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Recently, nuclear vibrational contribution signatures in 2D electronic spectroscopy

have attracted considerable interest, in particular as regards interpretation of the

oscillatory transients observed in light-harvesting complexes. These transients have

dephasing times that persist for much longer than theoretically predicted electronic

coherence lifetime. As a plausible explanation for this long-lived spectral beating in

2D electronic spectra, quantum-mechanically mixed electronic and vibrational states

(vibronic excitons) were proposed by Christensson et al. [J. Phys. Chem. B 116,

7449 (2012)] and have since been explored. In this work, we address a dimer which

produces little beating of electronic origin in the absence of vibronic contributions,

and examine the impact of protein-induced fluctuations upon electronic-vibrational

quantum mixtures by calculating the electronic energy transfer dynamics and 2D

electronic spectra in a numerically accurate manner. It is found that, at cryogenic

temperatures, the electronic-vibrational quantum mixtures are rather robust, even

under the influence of the fluctuations and despite the small Huang-Rhys factors of

the Franck-Condon active vibrational modes. This results in long-lasting beating

behavior of vibrational origin in the 2D electronic spectra. At physiological temper-

atures, however, the fluctuations eradicate the mixing and, hence, the beating in the

2D spectra disappears. Further, it is demonstrated that such electronic-vibrational

quantum mixtures do not necessarily play a significant role in electronic energy trans-

fer dynamics, despite contributing to the enhancement of long-lived quantum beating

in 2D electronic spectra, contrary to speculations in recent publications.
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I. INTRODUCTION

Recent observations of long-lived beating phenomena in the two-dimensional (2D) elec-

tronic spectra1–10 of photosynthetic pigment-protein complexes have stimulated a consider-

able increase in activity in the interdisciplinary field of molecular science and quantum

physics.11–16 It has generally been assumed that electronic coherence decays sufficiently

rapidly that it does not affect the nature of electronic energy transfer in photosynthetic

light harvesting systems. Nevertheless, these recent experiments have attributed long-lived

quantum beats to an electronic origin. Initially, 2D electronic spectroscopic experiments

were conducted for Fenna-Mathews-Olson (FMO) pigment-protein complexes isolated from

green sulfur bacteria at a cryogenic temperature, 77 K,1,17 and revealed the presence of

quantum beats persisting for a minimum of 660 fs.1 However, it is generally thought that

coherence at physiological temperatures is fragile compared to that at cryogenic tempera-

tures, because environmental fluctuation amplitudes increase with increasing temperature.

To clarify this issue, electronic coherence lifetimes in the FMO complex were theoretically

examined, and it was predicted that electronic coherence in this complex could persist for

700 and 300 fs at 77 and 300 K, respectively.18 These theoretical predictions were consistent

with newer experimental results at physiological temperatures for the FMO complex.4 How-

ever, Panitchayangkoon et al.4 demonstrated that quantum beats in this complex persist

for 1.5 ps at cryogenic temperatures, although the theoretical model does not produce elec-

tronic coherence with this lifetime. Hence, nuclear vibrational contribution signatures in

2D spectroscopy have attracted considerable interest of late, in particular as regards inter-

pretations of the oscillatory transients observed in light-harvesting complexes, which persist

for significantly longer than the predicted electronic dephasing times. Several independent

publications have alluded to nuclear vibrational effects as an explanation for this long-lived

beating behavior.19–40

In photosynthetic pigment-protein complexes, the Huang-Rhys factors of chlorophyll

(Chl) and bacteriochlorophyll (BChl) are generally thought to be small,41–44 suggesting that

the photophysics therein is primarily electronic in nature, rather than vibrational. Indeed,

the recent 2D electronic experiments on BChl molecules in solution did not find significant

vibrational coherence.45 In relation to this, Christensson et al.21 proposed that resonance be-

tween electronic states and active Franck-Condon vibrational states serves to create vibronic
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excitons, i.e., quantum mechanically mixed electronic and vibrational states. Such states

have vibrational characteristics and enhanced transition dipole moments owing to inten-

sity borrowing from the strong electronic transitions. Hence, it was suggested that coherent

excitation of the vibronic excitons produces oscillations in the 2D signal that exhibit picosec-

ond dephasing times. Tiwari, Peters, and Jonas27 commented that the excitonically mixed

electronic and vibrational states also lead to an enhancement of the vibrational coherence

excitation in the electronic ground state. It was also argued that this effect could explain the

long-lived oscillations in the FMO complex. Regarding electronic energy transfer dynamics,

Womick and Moran46 demonstrated that a vibrational-electronic resonance enhances the

energy transfer rate in a cyanobacterial light-harvesting protein, allophycocyanin, with the

use of the vibronic exciton model.

Quantum mechanically mixed electronic and vibrational states, or vibronic excitons, are

plausible as an explanation for long-lived spectral beating in 2D electronic spectra. How-

ever, a question naturally arises concerning the interplay between the electronic-vibrational

resonance and electronic energy fluctuations induced by the environmental dynamics.47 In

general, the energy eigenstates due to the quantum mixing of electronic and vibronic exci-

tations are obtained via diagonalization of the Hamiltonian comprising the Franck-Condon

transition energies and electronic interactions. It should be noted that these are indepen-

dent of any environmental factors such as temperature, reorganization energy, and fluctua-

tions. Ishizaki and Fleming13,47 characterized the impact of environmental factors upon the

quantum delocalization using the concurrence.48,49 They visually demonstrated that smaller

electronic coupling, larger reorganization energy, and higher temperature cause the dynamic

localization,50,51 even in the case in which two electronic states resonate in a coupled homo-

dimer. Recently, Ishizaki52 explored the influence of environmentally induced fluctuation

timescales on the quantum mixing between electron donor and acceptor states in a model

photo-induced electron transfer reaction. It was demonstrated that fast fluctuation and

correspondingly fast solvation eradicates the quantum mixing between the donor and ac-

ceptor in the vicinity of the crossing point of the diabatic free energy surfaces, leading to

a Marcus-type nonadiabatic reaction, whereas slow fluctuation sustains the quantum mix-

ing and prompts the electron transfer reaction in an adiabatic fashion.52 Therefore, it is

natural to question whether the nature of the quantum mechanically mixed electronic and

vibrational states is altered through dynamic interactions with the environment.
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The main purpose of this paper is to explore the impact of environmentally induced

fluctuations upon the quantum mechanically mixed electronic and vibrational states in a

simple electronic energy transfer system through electronic energy transfer dynamics and 2D

electronic spectra calculations. The electronic energy transfer system used here is a coupled

hetero-dimer, modeled on BChl 3 and 4 in the FMO protein. Further, we investigate the

extent to which vibrational modes play a role in electronic energy transfer dynamics under

the influence of the environmentally induced fluctuations.

II. MODEL

To clarify the impact of the protein-induced dynamic fluctuations upon quantum mechan-

ically mixed electronic-electronic and electronic-vibrational states in a systematic fashion, we

consider the simplest electronic energy transfer system, a coupled hetero-dimer. To describe

electronic energy transfer (EET), we restrict the electronic spectra of the m-th pigment in

a pigment-protein complex (PPC) to the ground state, |ϕmg〉, and the first excited state,

|ϕme〉, although higher excited states are sometimes of consequence in nonlinear spectro-

scopic signals.53,54 Thus, the model Hamiltonian of a pigment-protein complex comprising

two pigments is expressed as

ĤPPC =
2∑

m=1

∑
a=g,e

Ĥma(xm)|ϕma〉〈ϕma|+
2∑

m=1

2∑
n=1

~Jmn|ϕme〉〈ϕmg| ⊗ |ϕng〉〈ϕne|. (2.1)

Here, Ĥma(xm) represents the diabatic Hamiltonian for the environmental and nuclear de-

grees of freedom (DOFs), xm, when the system is in the |ϕma〉 state for a = g, e. The

electronic coupling between the pigments, ~Jmn, may also be modulated by the environmen-

tal and nuclear DOFs. In the following, however, we assume that the nuclear dependence

of ~Jmn is vanishingly small and employ the Condon-like approximation as usual.

The Franck-Condon transition energy of the m-th pigment is obtained as

~Ωm = 〈Ĥme(xm)− Ĥmg(xm)〉mg, (2.2)

where the canonical average has been introduced, 〈. . . 〉ma = Tr(. . . ρ̂eqma) with the canonical

distribution, ρ̂eqma = e−βĤma/Tr e−βĤma . Here, β is the inverse temperature, 1/kBT . The

electronic energy of each diabatic state experiences fluctuations caused by the environmental
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and nuclear dynamics; these dynamics are described by the collective energy gap coordinate,

such that

ûm = Ĥme(xm)− Ĥmg(xm)− ~Ωm. (2.3)

By definition, the coordinate, ûm, includes information associated not only with the elec-

tronic excited state, but also the electronic ground state. In this work, we assume that the

environmentally induced fluctuations can be described as Gaussian processes and that the

relevant nuclear dynamics are harmonic vibrations. Under this assumption, the dynamic

properties of the environmental and intramolecular vibrations are characterized by several

types of two-body correlation functions of ûm(t) = eiĤmgt/~ûme
−iĤmgt/~, as shown below.

The environmental dynamics and intramolecular vibrational motion affecting the elec-

tronic transitions can be characterized by the nonequilibrium energy difference between the

electronic ground and excited states as a function of a delay time, t, after the photoexcitation.55

The linear response theory allows one to express the nonequilibrium energy difference as

∆Em(t) = ~Ωm −Ψm(0) + Ψm(t). (2.4)

Here, Ψm(t) is the relaxation function56 defined as Ψm(t) =
∫∞
t
dsΦm(s) in terms of the

response function of ûm(t), Φm(t) = 〈(i/~)[ûm(t), ûm(0)]〉mg. The relaxation function is

independent of temperature, and the value of ∆Em(0) − ∆Em(∞) gives the Stokes shift

magnitude.55 Under the assumption of Gaussian fluctuation and harmonic vibration, the

Stokes shift is given as double the total reorganization energy and, hence, the relaxation

function satisfies

Ψm(0) = 2(~λm,env + ~λm,vib), (2.5)

where ~λm,env and ~λm,vib denote the environmental and vibrational reorganization energies

of the m-th pigment, respectively. The spectral density, Jm(ω), is defined as the imaginary

component of the susceptibility56 and, hence, it is expressed in terms of Ψm(t) as

Jm(ω) = ω

∫ ∞
0

dtΨm(t) cosωt. (2.6)

The fluctuations in the electronic transition energies are described by the symmetrized cor-

relation function of ûm(t), defined as Dm(t) = 〈(1/2){ûm(t), ûm(0)}+〉mg. In the quantum
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mechanical treatment, the Fourier transform of the symmetrized correlation function is ex-

pressed with that of the relaxation function,56 specifically, Dm[ω] = (~ω/2) coth(β~ω/2)Ψm[ω].

In the classical limit of coth(β~ω/2) ' 2kBT/~ω, therefore, the correlation function of the

fluctuations can be expressed in terms of Ψm(t) as

〈um(t)um(0)〉cl = kBT ·Ψm(t). (2.7)

Equations (2.6) and (2.7) suggest that the relaxation function, Ψm(t), may be the key compo-

nent for characterizing the relevant environmental dynamics and intramolecular vibrational

motion.

The relaxation function can be separated into two components: an overdamped part

originating from the environmental reorganization and an underdamped part induced by

the intramolecular vibrations, i.e.,

Ψm(t) = Ψm,env(t) + Ψm,vib(t), (2.8)

with Ψm,env(0) = 2~λm,env and Ψm,vib(0) = 2~λm,vib. In order to focus on the timescale

of the environmental dynamics affecting the electronic transition energies, we model the

environmental component as an exponential decay form, with

Ψm,env(t) = 2~λenve−γenvt, (2.9)

where γ−1env corresponds to the timescale of the environmental reorganization dynamics. Here,

it should be noted that the initial behavior of Eq. (2.9) is coarse grained, as was commented

in Ref. 57. Specifically, the value of ∂tΨm,env(t)|t=0 = −Φm,env(0) should vanish by defini-

tion. However, as long as finite timescales of the environmental dynamics are discussed,

this coarse-grained nature of the exponential decay form does not cause fatal defects. For

simplicity, we consider a single intramolecular vibration on each of the pigments, with fre-

quency, ωvib, and the Huang-Rhys factor, S. We model the relaxation function originating

from the vibration, Ψm,vib(t), using the Brownian oscillator model58 with the vibrational

relaxation rate, γvib, such that

Ψm,vib(t) = 2~λvib
(

cos ω̃vibt+
γvib
ω̃vib

sin ω̃vibt

)
e−γvibt, (2.10)

where ω̃vib = (ω2
vib− γ2vib)1/2 and ~λvib = ~ωvibS have been introduced. Equation (2.6) gives

the corresponding spectral density, which is reduced to

Jm,vib(ω) = π~Sω2[δ(ω − ωvib)− δ(ω + ωvib)], (2.11)
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in the slow vibrational relaxation limit, i.e., γvib → 0.

An adequate description of the EET dynamics is given by the reduced density operator,

ρ̂exc(t), that is, the partial trace of the total PPC density operator, ρ̂PPC(t), over the envi-

ronmental and nuclear DOFs: ρ̂exc(t) = Trenvρ̂PPC(t). The Gaussian nature of the electronic

excitation energy fluctuations, ûm, allows a formally exact equation of motion to be obtained,

that can describe the EET dynamics under the influence of the environmentally induced fluc-

tuation and dissipation. The nature of these factors is described by Eq. (2.8)-(2.10). Hence,

the EET dynamics under the influence of the environmental/nuclear dynamics and the cor-

responding 2D electronic spectra can be described in a numerically accurate manner. The

technical details of this calculation are given in Appendix A and Appendix B. In general,

vibronic exciton states are introduced as energy eigenstates of the vibronic hamiltonian,

which are independent of any environmental factors such as temperature and fluctuations.

However, the correlation function approach in this work does not treat mixed electronic-

vibrational states as the energy eigenstates, allowing us to describe the influence of environ-

mentally induced fluctuations on the electronic-vibrational quantum mixture. The validity

of employing the correlation functions to describe the quantum superposition between the

electronic and vibronic transitions is demonstrated in Appendix C.

III. RESULTS AND DISCUSSION

In this section, we present and discuss the numerical results, in order to quantify the

impact of the environment upon the quantum mechanically mixed electronic and vibrational

states on the EET dynamics and 2D electronic spectra of a model dimer. We focus on a dimer

which produces little beating of electronic origin in the absence of vibronic contributions.

The studied dimer is inspired by BChl 3 and 4 (pigments 1 and 2, respectively) in the

FMO protein of Chlorobaculum tepidum,28,59–61 which serve as the two lowest energy exci-

ton states in the single-excitation manifold. The low-frequency vibrational modes of BChl

in solutions or protein environments have been investigated in a number of experiments,

demonstrating that the strongest vibrational mode is found at approximately 180 cm−1.42,43

Thus, to describe the effects of the Franck-Condon active vibrational modes, we consider

a single vibrational mode with frequency ωvib = 180 cm−1 in this work. For the sake of

simplicity, the Franck-Condon transition energy of each pigment and their electronic cou-
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pling are set to Ω1 = 12350 cm−1, Ω2 = Ω1 − 150 cm−1, and J12 = −50 cm−1, respec-

tively. The transition dipole moment directions are set to θ12 = 90◦. In this situation,

the gap between the two electronic energy eigenstates resonates with the vibrational fre-

quency, [(Ω1 − Ω2)
2 + 4J2

12]
1/2 ' ωvib, and hence, the effects of the vibrational mode are

expected to be maximized under the given conditions.27 In general, the Huang-Rhys factors

of BChl are small,45 and the factor associated with the vibrational mode in this work is

set to S = 0.025,27 which is within the range of the experimentally measured values.42,43

The protein-environmental reorganization energy and reorganization time constant are set

to λenv = 35 cm−1 and γ−1env = 100 fs,17,18,61 and the vibrational relaxation rate is γ−1vib = 2 ps.

In what follows, we let |χmav〉 denote the v-th vibrational level of the a-th electronic state

in the m-th pigment. At low temperatures satisfying ωvib > kBT , the system can be assumed

in the |ϕ1g〉|χ1
g0〉 ⊗ |ϕ2g〉|χ2

g0〉 state before photoexcitation and, therefore, the two vibronic

transitions, |ϕ1g〉|χ1
g0〉 ↔ |ϕ1e〉|χ1

e0〉 and |ϕ2g〉|χ2
g0〉 ↔ |ϕ2e〉|χ2

e1〉, can resonate and quantum

mechanically mix. However, one should not overlook the fact that other resonances may

be induced as time progresses after the photoexcitation. For example, once the |ϕ1e〉|χ1
e0〉

state is created, it is possible for resonance to occur between |ϕ1g〉|χ1
g1〉 ↔ |ϕ1e〉|χ1

e0〉 and

|ϕ2g〉|χ2
g0〉 ↔ |ϕ2e〉|χ2

e0〉. For the sake of simplicity, we consider the vibrational mode in

pigment 2 only, as shown in Fig. 1, and we focus on the resonance between the electronic

transition, |ϕ1g〉 ↔ |ϕ1e〉, of pigment 1 and the vibronic transition, |ϕ2g〉|χ2
g0〉 ↔ |ϕ2e〉|χ2

e1〉,

of pigment 2, which is induced by the coupling J12〈χ2
e1|χ2

g0〉 = −J12 exp(−S/2)
√
S.

A. Population dynamics

In this subsection, we explore the influence of intramolecular vibrations upon the spatial

dynamics of electronic excitations in photosynthetic EET.

In order to clarify the presence of the vibronic resonance and its influence upon the EET

dynamics, Fig. 2 presents the time evolution of the energy donor (pigment 1) population

neglecting environmental factors at temperatures of (a) 77 K and (b) 300 K. In each panel,

the red line represents the dynamics under the influence of the vibrations, whereas the green

line gives the dynamics without the effects of the vibrations (i.e., the unitary time evolution)

as a reference. Both panels indicate that intramolecular vibration dramatically affects the

EET dynamics in the absence of the environmentally induced fluctuations and dissipation,
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despite the small Huang-Rhys factor of S = 0.025. The population dynamics affected by

the vibrations involve two oscillating components: faster oscillation with small amplitude

and slower oscillation with large amplitude. By comparing the red and green lines, we can

observe that the faster oscillating component indicates coherent EET between the electronic

transition, |ϕ1g〉 ↔ |ϕ1e〉, and the 0− 0 vibronic transition, |ϕ2g〉|χ2
g0〉 ↔ |ϕ2e〉|χ2

e0〉, which is

induced by the coupling constant, J12〈χ2
e0|χ2

g0〉 ' J12 exp(−S/2) = 0.987J12 for S = 0.025.

On the other hand, the slower oscillating component arises from the interaction between the

electronic transition, |ϕ1g〉 ↔ |ϕ1e〉, and the 0−1 vibronic transition, |ϕ2g〉|χ2
g0〉 ↔ |ϕ2e〉|χ2

e1〉,

which is induced by the coupling constant, J12〈χ2
e1|χ2

g0〉 = −J12 exp(−S/2)
√
S = −0.156J12.

Moreover, the large amplitude of this slower component indicates a large mixing angle, which

is the resonance between the electronic and vibronic transitions.

Figure 3 shows the time evolutions of the energy donor (pigment 1) population affected

by the intramolecular vibrations under the influence of the environmentally induced fluc-

tuations and dissipation at temperatures of (a) 77 K and (b) 300 K. Similar to Fig. 2, the

red lines represent the dynamics in the presence of the vibrations, whereas the green lines

show the dynamics without the vibrations as a reference. The EET dynamics in Fig. 3

show no wavelike motion in contrast with those in Fig. 2. However, it should be noted that

the dynamics involve two distinct mechanisms. Comparing Fig. 3 with Fig. 2, one recog-

nizes that the short-term behaviors (t . γ−1env = 100 fs) arise from electronically coherent

motion between the electronic transition of pigment 1 and the 0 − 0 vibronic transition

of pigment 2, and the subsequent hopping dynamics follow. As demonstrated in Ref. 57,

the electronic excitation is delocalized just after the photoexcitation even in the incoherent

hopping regime. As time progresses, the dissipation of reorganization energy proceeds and

the excitation becomes localized. The vibrational modes contribute to acceleration of the

EET, albeit only slightly, because the vibronic resonance adds a new EET channel in com-

parison with the case without the vibrational mode. However, the overall behaviors of the

EET dynamics are dominated by the environment, and the contribution of the vibrational

modes decreases with increasing temperature. As can be seen in Eqs. (2.7) and (2.9), the

root mean squared amplitude of the environmentally induced fluctuations in the electronic

energy is given as (2~λenvkBT )1/2, which is evaluated as 61.2 and 120.8 cm−1 at temperatures

of 77 and 300 K, respectively. On the other hand, the inter-site coupling constant inducing

the vibronic resonance is evaluated as J12〈χ2
e1|χ2

g0〉 = 7.80 cm−1 for S = 0.025. Hence, the
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inter-site coupling causing the vibronic resonance is one order of magnitude smaller than

the fluctuation amplitudes and, therefore, the vibronic resonance does not play a significant

role in the EET dynamics under the influence of the environmentally induced fluctuations.

B. Beating in two-dimensional electronic spectra

In this subsection, we discuss 2D electronic spectra, in order to explore the relation-

ships between the spatial dynamics of the electronic excitations presented in the preceding

subsection and the information content of the 2D electronic spectra.

Figures 4a and 4b show calculated nonrephasing 2D spectra at 77 K without and with the

intramolecular vibration, respectively. These calculations were performed using the same

equation of motion and parameters as in Fig. 3. The lower-left and upper-right diagonal

peaks are labeled DP1 and DP2, respectively. The amplitudes of the diagonal cuts are

also presented as a function of the waiting time, t2, in Fig. 4c and 4d. Although the EET

dynamics in Fig. 3 and the 2D spectra at t2 = 0 do not exhibit a significant change originating

from the vibrational mode, Figs. 4c and 4d exhibit a qualitative difference. Figure 4c shows

monotonous decays of the diagonal peaks, whereas Fig. 4d exhibits peak beating persisting

for up to a minimum of 2 ps. Apparently, this beating is caused by the presence of the

vibrational mode.

To clarify the origins of the beatings in Fig. 4d, we decompose the nonrephasing 2D

spectra to the stimulated emission (SE), ground state bleaching (GSB), and excited state

absorption (ESA) contributions. Figure 5 shows the time-evolutions of the diagonal cuts of

the individual contributions. The time-evolutions of the amplitudes of the diagonal peaks,

DP1 (ω1 = ω3 = 12, 166 cm−1) and DP2 (ω1 = ω3 = 12, 350 cm−1) in the contributions

are also shown in Fig. 6. The SE and ESA contributions exhibit beating corresponding

to quantum superposition between the vibronic exciton states, |e0〉 and |e±1 〉, in Fig. 1,

whereas the beating in the GSB contribution arises from quantum superposition between

the vibrational states in pigment 2, |g0〉 and |g1〉. As shown in Figs. 5 and 6, the SE,

GSB, and ESA pathways exhibit similar contribution levels to the diagonal peak beatings

in the nonrephasing 2D spectra, although the SE and ESA pathways exhibit larger beating

amplitudes in the short-term region (∼ 300 fs), which originate from the electronic coherence

in the single-excitation manifold. The present observation corroborates the recent theoretical
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argument by Plenio, Almeida, and Huelga,31 which suggested that the SE, GSB, and ESA

contributions in the rephasing 2D spectra could be of the same order in realistic parameter

ranges with the use of a simplified Markovian quantum master equation.

In order to clarify the extent to which the quantum mixture between the electronic tran-

sition of pigment 1 and the vibronic transitions of pigment 2 contributes to the observed

beating in the nonrephasing 2D spectra, we explore the effects of the environmentally in-

duced fluctuations on beating amplitude. For this purpose, we address beating in the GSB

pathways, that is, the vibrational coherence between |g0〉 and |g1〉 in the electronic ground

state. This is because the GSB pathway is unaffected by the energy transfer processes

in the single-excitation manifold and, thus, it allows one to investigate interplays between

the quantum mixture and the environmentally induced fluctuations. The beating ampli-

tudes in the GSB contribution observed in the nonrephasing 2D spectra are determined

as being the difference between the first and second extremal values after t2 = 500 fs, as

indicated by the dashed-line box in Fig. 6c, where the environmental reorganization dynam-

ics have already been completed and the beating characteristics can be extracted cleanly.

Figure 7 shows the beating amplitude along the diagonal line of the GSB contribution

for various values of ωvib. From the plots, we find two characteristic beating behaviors in

the GSB contribution of the nonrephasing 2D spectra. Firstly, a local maximum of the

beating amplitude is observed at the DP1 position (ω1 = ω3 = 12, 166 cm−1), indepen-

dently of the vibrational frequency. This beating is caused by the ground state vibrational

coherence created via the lower exciton, |e0〉, that is, through the Liouville pathway of

|g0〉〈g0| → |e0〉〈g0| → |g1〉〈g0| → |e0〉〈g0| → |g0〉〈g0|. Secondly, another local maximum is

found at various locations in the vicinity of DP2 (ω1 = ω3 = 12, 350 cm−1), depending on

the vibrational frequency. This beating originates from the ground state vibrational coher-

ence created via the upper vibronic excitons, |e±1 〉, that is, through the Liouville pathways

of |g0〉〈g0| → |e±1 〉〈g0| → |g1〉〈g0| → |e±1 〉〈g0| → |g0〉〈g0|. The transition energy of the vi-

bronic excitons, |e±1 〉, differs according to the vibrational frequency and, hence, the location

of the beating amplitude maxima vary. Moreover, the mixing angle between the electronic

transition of pigment 1 and the vibronic transition of pigment 2 depends on the vibration

frequency, which causes variations in the beating amplitudes. This fact leads to the concept

that the degree of quantum mixing between the electronic transition of pigment 1 and the

vibronic transition of pigment 2 may be visualized as the beating amplitude of the ground
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state vibrational coherence.

Figure 8 plots the beating amplitude of DP1 and the local maxima values of the beating

amplitude in the vicinity of DP2 as a function of ωvib. The beating at the DP1 location

originates primarily from the ground state vibrational coherence created via |e0〉, which is

minimally dependent on the quantum mixture between the electronic and vibronic tran-

sitions. However, the beating amplitude of DP1 decreases with the increasing vibrational

frequency. This behavior is explained as being due to the interference between the beat-

ing of DP1 and that in the vicinity of DP2, as shown in Fig. 7. On the other hand, the

beating amplitude near DP2 exhibits a maximum in the vicinity of ωvib = 180 cm−1. These

findings reflect the degree of quantum mixing and, thus, the degree of intensity borrowing.

Tiwari, Peters, and Jonas27 demonstrated that the beating amplitude of a cross-peak in the

rephrasing GSB pathway may be enhanced over a wide vibrational frequency range around

the vibronic resonance. Their finding is consistent with those of the present study that

adequately describes the impact of the environmentally induced fluctuation and dissipation

upon the quantum mixing. Figure 8 implies that the quantum mixing between the vibronic

transitions in BChl in the FMO protein, which induces vibronic coherence in the electronic

ground and excited states, can be rather robust. This holds even under the influence of the

environmentally induced fluctuations, at least at cryogenic temperatures.

However, the root mean squared amplitude of the environmentally induced fluctuations

in the electronic energy is estimated as (2~λenvkBT )1/2 using Eqs. (2.7) and (2.9), and the

quantum mixing between the strong electronic and weak vibronic transitions may be more

fragile against the protein-induced fluctuations at higher temperatures. Figure 9 shows the

beating amplitude of DP1 and the local maximum value of the beating amplitude in the

vicinity of DP2 as a function of temperature for ωvib = 180 cm−1. The beating of DP1

originates from the ground state vibrational coherence created via |e0〉, independently of

the quantum mixture and, thus, it exhibits minimal temperature dependence as well as the

vibrational frequency dependence apparent in Fig. 8. However, the beating amplitude in the

DP2 region is strongly dependent on temperature. This indicates that the environmentally

induced fluctuations of larger amplitude at higher temperature eradicate the quantum mixing

between the strong electronic transition of pigment 1 and the weak vibronic transition of

pigment 2. At the high temperature limit, the quantum mixture and, thus, the intensity

borrowing mechanism, diminish. Hence, the beating amplitudes of DP1 and DP2 converge
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towards each other. Figure 10 shows the time-evolutions of the amplitudes of the diagonal

cuts of nonrephasing 2D electronic spectra at 300 K for (a) a coupled dimer without the

intramolecular vibration in pigment 2 and (b) a coupled dimer with the intramolecular

vibration. The intensity borrowing mechanism is eradicated at 300 K, as indicated in Fig. 9,

and the vibrational contribution in Fig. 10b almost vanishes as a result.

The fluorescence line-narrowing measurement of the FMO protein reveals that a vibra-

tional mode at 117 cm−1 and several modes between 167 − 202 cm−1 have relatively strong

Huang-Rhys factor magnitudes.42 As shown in Fig. 8, the beating amplitude in the GSB

contribution is enhanced over a wide range of vibrational frequencies near ωvib = 180 cm−1

at cryogenic temperature, i.e., 77 K. This behavior supports the recent theoretical result

reported by Tempelaar, Jansen, and Knoester,35 who showed that the vibrational modes of

117 cm−1 and 185 cm−1 induce long-lasting beating of the exciton 1 − 3 cross peak in the

rephasing 2D spectra of the FMO protein. This was also investigated by Panitchayangkoon

et al.4 However, the amplitudes of the beats induced by the electronic-vibrational quantum

mixture decrease with increasing temperature, as shown in Figs. 9. Moreover, the vibra-

tional contribution almost vanishes, as shown in Fig. 10. Panitchayangkoon et al.4 showed

that quantum beats in the FMO complex persist for a minimum of 1.5 ps and 300 fs at 77

and 277 K, respectively, whereas Ishizaki and Fleming18 theoretically predicted that elec-

tronic coherence in the FMO complex could persist for 700 and 300 fs at 77 and 300 K,

respectively. The experimental data showed good agreement with the theoretical prediction

regarding the electronic coherence at physiological temperature; however, the experimental

data exhibited a significantly longer quantum beat lifetime in comparison with the theoret-

ical result. Hence, the temperature dependence presented in Figs. 4, 9, and 10 indicates

that the long-term behavior of the experimentally observed long-lasting quantum beats is

primarily vibrational in nature.

IV. CONCLUDING REMARKS

In this work, we have explored the impact of environmentally induced fluctuations upon

the quantum mechanically mixed electronic and vibrational states of pigments in terms of

EET dynamics and the corresponding 2D electronic spectra. For this purpose, we have

addressed a model dimer extracted from the FMO protein and have performed numerical
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calculations of EET dynamics and the corresponding 2D electronic spectra in an accurate

manner.

At cryogenic temperature, the resonance between the strong 0−0 and weak 0−1 vibronic

pigment transitions are rather robust, even under the influence of protein-induced fluctua-

tions, despite the use of a small Huang-Rhys factor, i.e., S = 0.025. This resonance results

in quantum beats of vibrational origin in both the electronic ground and excited states in

the 2D electronic spectra via the intensity borrowing mechanism. This is not specific to

the fine resonance between the vibronic transitions, and the beating originating from the

vibrational coherence can be enhanced over a rather wide range of vibrational frequencies

around the resonance condition, at cryogenic temperature at least. However, the amplitudes

of the environmentally induced fluctuations in the electronic excitation energy increase with

increasing temperature. The present calculations demonstrate that the quantum mixing

between the strong 0− 0 and 0− 1 vibronic transitions is more fragile against fluctuations

at higher temperatures, and the quantum beats originating from the vibrational coherence

in 2D electronic spectra almost vanish at physiological temperatures.

Furthermore, we have investigated EET dynamics using the same dynamic equation and

parameters as in the calculations for the 2D electronic spectra. In the absence of the en-

vironmental effects, the resonance between the vibronic transitions dramatically alters the

EET dynamics, despite the small S (= 0.025). However, under the influence of the envi-

ronmentally induced fluctuations and dissipation, the vibronic resonance contributes only

slightly to acceleration of the electronic energy transfer, both at cryogenic and physiologi-

cal temperatures, although the 2D electronic spectra clearly exhibit quantum beating that

is enhanced by the vibronic resonance at cryogenic temperature. One of the remarkable

benefits of nonlinear multidimensional spectroscopic techniques is their sensitivity to details

of the systems and dynamics under investigation. The calculated 2D electronic spectra in

the present study indicate vanishingly small effects of the vibronic quantum mixing upon

the EET dynamics and present them as long-lived quantum beating. In other words, this

suggests that the concept that oscillatory behavior in 2D data provides genuinely relevant

information on the systems and dynamics under investigation should be carefully considered.

Recently, Fuller et al.9 and Romero et al.10 revealed the presence of long-lived quantum beats

in the photosystem II reaction center through the use of 2D electronic spectroscopy. Both

works demonstrate that the observed long-lived beats are induced by the electronic and
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vibrational resonance between the electronic exciton and the primary charge transfer states,

and they suggest that the electronic-vibrational resonance may represent an important de-

sign principle for enabling the high quantum efficiency of charge separation in the reaction

center. These findings are indeed intriguing. However, the reorganization energies and, thus,

the protein-induced fluctuations associated with charge transfer states are generally large

in comparison to those for the electronic exciton states and, hence, further investigation of

the influence of the electronic-vibrational resonance upon the charge transfer dynamics is

required. This will be the subject of future study.
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Appendix A: Equation of motion

In order to derive the equation of motion to describe EET dynamics, we organize the

product states in order of elementary excitation number. The overall ground state with

zero excitation reads |g〉 = |ϕ1g〉|ϕ2g〉. The presence of a single excitation at pigment 1 is

expressed as |1〉 = |ϕ1e〉|ϕ2g〉, whereas the other is |2〉 = |ϕ1g〉|ϕ2e〉. Since the intensity of

sunlight is weak, the single-excitation manifold is of primary importance under physiological

conditions. However, nonlinear spectroscopic techniques such as 2D electronic spectroscopy

can populate some higher excitation manifolds, e.g., the double-excitation manifold com-

prising |12〉 = |ϕ1e〉|ϕ2e〉. Hence, the PPC Hamiltonian in Eq. (2.1) can be recast as

ĤPPC = Ĥexc + Ĥenv + Ĥexc−env, (A.1)
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with

Ĥexc = Eg|g〉〈g|

+
2∑

m=1

(Eg + ~Ωm)|m〉〈m|+
2∑

m=1

∑
n 6=m

~Jmn|m〉〈n|

+ (Eg + ~Ω1 + ~Ω2)|12〉〈12|, (A.2)

Ĥenv =
2∑

m=1

Ĥmg(xm)− Eg, (A.3)

Ĥexc−env =
2∑

m=1

ûm|m〉〈m|+ (û1 + û2)|12〉〈12|. (A.4)

In the above, the excitation-vacuum energy, Eg =
∑

m〈Ĥmg(xm)〉mg, has been introduced;

however, we set Eg = 0 without loss of generality. In order to derive the reduced density

operator to describe the EET dynamics, we suppose that the total PPC system at the

initial time, t = 0, is in the factorized product state of the form, ρ̂eqPPC = ρ̂exc
∏

m ρ̂
eq
mg. This

factorized initial condition is generally considered to be unphysical in the literature on open

quantum systems,62 since it neglects the inherent correlation between a system of interest

and its environment. In electronic excitation processes, however, this initial condition is of no

consequence, because it corresponds to the electronic ground state or an electronic excited

state generated in accordance with the vertical Franck-Condon transition. The reduced

density operator for the electronic excitation, ρ̂exc(t), is given by ρ̂exc(t) = Trenv[Ĝ(t)ρ̂eqPPC],

where Ĝ(t) is the retarded propagator of the total PPC system in the Liouville space. The

Gaussian property of ûm enables one to derive a formally exact equation of motion as12

d

dt
ρ̃exc(t) =

2∑
m=1

T+

∫ t

0

dsK̃(1)
m (t, s)ρ̃exc(t) + T+

∫ t

0

dsK̃
(2)
12 (t, s)ρ̃exc(t), (A.5)

where the interaction representation has been employed with respect to Ĥexc + Ĥenv. The

integration kernel for the single-excitation manifold, K̃
(1)
m (t, s), is given by

K̃(1)
m (t, s) = − 1

~2
Ṽm(t)×

[
Dm(t− s)Ṽm(s)× − i~

2
Φm(t− s)Ṽm(s)◦

]
, (A.6)

where V̂m = |m〉〈m| has been introduced, and Dm(t) and Φm(t) are the symmetrized cor-

relation function and the response function of the collective energy gap coordinate û(t), re-

spectively. On the other hand, the integration kernel used to describe the double-excitation

17



manifold, K̃
(2)
m (t, s), is given by

K̃
(2)
12 (t, s) = − 1

~2
Ṽ12(t)

×
[
D12(t− s)Ṽ12(s)× − i

~
2

Φ12(t− s)Ṽ12(s)◦
]
, (A.7)

with D12(t) = D1(t) + D2(t) and Φ12(t) = Φ1(t) + Φ2(t). The superoperator notation has

been introduced, Ô×1 Ô2 = Ô1Ô2−Ô2Ô1 and Ô◦1Ô2 = Ô1Ô2+Ô2Ô1, for any operators Ô1 and

Ô2. In Eq. (A.5), the chronological time ordering operator, T+, resequences and mixes the

superoperators, Ṽm(t)× and Ṽm(t)◦, comprised in K̃
(n)
m (t, s) and ρ̃exc(t) and, hence, Eq. (A.5)

is difficult to solve. In general, Eq. (A.5) can be recast exactly or approximately into the

form,

d

dt
ρ̃exc(t) =

∑
α

T+

∫ t

0

dsÃα(t)e−bα(t−s)C̃α(s)ρ̃exc(t), (A.8)

where Âα and Ĉα are arbitrary operators and bα is an arbitrary complex number, and

do not necessarily have physical meaning. In this situation, Eq. (A.5) is recast into the

multidimensional recurrence form as57,63–67

d

dt
σ̂(n1, n2, . . . ) = −(iL̂exc + n1b1 + n2b2 + . . . )σ̂(n1, n2, . . . )

+ Â1σ̂(n1 + 1, n2, . . . ) + Â2σ̂(n1, n2 + 1, . . . ) + . . .

+ n1Ĉ1σ̂(n1 − 1, n2, . . . ) + n2Ĉ2σ̂(n1, n2 − 1, . . . ) + . . . , (A.9)

where L̂exc is the Liouvillian corresponding to the Hamiltonian, Ĥexc in Eq. (A.1). In the

above recurrence formula, only the σ̂(0, 0, . . . ) element is identical to the reduced density

operator, ρ̂exc(t), while the other terms are auxiliary operators which do not necessarily

have physical meaning. The recurrence in Eq. (A.9) continues to infinity. However, the

numerical calculations can converge at a finite stage. To terminate Eq. (A.9) safely, we

replace Eq. (A.9) with

d

dt
σ̂(n1, n2, . . . ) = −iL̂excσ̂(n1, n2, . . . ), (A.10)

for the integers (n1, n2, . . . ) satisfying
∑

α nα � ωc/minα(bα), where ωc is a characteristic

frequency for L̂exc.
65

Appendix B: Nonrephasing third-order response function

The nonrephasing 2D spectrum is calculated as

SNR(ω3, t2, ω1) = Re

∫ ∞
0

dt3e
iω3t3

∫ ∞
0

dt1e
iω1t1iRNR(t3, t2, t1), (B.1)
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where the nonrephasing response function, RNR(t3, t2, t1), is expressed as68

RNR(t3, t2, t1) = Tr

{
µ̂←Ĝ(t3)

i

~
µ̂×→Ĝ(t2)

i

~
µ̂×←Ĝ(t1)

i

~
µ̂×←ρ̂

eq
PPC

}
. (B.2)

The operators, µ̂→ and µ̂←, are defined as

µ̂→ = µ1|1〉〈g|+ µ2|2〉〈g|+ µ1|12〉〈2|+ µ2|12〉〈1|, (B.3)

µ̂← = µ1|g〉〈1|+ µ2|g〉〈2|+ µ1|2〉〈12|+ µ2|1〉〈12|, (B.4)

where µm is the transition dipole of the m-th pigment. We assume the Condon approxima-

tion and, thus, µm is independent of the environmental and nuclear DOFs. For simplicity,

we set µm = 1 and µ1 · µ2 = cos θ12, with θ12 being the angle between the two transition

dipoles. Note that the directions of the subscript arrows in Eq. (B.2) correspond to those

of the arrows in the double-sided Feynman diagrams depicting the nonrephasing response

functions. Regarding the means of calculating the response function in Eq. (B.2) using

the equation of motion approach given in Appendix A, we refer to Sec. 3 in Ref. 68 and

Sec. 5.5 in Ref. 69. We note that numerical results of the third-order response function in

Eq. (B.2) do not depend on employed representations (e.g. the site representation or the

energy eigenstate representation) because Eq. (B.2) is expressed as the trace of operators.

Appendix C: Validity of the correlation function approach to describe vibronic

excitons

Here, we comment on the validity of employing the correlation functions and the cor-

responding spectral density to describe the mixed electronic-vibrational state, instead of

employing the vibronic exciton model.21,27,28,46 We consider the expression of Förster’s EET

rate70,71

kFA←D = J2
AD

∫ ∞
−∞

dω

2π
IA[ω]ED[ω], (C.1)

where IA[ω] and ED[ω] are the absorption line-shape of the energy acceptor molecule (A)

and the emission line-shape of the donor (D), respectively. For simplicity, we employ the

Jm,vib(ω) given in Eq. (2.11) and assume the zero-temperature limit. In this situation,

Eq. (C.1) is recast into

kFA←D =
∞∑
v=0

∞∑
v′=0

(
JAD〈χA

ev|χA
g0〉〈χD

gv′ |χD
e0〉
)2 ∫ ∞

−∞

dω

2π
I
(v)
A [ω]E

(v′)
D [ω], (C.2)
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where

|〈χma′v|χma0〉|2 =
Sv

v!
e−S, (C.3)

I
(v)
A [ω] = πδ(ω − (ΩA − Sωvib + vωvib)), (C.4)

E
(v′)
D [ω] = πδ(ω − (ΩD − Sωvib − v′ωvib)). (C.5)

In the above, |〈χma′v′|χmav〉|2 is the Franck-Condon factor associated with the vibronic transi-

tion from the v-th vibrational level of the a-th electronic state, |χmav〉, to the v′-th vibrational

level of the a′-th electronic state, |χma′v′〉, of the m-th pigment. Equation (C.2) indicates that,

in the case of ΩA+vωvib = ΩD−v′ωvib, the two vibronic transitions, |ϕDe〉|χD
e0〉 → |ϕDg〉|χD

gv′〉

and |ϕAg〉|χA
g0〉 → |ϕAe〉|χA

ev〉, resonate, and excitation transfer then occurs between them

with the coupling constant

JAD〈χA
ev|χA

g0〉〈χD
gv′|χD

e0〉. (C.6)

This is consistent with the approach using the vibronic exciton Hamiltonian model,21,27,28,46,72

and, thus, the present correlation function approach certainly describes the interaction be-

tween the vibronic transitions. Furthermore, it should be emphasized that the current

approach is capable of describing vibrational relaxations, vibrational states in both the elec-

tronic ground and excited states, and the influence of the environmental dynamics in a

natural and consistent manner.
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FIG. 1. (a) Illustration of quantum mechanical mixing among vibronic transitions of pigments 1

and 2 in a weakly coupled hetero-dimer. Arrows are used to depict strong vibronic transitions

only. For simplicity, only a single vibrational mode is considered in pigment 2. The exciton state,

|e0〉, originates primarily from the vibronic state of pigment 2, |ϕ2e〉|χ2
e0〉. Resonance or strong

quantum mixing between the electronic state of pigment 1, |ϕ1e〉, and the vibronic state of pigment

2, |ϕ2e〉|χ2
e1〉, creates the two vibronic excitons, |e±1 〉, in the absence of the environmentally induced

fluctuation and dissipation. In the vibronic exciton picture, the overall ground state, |g0〉, is given

by |ϕ1g〉⊗|ϕ2g〉|χ2
g0〉, while |g1〉 is identical to |ϕ2g〉|χ2

g1〉. (b) The relaxation functions in Eqs. (2.8)-

(2.10) and the corresponding spectral densities, Eq. (2.6), employed for modeling the environmental

dynamics and intramolecular vibrational motion affecting the electronic transitions of pigments 1

and 2.
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FIG. 2. Time evolution of the energy donor population affected by intramolecular vibration of

pigment 2 (acceptor) in the absence of protein environment effects at temperatures of 77 and 300 K.

In each panel, the red line represents the dynamics under the influence of the vibration, while the

green line shows the dynamics without the vibration effects, i.e., the unitary time evolution. The

vibrational frequency, the vibrational relaxation time constant, and the Huang-Rhys factor are set

to ωvib = 180 cm−1, γ−1vib = 2 ps, and S = 0.025, respectively.

(a) temperature 77K (b) temperature 300K

With the environment

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  1000  2000  3000  4000  5000

do
no

r p
op

ul
at

io
n

time (fs)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  1000  2000  3000  4000  5000

time (fs)

w/   vibration
w/o vibration

w/   vibration
w/o vibration

FIG. 3. Time evolution of the energy donor population affected by intramolecular vibration of

pigment 2 (acceptor) in the presence of environmental effects at temperatures of (a) 77 and (b)

300 K. In each panel, the red line represents the dynamics under the influence of the vibration,

whereas the green line shows the dynamics without the vibration effects. The environmental

reorganization energy and the reorganization time constant are set to λenv = 35 cm−1 and γ−1env =

100 fs, respectively. The other parameters are the same as in Fig. 2.
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FIG. 4. Nonrephasing 2D spectra at 77 K of (a) a coupled-dimer without intramolecular vibration

and (b) a coupled-dimer with intramolecular vibration. The waiting time is t2 = 0 fs. The nor-

malization of contour plots (a) and (b) is such that the maximum value of each spectrum is unity,

and equally spaced contour levels (0,±0.02,±0.04, . . . ,) are drawn. The lower-left and upper-right

diagonal peaks are labeled DP1 and DP2, respectively. Panels (c) and (d) show the amplitudes of

the diagonal cuts of 2D spectra (a) and (b) as functions of the waiting time, t2, respectively. The

calculations were performed with the parameters employed in Fig. 3.
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FIG. 5. Time evolutions of the diagonal cuts of (a) the stimulated emission, (b) the ground state

bleaching, and (c) the excited state absorption contributions to the nonrephasing 2D spectra given

in Figs. 4b and 4d. The normalization of the contour plots is such that the maximum value of

Fig. 4b is unity, and equally spaced contour levels (0,±0.02,±0.04, . . . ,) are drawn.
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FIG. 6. Time evolutions of the diagonal peak amplitudes, DP1 (ω1 = ω3 = 12, 166 cm−1) and

DP2 (ω1 = ω3 = 12, 350 cm−1), of (a) the nonrephasing 2D spectrum, (b) the stimulated emission

contribution, (c) the ground state bleaching contribution, and (d) the excited state absorption

contribution. The normalization of the plots is such that the maximum value of Fig. 4b is unity.

In order to clarify the relationship between the beating amplitude magnitudes in the individual

contributions, the peak amplitudes are shifted.
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FIG. 7. Beating amplitude distribution along the diagonal line of the GSB contribution in the

nonrephasing 2D spectra for various values of the vibrational frequency, ωvib. The temperature is

77 K. The normalization of the individual plots is such that the maximum value of Fig. 4b is unity.
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FIG. 8. Beating amplitude of DP1 (ω1 = ω3 = 12, 166 cm−1) and the local maximum value of the

beating amplitude in the vicinity of DP2 (ω1 = ω3 = 12, 350 cm−1) as a function of the vibrational

frequency, ωvib. The temperature is 77 K. The normalization of the individual plots is such that

the maximum value of Fig. 4b is unity.
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beating amplitude in the vicinity of DP2 (ω1 = ω3 = 12, 350 cm−1) as a function of temperature.

The vibrational frequency is fixed to ωvib = 180 cm−1. The normalization of the individual plots

is such that the maximum value of Fig. 4b is unity.
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FIG. 10. Time evolutions of the diagonal cut of the nonrephasing 2D spectra at 300 K of (a)

a coupled-dimer without intramolecular vibration and (b) a coupled-dimer with intramolecular

vibration. The normalization of contour plots (a) and (b) is such that the maximum values of

Fig. 4a and 4b are unity. Equally spaced contour levels (0,±0.02,±0.04, . . . ,) are drawn.
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