objective lens and a 

laser excitation wavelength of 514 nm that provided a laser spot size of 2 lm. Raman measurement was 

performed at room temperature, and power was maintained at 1.5 mW. CurrentVoltage (CV) and 

galvanostatic charging/discharging meas-urements were conducted by using an advanced electrochemical 



system (PARSTAT 2263 Princeton Applied Research) controlled by PowerSuiteTM
 Software. Electrical 

impedance spectroscopy (EIS) was conducted by using the same system at a frequency ranging from 174 

mHz to 0.1 MHz, with a potential amplitude of 10 mV without DC offset. 

C. Electrode fabrication 

1. Aligned MWCNT growth procedure 

Aligned MWCNTs were grown on a silicon dioxide (SiO2)/silicon (Si) substrate through the well-established 

air-assisted CVD ferrocene (C10H10Fe)/xylene(C8H10) method as mentioned in our previous publications.30,31 

In brief, a clean horizontal quartz tube with a length of 1.2 m and a diameter of 50 mm was purged with 

argon gas and slowly heated to 790 _C in an argon environment. A catalyst precursor and a carbon source 

solution were prepared by dissolving C10H10Fe in C8H10 to obtain a solution of 0.01 g/mL. The prepared 

solution was injected into the tube furnace by using a syringe pump at a constant rate of 12 mL/h. Iron 

particles produced from C10H10Fe acted as catalyst particles, and carbon atoms were generated by 

dissociating the C-C and C–H bonds of C8H10. During the growth, argon (85%) and hydrogen (15%) gases were 

allowed to flow into the furnace tube at a flow rate of approximately 500 sccm. The low temperature at the 

end of the furnace tube was sufficient to vaporize the injected solution, and vapors were carried into the 

reaction zone via argon and hydrogen flow. A small amount of air (approximately 2.5 sccm) was mixed with 

the reaction environment to maintain the catalyst activity. Aligned MWCNTs grew on SiO2/Si substrates, 

which were placed in the reaction zone. The length of the aligned MWCNTs was adjusted by controlling the 

feeding time of C8H10/C10H10Fe solution. For this work, we typically used MWCNTs of ~500 lm. After a desired 

growth was completed, the furnace was turned off to cool down the quartz tube reactor to room 

temperature in the argon environment. We obtained an array of densely packed aligned MWCNTs on the 

SiO2/Si substrate, which was similar to that described in our previous studies.32,33 

 

 

2. Fabrication of the MWCNT/ZnO NW hybrid structure 

For the synthesis of ZnO nanowires on top of the aligned MWCNT materials, we followed a CBD technique 

with a specific recipe, as mentioned in one of our previous publications.34 In brief, a simple seeding 

technique was applied to create a thin film of ZnO NPs on top of the aligned MWCNT structures as an agent 

for the CBD route.34 After the seed layer was deposited, two equimolar aqueous solutions based on HMT 

(0.025 M, 80 mL) and Zn(NO3)2·6H2O (0.025 M, 80 mL) were used to synthesize ZnO NWs onto the MWCNT 

surface. Each solution was mixed separately on a stirring plate for 5 min to dissolve all-inclusive chemicals 

with DI water. Subsequently, both solutions were mixed together with a metal stirring rod for 20 min. The 

prepared solution was transferred to a 400 mL glass beaker, and the substrate was completely submerged 

in the solution. The top beaker was sealed with aluminum foil and wrapped with electrical tape to secure 

the chemical interaction. The whole assembly was placed in an oven preheated at approximately 95 _C for 

16 h. After 16 h, the flask was removed from the oven, and the sample was washed with DI water and left 

to dry naturally under ambient conditions before it was subjected to characterization or measurements. 

During the CBD process, the control of the growth requires some parameters adjustment (e.g., the growth 

duration, the pH of the solution, the temperature of the growth, etc.) in order to achieve high quality ZnO 



NWs evenly distributed on the entire substrate. We followed our previous recipe34 of obtaining well-

distributed ZnO NWs. We have found that a growth period of 16 h period results in uniform growth of ZnO 

NWs on the top of the aligned MWCNTs with an estimated 1 micrometer ZnO Layer thickness and with an 

average diameter of 40–50 nm. Here, we would like to add that increasing the growth duration beyond 16 

h would increase the thickness of ZnO NWs. This will decrease the value of specific capacitance due to the 

decrease in specific surface area. Figure 1(a) illustrates the steps utilized during the fabrication process of 

MWCNT/ZnO NW hybrid electrodes. 

III. RESULTS AND DISCUSSION  

A. Material characterization 

Figure 1(b) shows a typical SEM image of the top portion of aligned MWCNTs. Such aligned forests of 

MWCNTs were used as substrates to grow networks of ZnO nanowires on top of them. Figure 1(c) displays 

the SEM image of a similar MWCNT forest after the ZnO growth process was completed. Figure 1(c) 

specifically shows the cross section of the MWCNT/ZnO NW hybrid structure. A clear interface showing the 

aligned MWCNT forest and the ZnO NW is clearly observed. In Figure 1(d), the SEM image obtained from the 

top of the MWCNT surface after CBD of ZnO nanowires is shown. From the SEM image, it is clear that the 

nanowires grown on top of the MWCNT forest are evenly distributed on the surface of MWCNTs. 

Further structural investigation on ZnO nanowires grown on top of MWCNTs was performed by Raman 

spectroscopy, as shown in Figure 1(e). Based on the group theory, the wurtzite ZnO belongs to the C4
6v space 

group, which contains eight optical phonon modes at the C point of the Brillouin zone.35,36 These modes can 

be defined as Raman active modes (A1 + E1 + 2E2), Raman silent mode (2B1), and infrared active modes (A1 

+ E1).35,36 The 2E2 mode is divided into two active modes, namely, E2 (high) and E2 (low), which are associated 

with the vibration of the O and Zn atoms, respectively.37 The infrared active modes (A1 + E1) is further split 

into two: transverse optical (TO) and longitudinal optical (LO) phonons. The vibrational modes obtained from 

our ZnO NWs are shown in Figure 1(e). The observed Raman shifts in our samples are assigned to 2E2 (333.4 

cm-1), A1 (TO) (383.4 cm-1), E1 (TO) (413.3 cm-1), E2 (high) (439.8 cm-1), E1 (LO) (580.4 cm-1), A1 (TO + LO) 

(1055.6 cm-1), and 2E1 (LO) (1145.5 cm-1). The existence of the 2E2 peak at ~333.4 cm-1 indicates that the 

grown ZnO NWs exhibit a strong crystalline order.36 In addition, the dominant peak intensity of the E2 (high) 

line at 438 cm-1 is a strong evidence that ZnO NWs have hexagonal wurtzite structures and oriented along 

the c-axis.36 The presence of E1 (LO) generally originates from impurities and/or defects, such as oxygen 

vacancies formed during the growth process.38 The assigned peaks are consistent with the reported data of 

ZnO.39 

 

B. Electrochemical measurements 

After the completion of ZnO nanowire growth on top of the MWCNTs, the hybrid was removed from the 

SiO2/Si substrate and used as an electrode to fabricate the SCs in parallel plate geometry. Two pieces of the 

MWCNT/ZnO NW electrode (0.25 cm x 0.25 cm) were sandwiched together, separated from each other by 

a filter paper (WhatmanTM), and subsequently transferred to a sealed stainless steel electrochemical cell 

(Model EQ-STC, MTI Corporation) with polished stainless steel current collectors. The electrochemical 



performance of the MWCNT/ZnO NW SC was evaluated using standard techniques of cyclic voltammetry 

(CV), charge discharge (CD) cycles, as well as electrochemical impedance spectroscopy (EIS). CV 

characterizations were performed at various scan rates ranging from 1 mV/s to 200 mV/s by using 6M 

potassium hydroxide (KOH) as an electrolyte. Figure 2(a) shows the excellent CV responses obtained using 

the MWCNT/ZnO NW electrodes. We would like to note here that unlike some of the previous reported CV 

studies on ZnO based supercapacitors19,28 which showed clear redox peaks, the CVs in this study are nearly 

rectangular at all the scan rates. The near rectangular CV curves even at high scan rates indicate a good 

capacitive behavior of these electrodes and a fast charging– discharging process. The absence of these 

peaks is related to a coupled effect of synchronization of a double layer and redox reactions.40–42 According 

to Saranya et al.,43 the possible faradaic reactions are 

ZnO + OH_ ↔ ZnOOH + e-.   (1) 

 

On the other hand, Shi et al.44 and Venugopal et al.45 have stated that the following reactions are likely: 

 

ZnO + K+ + e- ↔ ZnOK.  (2) 

Ideal capacitors based on the charge storage result in rectangular CVs. Pseudocapacitance on the other hand 

is faradic in nature and thus does not result in perfect rectangular CVs but at the same time is not and should 

not be related to redox peaks. The redox peaks occur when the redox active sites are isolated either due to 

the nature of their distribution or due to poor conductivity between the electrode and the collector. 

However, the redox peaks may not be observable for a variety of reasons including (a) the redox reactions 

are fast and reversible, (b) the redox sites are electrically coupled due to good electrical conductivity, (c) 

short separations, and (d) the availability of the majority of the sites on the surface to circumvent solid ion 

diffusion. Under these conditions, the hybrid electro-des are charged and discharged rapidly at pseudo-

constant rates over the entire voltammetric cycle, resulting in the absence of peaks. It should also be noted 

that Faradaic peaks become clear if the double layer is weak. However, in the case of good electric double 

layer (EDL) capacitance along with high electrode material utility due to high specific surface areas (as in 

porous structures), the reaction peak becomes broad and weak. We attribute the observed non-redox peak 

CV seen for ZnO NWs grown on top of aligned MWCNTs to their unique compositional structure of these 

hybrids that meets several of the above-mentioned criteria. The ZnO nanowire structure ensures that the 

majority of the redox sites is available and is present on the nanowire surface. The structure not only 

increases the wettable surface area but also improves the conductivity due to the aligned 1-D structure of 

the nanowire. The aligned nanotube –nanowire hybrid structure facilitates fast electron transfer between 

the electrode and the collector and the ZnO nanowires allow faster charge discharge rates as the faradaic 

reaction replaces the diffusion-controlled Kþion intercalation process. In order to verify that alignment of 

CNTs plays a significant role in the electrochemical performance of CNT-ZnO composites, we measured CNT-

ZnO composite devices, where ZnO nanowires were grown on CNT buckypaper (network of unaligned CNTs-

data not shown). We have tested two devices based on ZnO/CNT buckypaper using 6M KOH as the 

electrolyte. We found that both these devices show a specific capacitance several orders of magnitude less 

(around 9 F/g at scan rate of 10 mV/s) for the first device and (9.6 F/g at scan rate of 5 mV/s) for the second 

device than those reported for the aligned ZnO-CNT composite. All these above attributes of the hybrid 



structure perhaps result in excellent electrochemical performance as indicated by near rectangular CVs. In 

addition, NWs can present transport channels for more electrical charges to be stored and transferred to the 

electrodes. Similar observations were observed to some extent by other researchers.19,43,46 The specific 

capacitance Csp was calculated from the CV curves by using the following relation: 

 

Csp  = 2∫ idV/smΔV,    (3) 

 

where the integral refers to the area of the CV curve, s represents the scan rate of each individual curve, m 

denotes the mass of a single electrode, and DV symbolizes the potential window. Figure 2(b) shows the 

calculated values of Csp as a function of scan rate for the MWCNT/ZnO NW hybrid electrode. The highest Csp 

= 192 F/g was achieved at scan rates of 1 mV/s. For comparison, specific capacitance measurements 

performed on as produced MWCNTs electrodes utilizing a similar procedure were found to be ~16 F/g. This 

indicates that the value of Csp obtained for the hybrid electrode is an order of magnitude higher (~12 times 

more) than that of the as produced MWCNTs (Figure 2(b)). Figure 2(c) displays the galvanostatic 

charge/discharge (CD) curves collected at several different constant current densities. A negligible IR drop 

(0.84–1.3 mV) in these CD cycles further indicates a good electrical conductivity of the MWCNT/ZnO NW 

electrode.47 Figure 2(d) illustrates that the specific capacitance of the device remains at approximately 99% 

of the initial value after 2000 charge/ discharge cycles, illustrating an excellent long-term cycling stability of 

these electrodes. The cycling stability of the CD measurements of MWCNT/ZnO NW electrodes over 

charge/discharge cycles is shown in the inset of Figure 2(d). 

In order to evaluate the performance of MWCNT/ZnO NW supercapacitor electrodes, measurements were 

carried out for generating the Ragone plot. In Figure 3, the maximum energy density and power density 

obtained for a specific device are shown in a Ragone Plot. Energy density (ED) is evaluated using the following 

equation: 

 

𝐸𝐷 (
𝑊ℎ

𝑘𝑔
) = 𝐶2/2𝑚′,   (4) 

 

where C is the charge/discharge capacitance, m’ is the mass of both electrodes, and V denotes the potential 

window. Power density (PD) is calculated using the following equation: 

 

𝑃𝐷 (
𝑊

𝑘𝑔
) = 𝐼𝑉/𝑚′ ,  (5) 

 

where I is the charge/discharge current. Typical devices showed that a maximum energy density of ~3.8 W h 

K_1 can be achieved using these hybrid electrodes. 



In Table I, we have summarized our results and compared the performances of the MWCNT/ZnO NW 

supercapacitor devices with previously reported devices based on MWCNTs and MWCNT/metal oxide 

composites. The comparison is provided mainly in order to give a broad overview regarding the typical values 

that are obtained in the past on MWCNT/metal oxide based supercapacitor electrodes and to put into 

perspective the results obtained in this study. The maximum specific capacitance achieved for the MWCNT/ 

ZnO NW electrode (192 F/g) is about 12-fold higher than the maximum specific capacitance of pristine 

MWCNTs (16.6 F/ g; Table I) and 1.5-fold to 7-fold higher than those of MWCNTs/other metal oxides (24–166 

F/g; Table I). We also note that while the power densities obtained in our devices are similar to several other 

MWCNT/metal oxide based composites the energy density is an order of magnitude less than some of the 

composites studied in the past such as TiO2/ MWCNTs, RuO2/MWCNTs, etc.48 To illustrate, the equivalent 

series resistance R limits the PD values of electrochemical capacitors. Since the fabricated electrode in our 

experiment showed a low resistance (see the IR drop and EIS measurement) due to the high conductivity of 

highly crystal-line ZnO NWs, the obtained PD in this device was higher than all reports except Au-

MnO2/MWCNT, which showed a slightly higher PD due to the existence of Au particles which led to increase 

the conductivity of this electrode. In addition, increasing and/or decreasing the energy density of the 

electrode is related directly to the type of the electrolyte used to fabricate the electrochemical 

supercapacitor. The value of ED is typically prepositional to V2 and C (Eq. (4)). In our experiment, we used 6M 

KOH which allows only 1 V window. The improvement of the ED value compared with old reports on (Pristine 

MWCNTs and CoOx/MWCNTs), which used a similar electrolyte (6M KOH), is mainly due to the high specific 

capacitance values observed in our experiments. But when we compare our results with RuO2/MWCNT, 

TiO2/MWCNT, and SnO2/MWCNT, we found that their ED results are much higher due to the use of the 2M 

H2SO4 electrolyte which allowed a higher voltage window of 1.8 V. This could clearly explain the reason of 

obtaining a lower ED in our system compared to past reports. 

In order to further understand and analyze the electrochemical processes occurring in our devices, we have 

performed electrochemical impedance spectroscopy of one of our devices (Figure 4). Figures 4(a) and 4(b) 

display the Nyquist plot, which shows the frequency response of the SC device. The Nyquist plot shows a 

semi-circle arc in a high-frequency region, which originates from the charge transfer of the double-layer 

capacitor and redox reaction at the electrode/electrolyte interface.51 The intercept of the high-frequency 

region with the real impedance is typically used to determine the equivalent series resistance (ESR) of the 

device.52 The ESR is a combination of the electrolyte, electrode material, and interfacial resistance.53 The ESR 

value obtained for this particular device was found to be approximately ~4.2 Ω, (Figure 4(b)) which is 

comparable with 7, 4, 3, and 5.5 Ω as measured on pure MWCNT, RuO2/ MWCNT, TiO2/MWCNT, and 

SnO2/MWCNT nanocomposite electrodes, respectively.48,49 At a low frequency, the impedance shows a 

straight line with an acute angle between 45_ and 90_, which is a real impedance. This line represents the 

diffusion of ions in the MWCNT/ZnO NW electrode. The deviation of the angle in this line from 45_ is typically 

caused by the porous nature of the electrode surface.54 

The impedance spectrum was fitted with a simple equivalent circuit (Figure 4(c)) over the whole range 

of measurement. The components of the equivalent circuit included the equivalent circuit resistance R1, the 

resistance due to the redox reactions at the electrode/electrolyte interface, R2, a constant phase element 

(CPE) component, which manifests the double layer capacitance of the system, a Warburg diffusion element 

component along with another capacitive component C, representing the pseudocapacitance contribution. 

Values of these components were extracted from the fitting in order to further understand the physical 

processes occurring in the MWCNT/ZnO NW electrode system.55,56 The value of R1 acquired from the fitting 



is 4.0 Ω, which is consistent with the experimental data. The CPE, which yields the double-layer capacitance, 

can be calculated from the following equation: 

𝐶𝐶𝑃𝐸 = 𝑃/ [𝜔1−𝑛𝑠𝑖𝑛 (
𝑛𝜋

2
)],   (6) 

where P and n are fitting parameters (Table II) and ω=2πf. The Warburg element (W) represents the diffusion 

of ions into the electrode.56 The presence of the C element, which is attributed to the contribution of the 

pseudocapacitance in the system, was also obtained from the fitting. The fitting parameters and the values 

of different components obtained from the fitting of the EIS measurement are shown in Table II. From the 

extracted data, it is important to note that the contribution of the CPE component in this system is ~2.6 x 10-

5 F, whereas the pseudocapacitance contribution is ~20.7 x 10-5 F. This indicates that the double layer 

contribution to the total capacitance is ~11%, whereas the pseudocapacitance contribution is ~89% of the 

total capacitance. Further, the value of the pseudocapacitance is ~8 times greater than the double layer 

capacitance (manifested through CPE). This increase is similar to the increase in Csp values (~12 times) of 

aligned MWCNT/ZnO NW electrodes when compared with pristine MWCNT electrodes. This further signifies 

the role of the ZnO NW’s in enhancing the capacitive values of the EDLC through pseudocapacitive 

contribution. 

IV. CONCLUSIONS 

In conclusion, we have shown that simply growing ZnO nanowires on top of aligned MWCNTs can provide 

significant improvements in their electrochemical charge storage behavior. In the past, it has been shown 

that such performan-ces can be further tuned by adjusting the ratio of the MWCNT and ZnO in the 

composite. For example, for a given composite material, the ratio seems to have an optimal value for the 

best electrochemical performances. We believe that similar behavior can be expected in our case as well. 

We are conducting such studies and the results will be published subsequently.57,58 We have also noticed 

that during repeated electrochemical measurements, assembling the electrochemical cells as well as long 

cycling their performance does not chance drastically or abruptly. This indicates that robust mechanical 

structure of the electrodes, specifically needed for electrochemical storage application can be formed using 

this method. Further, these experimental results also indicate the importance of the pseudocapacitive 

component offered by the metal oxide nanostructures, when coupled with carbon based materials. The 

aligned MWCNT/ZnO hybrid electrode structure investigated also shows that the aligned carbon nano-tube 

structures present in these hybrid systems provide favorable conductive path, resulting in low equivalent 

series resistances of the supercapacitor devices. Low equivalent series resistance in turn improves the 

overall electrode performance. The electrochemical measurements indicate that the wettability of the 

electrolyte must be good. There are two reasons for this: (1) The ZnO nano structuring should make the 

surface hydrophobic and will deteriorate electrochemical performance of the electrodes. Such behavior is 

not observed in our experiments and (2) proper charge transfer (through CV measurements) as well as low 

ESR values indicates good wettability of the electrolyte/electrode interface. The investigations presented 

here therefore suggest the potential use of a combination of aligned carbon nanotubes and metal oxide 

nanostructures for high performance electrochemical energy storage device applications. 
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FIGURES AND TABLES 
 

TABLE I. A comparative tabulation of the specific capacitance, energy density, and power density of 

MWCNT metal oxide based supercapacitor electrode materials. 

Electrode 
material 

Electrolyte Maximum 
Csp (F/g) 

PD (kW/kg) ED (Wh/kg) Ref. 

Pristine 

MWCNTs 

6M KOH 16,6 … 0.58 49 

CoOx/MWCNTs 
6M KOH 24 … 0.86 49 

In2O3 

NW/MWCNT 

Non-aqueous 64 7.48 1.29 17 

RuO2/MWCNT 
1 M H2SO4 147 0.5 36.8 48 

TiO2/MWCNT 
1 M H2SO4 166 0.5 40.2 48 

SnO2/MWCNT 
1 M H2SO4 98 0.5 25 48 

MnO2/MWCNT 
0.1 M Na2SO4 44 11 2.9 50 

Au-

MnO2/MWCNT 

0.1 M Na2SO4 68 33 4.5 50 

MWCNT 6M KOH 16 N/A N/A This work 

MWCNT/ZnO NW 6M KOH 192 ~28 ~3.8 This work 

 

TABLE II. Fitting parameter of EIS spectrum. 
 

Parameter Value 

C(F) 20.7 x 10-5 

R1(Ω) 4.0 

R2(Ω) 15.63 

W 24.81 

P 8.3 x 10-5 

n 0.8 

CCPE(F) 2.6 x 10-5 

CTotal(F) 23.3 x 10-5 

 

 

 

 

 

 



FIG. 1. (a) Schematic of the fabrication process of the MWCNT/ZnO NW hybrid structure. (b) Cross-

sectional SEM image showing the MWCNTs before ZnO NW growth. (c) ZnO NWs grown on MWCNTs. (d) 

SEM image showing the top of MWCNTs compactly covered by ZnO NWs. (e) Raman spectrum of ZnO 

NWs, including the experimental data and Gaussian–Lorentzian peak fitting; the inset magnifies the 

range of 200–500 cm-1. 

 

 

 

 

 

 



FIG. 2. (a) CV of the MWCNT/ZnO NW electrode at different scan rates: 1, 10, 30, 50, and 200 mV/s. (b) 

Specific capacitance of the as-prepared MWCNT/ ZnO NW and MWCNT electrodes by using 6M KOH as an 

electrolyte at different scan rates. (c) Charge/discharge curves of the MWNCT/ZnO NW electrode at 

different current densities. (d) Percent capacitance retained by MWCNT/ZnO NW for 2000 cycles. 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 



FIG. 3. Ragone plot of the MWCNT/ZnO NW hybrid structure. 
 

 

FIG. 4. (a) Electrochemical impedance spectroscopy (EIS) of the MWCNT/ ZnO NW electrode showing the 

experimental and fitted data. (b) High-frequency range showing the semi-cycle and intercept with real 

impedance. (c) Equivalent circuit model used for EIS fitting. 

 


