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In this paper, we show that affine extensions of non-crystallographic Coxeter groups
can be derived via Coxeter-Dynkin diagram foldings and projections of affine ex-
tended versions of the root systems E8, D6, and A4. We show that the induced affine
extensions of the non-crystallographic groups H4, H3, and H2 correspond to a dis-
tinguished subset of those considered in [P.-P. Dechant, C. Bœhm, and R. Twarock,
J. Phys. A: Math. Theor. 45, 285202 (2012)]. This class of extensions was moti-
vated by physical applications in icosahedral systems in biology (viruses), physics
(quasicrystals), and chemistry (fullerenes). By connecting these here to extensions
of E8, D6, and A4, we place them into the broader context of crystallographic lattices
such as E8, suggesting their potential for applications in high energy physics, inte-
grable systems, and modular form theory. By inverting the projection, we make the
case for admitting different number fields in the Cartan matrix, which could open
up enticing possibilities in hyperbolic geometry and rational conformal field theory.
C© 2013 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4820441]

I. INTRODUCTION

The classification of finite-dimensional simple Lie algebras by Cartan and Killing is one of the
milestones of modern mathematics. The study of these algebras is essentially reduced to that of the
root systems and their Weyl groups, and all their geometric content is contained in Cartan matrices
and visualised in Dynkin diagrams. The problem ultimately amounts to classifying all possible
Cartan matrices.2

Coxeter groups describe (generalised) reflections,3 and thus encompass the above Weyl groups,
which are the reflective symmetry groups of the relevant root systems. In fact, the finite Coxeter
groups are precisely the finite Euclidean reflection groups.4 However, since the root systems arising
in Lie theory generate root lattices, the Weyl groups are crystallographic. Non-crystallographic
Coxeter groups, i.e., those that do not stabilise any full-dimensional lattice, therefore cannot arise in
the Lie theory context, and as a consequence, they have not been studied as intensely. They include
the groups H2, H3, and the largest non-crystallographic group H4; the icosahedral group H3 and its
rotational subgroup I are of particular practical importance as H3 is the largest discrete symmetry
group of physical space. Thus, many 3-dimensional systems with high symmetry, such as viruses
in biology,5–9 fullerenes in chemistry,10–13 and quasicrystals in physics,14–17 can be modeled using
Coxeter groups.

Affine Lie algebras have also been studied for a long time, and many of the salient features
of the theory of simple Lie algebras carry over to the affine case. More recently, Kac-Moody
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theory has provided another framework in which generalised Cartan matrices induce interest-
ing algebraic structures that preserve many of the features encountered in the simple and affine
cases.18 However, such considerations again give rise to extensions of crystallographic Coxeter
groups. These infinite Coxeter groups are usually constructed directly from the finite Coxeter
groups by introducing affine reflection planes (planes not containing the origin). While these infi-
nite counterparts to the crystallographic Coxeter groups have been intensely studied,19 much less
is known about their non-crystallographic counterparts.20 Recently, we have derived novel affine
extensions of the non-crystallographic Coxeter groups H2, H3, and H4 in two, three, and four dimen-
sions, based on an extension of their Cartan matrices following the Kac-Moody formalism in Lie
theory.1

In this paper, we develop a different approach and induce such affine extensions of the non-
crystallographic groups H2, H3, and H4 from affine extensions of the crystallographic groups A4,
D6, and E8, via projection from the higher-dimensional setting. Specifically, there exists a projection
from the root system of E8, the largest exceptional Lie algebra, to the root system of H4, the largest
non-crystallographic Coxeter group,19 and, due to the inclusions A4 ⊂ D6 ⊂ E8 and H2 ⊂ H3 ⊂ H4,
also corresponding projections for the other non-crystallographic Coxeter groups.

We apply these projections here to the extended root systems of the groups A4, D6, and E8. As
expected, extending by a single node recovers only those affine extensions known in the literature.
However, we also consider simply-laced extensions with two additional nodes in the Kac-Moody
formalism, and consider their compatibility with the projection formalism. Specifically, we use the
projection of the affine root as an affine root for the projected root system, and thereby find a
distinguished subset of the solutions in the classification scheme presented in Ref. 1.

The E8 root system, and the related structures: the E8 lattice, the Coxeter group, the Lie algebra,
and the Lie group, are “exceptional” structures, and are of critical importance in mathematics
and in theoretical physics.2 For instance, they occur in the context of Lie algebras, simple group
theory and modular form theory, as well as lattice packing theory.21–23 In theoretical physics, E8 is
central to String theory, as it is the gauge group for the E8 × E8 heterotic string.24 More recently,
via the Hořava-Witten picture25–27 and other developments,28–32 E8 and its affine extensions and
overextensions (e.g., E+

8 and E++
8 ) have emerged as the most likely candidates for the underlying

symmetry of M-Theory. It is also fundamental in the context of Grand Unified Theories,33–35 as it
is the largest irreducible group that can accommodate the Standard Model gauge group SU(3) ×
SU(2) × U(1). Our new link between affine extensions of crystallographic Coxeter groups such as
E+

8 and their non-crystallographic counterparts could thus turn out to be important in High Energy
Physics, e.g., in String theory or in possible extensions of the Standard Model above the TeV scale
after null findings at the LHC.

The structure of this paper is as follows. Section II reviews some standard results to provide
the necessary background for our novel construction. Section II A discusses the basics of Coxeter
groups. Section II B introduces the relationship between E8 and H4, and discusses how it man-
ifests itself on the level of the root systems, the representation theory, and the Dynkin diagram
foldings and projection formalism. Section II C introduces affine extensions of crystallographic
Coxeter groups, and presents the standard affine extensions of the groups relevant in our context. In
Sec. III A, we compute where the affine roots of the standard extensions of the crystallographic
groups map under the projection formalism and examine the resulting induced affine extensions of
the non-crystallographic groups. Section III B discusses Coxeter-Dynkin diagram automorphisms of
the simple and affine groups, and shows that the induced affine extensions are invariant under these
automorphisms. In Sec. III C, we consider affine extending the crystallographic groups by two nodes
and show that these do not induce any further affine extensions. In Sec. IV A, we briefly review the
novel Kac-Moody-type extensions of non-crystallographic Coxeter groups from a recent paper and
compare the induced extensions with the classification scheme presented there (Sec. IV B). In Sec. V,
we conclude that in a wide class of extensions (single extensions or simply-laced double extensions
with a trivial projection kernel), the ten induced cases considered here are the only ones that are
compatible with the projection. We also discuss how lifting affine extensions of non-crystallographic
groups to the crystallographic setting, as well as symmetrisability of the resulting matrices, motivate
a study of Cartan matrices over extended number fields.
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Crystallographic
Coxeter groups E8, D6, A4

Affine extensions
A=

4 , D>
6 , D=

6 , D<
6 and E=

8

Non-crystallographic
Coxeter groups H4, H3, H2

Affine extensions
H=

2 , H>
3 , H=

3 , H<
3 , H=

4 ,
H̄=

2 , H̄>
3 , H̄=

3 , H̄<
3 and H̄=

4

Project/Lift (Section II B)

Extend (Section II C)

Induce

Extend (Refs 1,20)

FIG. 1. Context of this paper: Section II A introduces Coxeter groups (left), and Sec. II B discusses how certain crystal-
lographic and non-crystallographic groups are related via projection (left arrow). Section II C discusses the known affine
extensions of the crystallographic Coxeter groups (upper arrow), and affine extensions of non-crystallographic Coxeter groups
have been discussed in Refs. 1 and 20 (lower arrow). In this paper, we present a novel way of inducing affine extensions of
the non-crystallographic groups via projection from the affine extensions of the crystallographic groups (dashed arrow on the
right), yielding a distinguished subset of those derived in Ref. 1.

II. MATHEMATICAL PRELIMINARIES

In this section, we introduce the context of our construction, with the relevant concepts and
the known links between them, as illustrated in Fig. 1. We introduce Coxeter groups and their
root systems in Sec. II A, and discuss how certain crystallographic and non-crystallographic groups
are related via projection (Sec. II B). Affine extensions of the crystallographic Coxeter groups are
introduced in Sec. II C. Affine extensions of the non-crystallographic Coxeter groups in dimensions
two, three, and four have been discussed in our previous papers1, 20 (see Sec. IV A). Here, we present
a different construction of such affine extensions, by inducing them from the known affine extensions
of the crystallographic Coxeter groups via projection from the higher-dimensional setting. These
induced extensions will be shown to be a subset of those derived in Ref. 1.

A. Finite Coxeter groups and root systems

Definition 2.1 (Coxeter group). A Coxeter group is a group generated by some involutive
generators si, sj ∈ S subject to relations of the form (si s j )mi j = 1 with 2 ≤ mi j = m ji ∈ N for i �= j.
The matrix A with entries Aij = mij is called the Coxeter matrix.

The finite Coxeter groups have a geometric representation where the involutions are realised as
reflections at hyperplanes through the origin in a Euclidean vector space E . In particular, let ( · | · )
denote the inner product in E , and λ, α ∈ E .

Definition 2.2 (Reflection). The generator sα corresponds to the reflection

sα : λ → sα(λ) = λ − 2
(λ|α)

(α|α)
α (1)

at a hyperplane perpendicular to the root vector α.

The action of the Coxeter group is to permute these root vectors, and its structure is thus encoded
in the collection � ∈ E of all such root vectors, the root system.

Definition 2.3 (Root system). A root system � is a finite set of non-zero vectors in E such that
the following two conditions hold:

1. � only contains a root α and its negative, but no other scalar multiples: � ∩ Rα =
{−α, α} ∀ α ∈ �.

2. � is invariant under all reflections corresponding to vectors in �: sα� = � ∀ α ∈ �.
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For a crystallographic Coxeter group, a subset � of �, called simple roots, is sufficient to express
every element of � via a Z-linear combination with coefficients of the same sign. � is therefore
completely characterised by this basis of simple roots, which in turn completely characterises
the Coxeter group (they are essentially the generators in Definition 2.1). In the case of the non-
crystallographic Coxeter groups H2, H3, and H4, the same holds for the extended integer ring
Z[τ ] = {a + τb|a, b ∈ Z}, where τ is the golden ratio τ = 1

2 (1 + √
5). Note that together with

its Galois conjugate τ ′ ≡ σ = 1
2 (1 − √

5), τ satisfies the quadratic equation x2 = x + 1. In the
following, we will call the exchange of τ and σ Galois conjugation, and denote it by x → x̄ =
x(τ ↔ σ ).

The structure of the set of simple roots is encoded in the Cartan matrix, which contains the
geometrically invariant information of the root system as follows:

Definition 2.4 (Cartan matrix and Coxeter-Dynkin diagram). The Cartan matrix of a set of
simple roots αi ∈ � is defined as the matrix

Ai j = 2
(αi |α j )

(αi |αi )
. (2)

A graphical representation of the geometric content is given by Coxeter-Dynkin diagrams, in which
nodes correspond to simple roots, orthogonal roots are not connected, roots at π

3 have a simple link,
and other angles π

m have a link with a label m ∈ Q.

Note that Cartan matrix entries of τ and σ yield Coxeter diagram labels of 5 and 5
2 , respectively,

since in the simply-laced setting Ai j = −2 cos π
mi j

, τ = 2 cos π
5 , and −σ = 2 cos 2π

5 . Such fractional
values can also be understood as angles in hyperbolic space.36 By the crystallographic restriction
theorem, there are no lattices (i.e., periodic structures) with such non-crystallographic symmetry H2,
H3, and H4 in two, three, and four dimensions, respectively. For these non-crystallographic Coxeter
groups one therefore needs to move from a lattice to a quasilattice setting.

B. From E8 to H4: Standard Dynkin diagram foldings and projections

The largest exceptional (crystallographic) Coxeter group E8 and the largest non-crystallographic
Coxeter group H4 are closely related. This connection between E8 and H4 can be exhibited in various
ways, including Coxeter-Dynkin diagram foldings in the Coxeter group picture,37 relating the root
systems,16, 38, 39 and in terms of the representation theory.14, 16, 37–39 For illustrative purposes, we
focus on the folding picture first.

Following Ref. 37, we consider the Dynkin diagram of E8 (top left of Fig. 2), where we have
labeled the simple roots α1 to α8. We fold the diagram suggestively (bottom left of Fig. 2), and
define the combinations sβ1 = sα1 sα7 , sβ2 = sα2 sα6 , sβ3 = sα3 sα5 , and sβ4 = sα4 sα8 . It can be shown
that the subgroup with the generators β i is in fact isomorphic to H4 (top right).37, 40 This amounts to
demanding that the simple roots of E8 project onto the simple roots of H4 and their τ -multiples, as
denoted on the bottom right of Fig. 2. One choice of simple roots for H4 is a1 = 1

2 (−σ,−τ, 0,−1),
a2 = 1

2 (0,−σ,−τ, 1), a3 = 1
2 (0, 1,−σ,−τ ), and a4 = 1

2 (0,−1,−σ, τ ), and in that case the highest
root is αH = (1, 0, 0, 0). In the bases of simple roots αi and ai, the projection is given by

π‖ =

⎛
⎜⎜⎝

1 0 0 0 0 0 τ 0
0 1 0 0 0 τ 0 0
0 0 1 0 τ 0 0 0
0 0 0 τ 0 0 0 1

⎞
⎟⎟⎠. (3)

There are similar diagrams for A4 and D6 that can be obtained from the E8 diagram by deleting
nodes. We display these in Fig. 3 in order to set out our notation, as the conventional way of numbering
the roots in the Dynkin diagrams differs from the natural numbering in the folding picture. The only
non-trivial Coxeter relation is the one corresponding to the 5-fold rotation (e.g., the relation between
β3 and β4 for the case of E8). The additional β-generators in the higher-dimensional cases are trivial,
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α1 α2 α3 α4 α5 α6 α7

α8

a1 a2 a3

5

a4

⇓ fold ⇑ Z → Z[τ ]

α1 α2 α3 α4

α7 α6 α5 α8

π‖
⇒

project

a1 a2 a3 τa4

τa1 τa2 τa3 a4

FIG. 2. Coxeter-Dynkin diagram folding and projection from E8 to H4. The nodes correspond to simple roots and links
labeled m encode an angle of π

m between the root vectors, with m omitted if the angle is π
3 and no link shown if π

2 . Note
that deleting nodes α1 and α7 yields corresponding results for D6 → H3, and likewise for A4 → H2 by further removing α2

and α6.

as they can be straightforwardly shown to satisfy the relevant Coxeter relations (corresponding to
3-fold rotations) directly from the original Coxeter relations for the αis of the larger groups.

It has been observed that the E8 root vectors can be realised in terms of unit quaternions with
coefficients in Z[τ ].16, 38, 39, 41 Specifically, the set of 120 icosians forms a discrete group under
standard quaternionic multiplication, and is a realisation of the H4 root system.16, 42, 43 The 240 roots
of E8 have been shown to be in 1-1-correspondence with the 120 icosians and their 120 τ -multiples,
so that, schematically, E8 ∼ H4 + τH4 holds. The projection considered above therefore exhibits this
mapping of the simple roots of E8 onto the simple roots of H4 and their τ -multiples. Corresponding
results hold for the other groups D6 and H3, as well as A4 and H2 by inclusion.

From a group theoretic point of view, E8 has two conjugate H4-invariant subspaces. Following
the terminology given in Ref. 37, we make the following definition.

Definition 2.5 (Standard and non-standard representations). We denote by the standard repre-
sentation of a Coxeter group the representation generated by mirrors forming angles π

mi j
, where

mij are the entries of the Coxeter matrix, i.e., 5, 3, and 2 for the cases relevant here. One can also
achieve a non-standard representation of the Coxeter groups Hi by taking the mirrors at an angle
2π /5 instead of π /5, i.e. by schematically going from a pentagon to a pentagram.

Note that these therefore have Coxeter diagram labels of 5 and 5
2 , respectively. These are

non-equivalent irreducible representations of the non-crystallographic Coxeter groups, i.e., there is

α1 α2 α3 α4 α5

α6

a1 a2

5

a3

α1 α2 α3 α4 a1
5

a2

FIG. 3. We display the Dynkin diagrams for D6 (top left), A4 (bottom left), H3 (top right), and H2 (bottom right), in order
to fix the labelling of the roots, such that in the following the Cartan matrices can be read more easily.
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no similarity transformation that takes one to the other. Their characters are exchanged under the
Galois automorphism τ ↔ σ , and the simple roots in the non-standard representation are the Galois
conjugates of the simple roots of the standard representation, for instance a1 = 1

2 (−σ,−τ, 0,−1) ↔
ā1 = 1

2 (−τ,−σ, 0,−1). This different set of simple roots āi yields a Cartan matrix that is the Galois
conjugate of the Cartan matrix of the simple roots ai, and leads to the label of 5

2 in the Coxeter
diagram. However, in this finite-dimensional case the groups generated by the two sets of generators
are isomorphic, as both sets of roots give rise to the same root system, but positioned differently in
space. The non-trivial Coxeter relations are therefore in both cases (si s j )mi j = 1 with mij = 5 for Aij

= − τ , σ . Hence, the Coxeter matrix is identical in both cases; in particular, it is still symmetric.
Therefore, one usually restricts analysis to the standard-representation, where the simple roots form
obtuse angles, and whose Cartan matrix therefore satisfies the usual negativity requirements. The
projection π⊥ into the second H4-invariant subspace in terms of the bases αi and āi is the Galois
conjugate of π‖ in Eq. (3), which, however, is with respect to the bases αi and ai. The relationship
between E8 and H4 is best understood as the standard representation of E8 inducing both the standard
and non-standard representations of the subgroup H4. That is, E8 decomposes under an H4 subgroup
as 8 = 4 + 4̄ (cf. also Refs. 38 and 39, in particular in the wider context of similar constructions
unified in the Freudenthal-Tits magic square44). Equivalent statements 6 = 3 + 3̄ and 4 = 2 + 2̄ hold
true for the lower-dimensional cases, and have found applications in the quasicrystal literature.14, 15

In the quasicrystal setting, one usually only considers the projection π‖; in our setting one can
consider projection into either invariant subspace, using π‖ as well as π⊥.

C. Affine extensions of crystallographic Coxeter groups

For a crystallographic Coxeter group, an affine Coxeter group can be constructed by defining
affine hyperplanes Hα0,i as solutions to the equations (x|α0) = i , where x ∈ E , α0 ∈ �, and i ∈ Z.45

The nontrivial isometry of E that fixes Hα0,i pointwise is unique and called an affine reflection sa f f
α0,i

.

Definition 2.6 (Affine Coxeter group). An affine Coxeter group is the extension of a Coxeter
group by an affine reflection sa f f

α0 whose geometric action is given by

sa f f
α0

v = α0 + v − 2(α0|v)

(α0|α0)
α0, (4)

and is generated by the extended set of generators including the new affine reflection associated
with the affine root α0. This operation is not distance-preserving, and hence the group is no longer
compact. The affine Cartan matrix of the affine Coxeter group is the Cartan matrix associated with
the extended set of roots. The non-distance preserving nature of the affine reflection entails that the
affine Cartan matrix is degenerate (positive semi-definite), and thus fulfils det A = 0. If the group
contains both sa f f

α0 and sα0 , it also includes the translation generator T v = v + α0 = sa f f
α0 sα0v;

otherwise, sa f f
α0 sa f f

−α0
acts as a translation of twice the length.

It is in fact possible to construct the affine Coxeter group directly from an extension of the
Cartan matrix.

Definition 2.7 (Kac-Moody-type affine extension). A Kac-Moody-type affine extension Aaff of a
Cartan matrix is an extension of the Cartan matrix A of a Coxeter group by further rows and columns
such that the following conditions hold:

• The diagonal entries are normalised as Aa f f
ii = 2 according to the definition in Eq. (2).

• The additional matrix entries of Aaff take values in the same integer ring as the entries of A.
This includes potentially integer rings of extended number fields as in the case of H3.

• For off-diagonal entries we have Aa f f
i j ≤ 0; moreover, Aa f f

i j = 0 ⇔ Aa f f
j i = 0.

• The affine extended matrix fulfils the determinant constraint det Aa f f = 0.

In our previous paper1 we have laid out a rationale for Kac-Moody-type extensions of Car-
tan matrices, as well as consistency conditions that lead to a somewhat improved algorithm for
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α0 α1 α2 α3 α4 α5 α6 α7

α8

FIG. 4. Dynkin diagram for the standard affine extension of E8, here denoted by E=
8 .

numerically searching for such matrices. This was necessitated by our search for novel asymmetric
affine extensions of H2, H3, and H4. Here, our algorithm simply recovers the affine extensions of E8,
D6, and A4 that are well known in the literature for affine extensions by a single node. However, based
on Definition 2.7, we will also consider extending by two nodes in the context of the projection.

We begin with the case of E8, which is the most interesting from a high energy physics point
of view, and the largest exceptional Coxeter group. Various notations are used in the literature to
denote its unique (standard) affine extension, but here we shall use E=

8 , where the equality sign is
meant to signify that the extra root has the same length as the other roots, i.e., the affine extension is
simply-laced (see Fig. 4 for our notation). The affine root α0 that gives rise to this affine extension
can be expressed in terms of the root vectors of E8 as

−α0 = 2α1 + 3α2 + 4α3 + 5α4 + 6α5 + 4α6 + 2α7 + 3α8, (5)

which will prove important in the projection context later.
Likewise, D6 has a simply-laced affine extension, here denoted D=

6 and depicted in Fig. 5.
Again, the affine root can be expressed in terms of the other roots as

−α0 = α1 + 2α2 + 2α3 + 2α4 + α5 + α6. (6)

However, D6 is unusual in that it also has two affine extensions with a different root length, one
which we shall denote by D<

6 , because the new root is shorter than the others. In this case, the affine
root is given by

−α0 = α1 + α2 + α3 + α4 + 1

2
α5 + 1

2
α6, (7)

There is, moreover, one with a longer root, which we denote by D>
6 (both are shown in Fig. 6). Its

affine root is similarly expressible in terms of the other roots as

−α0 = 2α1 + 2α2 + 2α3 + 2α4 + α5 + α6. (8)

A4 also has a unique standard affine extension, which is simply-laced and hence will be denoted
by A=

4 (see Fig. 7). The affine root is given by

−α0 = α1 + α2 + α3 + α4. (9)

α0

α1 α2 α3 α4 α5

α6

A (D=
6 ) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

2 0 −1 0 0 0 0
0 2 −1 0 0 0 0
−1−1 2 −1 0 0 0
0 0 −1 2 −1 0 0
0 0 0 −1 2 −1−1
0 0 0 0 −1 2 0
0 0 0 0 −1 0 2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

FIG. 5. Dynkin diagram and Cartan matrix for the simply-laced standard affine extension of D6 (here denoted by D=
6 ).
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α0 α1 α2 α3 α4 α5

α6

A (D<
6 ) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

2 −2 0 0 0 0 0
−1 2 −1 0 0 0 0
0 −1 2 −1 0 0 0
0 0 −1 2 −1 0 0
0 0 0 −1 2 −1−1
0 0 0 0 −1 2 0
0 0 0 0 −1 0 2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

α0 α1 α2 α3 α4 α5

α6

A (D>
6 ) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

2 −1 0 0 0 0 0
−2 2 −1 0 0 0 0
0 −1 2 −1 0 0 0
0 0 −1 2 −1 0 0
0 0 0 −1 2 −1−1
0 0 0 0 −1 2 0
0 0 0 0 −1 0 2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

FIG. 6. Dynkin diagrams and Cartan matrices for the standard affine extensions of D6 with a short affine root (here denoted
D<

6 ), and that with a long affine root, here denoted D>
6 . The arrow conventionally points to the shorter root.

III. AFFINE EXTENSIONS OF NON-CRYSTALLOGRAPHIC ROOT SYSTEMS INDUCED
BY PROJECTION

In this section, we present a novel construction of affine extensions of non-crystallographic
Coxeter groups, as illustrated in Fig. 1 and indicated by the dashed arrow there. We induce affine
extensions in the lower-dimensional, non-crystallographic case by applying the projection formalism
from Sec. II B to the five affine extensions from Figs. 4–7 in Sec. II C. We show that the induced
extensions are invariant under the Dynkin diagram automorphisms of the crystallographic groups
and their affine extensions (Sec. III B), and that in a wider class of further extensions (simply-laced,
double extensions with a non-trivial projection kernel), none are compatible with the projection
formalism (Sec. III C).

A. Projecting the affine root

In Sec. II, we have introduced the projection formalism, and we have presented the standard
affine extensions of the relevant crystallographic groups. In particular, in each case we have given
expressions for the affine roots in terms of the root vectors of the unextended group. By the linearity
of the projection, one can compute the projection of the affine root. In analogy to the fact that the
other roots project to generators of the groups Hi (i = 2, 3, 4), we treat the projected affine root as
an additional, affine, root for the projected group Hi, thereby inducing an affine extension of Hi.

Definition 3.1 (Induced affine root). For a pair of Coxeter groups (GU, GD) related via projection,
i.e., a non-degenerate mapping π of the root system of GU onto the root system of GD, we call the
projection of the affine root of an affine extension of GU the induced (affine) root of GD. The matrix
defined as in Eq. (2) by the induced affine root and the simple roots of GD define the induced (affine)
Cartan matrix.

α0

α1 α2 α3 α4

A (A=
4 ) =

⎛
⎜⎜⎜⎜⎝

2 −1 0 0 −1
−1 2 −1 0 0
0 −1 2 −1 0
0 0 −1 2 −1
−1 0 0 −1 2

⎞
⎟⎟⎟⎟⎠

FIG. 7. Dynkin diagram and Cartan matrix for the simply-laced standard affine extension of A4, here denoted A=
4 .
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Theorem 3.2 (Induced extensions). The five affine extensions A=
4 , D>

6 , D=
6 , D<

6 , and E=
8 of

A4, D6, and E8 induce affine extensions of H2, H3, and H4 via the projections linking the respective
root systems. For π‖, these five induced extensions shall be denoted by H=

2 , H>
3 , H=

3 , H<
3 , and

H=
4 . Projection with π⊥ into the other invariant subspace yields affine roots that are the Galois

conjugates of those induced by π‖, and the five corresponding induced affine extensions shall be
denoted by H̄=

2 , H̄>
3 , H̄=

3 , H̄<
3 , and H̄=

4 .

Proof. We consider the five cases in turn.

1. We begin with the case of E8. We have shown above that the root vectors can be projected
onto the H4 root vectors ai by the projection π‖ shown in Fig. 2. The projection in Eq. (3) of
the affine root in Eq. (5) is therefore

−a0 = π‖(−α0) = 2(1 + τ )a1 + (3 + 4τ )a2 + 2(2 + 3τ )a3 + (3 + 5τ )a4. (10)

Using the inner products from the H4 Cartan matrix (a1|a2) = − 1
2 , (a2|a3) = − 1

2 , and (a3|a4) =
− τ

2 , the inner products of the additional root with the roots of H4 are (a0|a1) = − 1
2 and (a0|a2)

= (a0|a3) = (a0|a4) = 0. Thus, the Cartan matrix corresponding to the simple roots of H4

extended by the projected affine root of E=
8 is found to be

A
(
H=

4

)
:=

⎛
⎜⎜⎜⎜⎝

2 τ − 2 0 0 0
−1 2 −1 0 0
0 −1 2 −1 0
0 0 −1 2 −τ

0 0 0 −τ 2

⎞
⎟⎟⎟⎟⎠. (11)

This is one of the Kac-Moody-type affine extensions of H4 that we derived in our previous
paper,1 in the context of non-crystallographic Coxeter groups. It was listed there as the first
non-trivial example of affine extensions of this type and corresponds to an affine extension of
length τ along the highest root αH of H4. We will briefly review the results from Ref. 1 in Sec.
IV A, which we will use to classify all induced affine extensions given in Sec. IV B.

Projecting with π⊥ into the other H4-invariant subspace spanned by the basis of simple
roots āi yields the Galois conjugate of the affine root in Eq. (10)

−ā0 = π⊥(−α0) = 2(1 + σ )ā1 + (3 + 4σ )ā2 + 2(2 + 3σ )ā3 + (3 + 5σ )ā4. (12)

Using the inner products (ā1|ā2) = − 1
2 , (ā2|ā3) = − 1

2 , and (ā3|ā4) = − σ
2 , the inner products

of the affine root with the H4 roots are (ā0|ā1) = − 1
2 and (ā0|ā2) = (ā0|ā3) = (ā0|ā4) = 0, and

the resulting Cartan matrix A
(
H̄=

4

)
is thus the Galois conjugate of that given in Eq. (11) from

the other invariant subspace. Since both sets of roots ai and āi generate the same abstract group
H4, one has a pair of Galois conjugate induced affine roots α0 and ᾱ0 parallel to the highest
root αH with Galois conjugate lengths τ and σ , respectively. Note that

(
A

(
H=

4

))T
would also

generate the same translation of length σ along αH, and was contained in the results of Ref. 1.
We will consider whether

(
A

(
H=

4

))T
could also arise from projection described in Sec. V.

2. Using the same procedure as above – i.e., employing linearity to project the affine root of D=
6

and using it as an affine extension of H3 – generates the analogue of the previous case in three
dimensions

A
(
H=

3

)
:=

⎛
⎜⎜⎝

2 0 τ − 2 0
0 2 −1 0

−1 −1 2 −τ

0 0 −τ 2

⎞
⎟⎟⎠. (13)

This is also the first non-trivial example of asymmetric affine extensions of H3 considered in
our previous paper,1 corresponding to an affine extension of length τ along the highest root
αH of H3 (i.e., along a 2-fold axis of icosahedral symmetry). One choice of simple roots for
H3 is α1 = (0, 1, 0), α2 = − 1

2 (−σ, 1, τ ), and α3 = (0, 0, 1), for which αH = (1, 0, 0).
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Projection into the other invariant subspace likewise generates the Galois conjugate affine
root ᾱ0 and the Galois conjugate Cartan matrix A

(
H̄=

3

)
, thereby giving rise to a translation of

length σ along αH.
3. When projecting D<

6 we find

A
(
H<

3

)
:=

⎛
⎜⎜⎝

2 4
5 (τ − 3) 0 0

−1 2 −1 0
0 −1 2 −τ

0 0 −τ 2

⎞
⎟⎟⎠. (14)

In Ref. 1, we have considered a family of matrices of this form analytically and found a
similar classification as in the other cases, according to a certain Fibonacci scaling relation (cf.
Sec. IV A). Note, that the projection construction here naturally leads to Q[τ ]-valued entries
of the Cartan matrix, suggesting to analyse this more general class of Cartan matrices over the
extended number field Q[τ ] = {a + τb|a, b ∈ Q}. Cartan matrices of this form correspond to
affine extensions along a 5-fold axis of icosahedral symmetry T5, where T5 = (τ , − 1, 0) in
our chosen basis of simple roots, and the normalisation is chosen for later convenience. The
affine root of H<

3 is then given by α0 = 1
2 T5.

Projection into the other invariant subspace again yields the Galois conjugate ᾱ0 of α0,
corresponding to ᾱ0 = − 1

2σ T5 for our normalisation of T5.
4. A similar result is obtained when π‖-projecting D>

6 to H>
3

A
(
H>

3

)
:=

⎛
⎜⎜⎝

2 2
5 (τ − 3) 0 0

−2 2 −1 0
0 −1 2 −τ

0 0 −τ 2

⎞
⎟⎟⎠. (15)

The respective projections again yield the Galois conjugate pair α0 = T5 and ᾱ0 = −σ T5.
We note that even though the affine extensions D<

6 and D>
6 are related by transposition, the

correspondence between the two induced affine extensions H<
3 and H>

3 (and H̄<
3 and H̄>

3 )
is not so straightforward, i.e., the operations of transposition and projection do not commute,
schematically [T, P] �= 0. However, the transposed versions of these induced lower-dimensional
Cartan matrices, for instance, A

(
H>

3

)T
, were among the affine extensions derived in Ref. 1.

One might therefore wonder which higher-dimensional Cartan matrices could give rise to these
transposed versions after projection. We will revisit these issues later.

5. The affine root of A4 is given by Eq. (9) and upon projection with π‖ yields an affine extension
of H2 analogous to the other simply-laced cases considered above

A
(
H=

2

)
:=

⎛
⎝ 2 τ − 2 τ − 2

−1 2 −τ

−1 −τ 2

⎞
⎠. (16)

This likewise corresponds to an affine root of length τ along αH, the highest root of H2 given
by αH = τ (α1 + α2), which was also found in Ref. 1, where we also visualised its action
on a pentagon. Projection with π⊥ yields an induced extension H̄=

2 with the Galois-conjugate
length − σ along αH.

This completes the proof. �
As is well known,19 the affine extensions of crystallographic Coxeter groups result in a (periodic)

tessellation of the fundamental domain of the unextended group in terms of copies of the fundamental
domain of the affine group. In contrast, affine extended non-crystallographic groups inherit the full
fundamental domain of the unextended group. The fundamental domain of these extensions, however,
still has the interesting property of being tessellated, but in this case the tiling is aperiodic, and hence
the fundamental domain again has a non-trivial mathematical structure.

In order to further explore this interesting relation with quasilattices, we begin by introducing
some terminology.20 We recall that a generic affine non-crystallographic Coxeter group H+

i is
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TABLE I. Cardinalities of extended root systems/quasicrystal fragments depending on translation length. Here, we list
cardinalities |Pi(1)| of the point sets achieved by extending the Hi root systems by an affine reflection along the highest root
α0 = − λαH for various values of λ. λ = 1 corresponds to the simply-laced affine extension Ha f f

i that was considered in
Ref. 20. The induced extensions H=

i and H̄=
i considered here correspond to λ = τ and λ = − σ , respectively, and yield the

same cardinality. (H=
i )T is also an affine extension corresponding to λ = − σ , and is contained in the solutions found in

Ref. 1. We will discuss how this could be lifted to the higher-dimensional case in Sec. V. We note that all three translations
in each case are distinguished, i.e., they give rise to less than maximal cardinality.

λ H2 H3 H4

0 10 30 120
σ 40 552 5280
1 36 361 3721
τ 40 552 5280

generated by the Coxeter generators sj from Sec. II A together with the translation T that we
identified in Definition 2.6.

Definition 3.3 (Quasicrystal fragment). Let � denote the root polytope of the non-
crystallographic Coxeter group Hi, and let W m(s j ; T ) denote the set of all words w(s j ; T ) in
the alphabet formed from the letters sj and T in which T appears precisely m times. The set of points

Qi (n) := {W m(s j ; T )�|m ≤ n} (17)

is called an H+
i -induced quasicrystal fragment; n is the cut-off-parameter. The cardinality of such

a quasicrystal fragment will be denoted by |Qi(n)|, and a generic translation yields the maximal
cardinality |Qmax

i (n)|. We will say that a quasicrystal fragment with less than maximal cardinality
has coinciding/degenerate points/vertices and we call the corresponding translation distinguished.
This degeneracy implies non-trivial relations w1(s j ; T )v = w2(s j ; T )v (for v ∈ �) amongst the
(words in the) generators. The set of points Pi (n) := {W m(s j ; T )R|m = n} will denote the shell of
the quasicrystal fragment determined by the words that contain T precisely n times.

The affine roots relevant here are all parallel to the respective highest root αH but have various
different lengths λ, which we write as α0 = − λαH. Therefore, in Table I we present the cardi-
nalities |Pi(1)| of point arrays derived from the root systems of H2, H3, and H4 (the decagon, the
icosidodecahedron, and the 600-cell, respectively) for translation lengths λ = {0, σ , 1, τ}. λ = 0
corresponds to the unextended group, and the induced affine extensions H=

i from Eqs (16), (13),
and (11) considered here correspond to λ = τ . The simply-laced extensions H a f f

i considered in
Ref. 20 have λ = 1. The transposes of A(H=

i ) are affine extensions with length λ = − σ that were
also amongst those found in Ref. 1. They are also equivalent to the induced affine extensions from
the other invariant subspace, H̄=

i , as the compact part of the group is the same and they give rise
to the same translations λ = − σ . This forms a subset of the extensions found in Ref. 1 that is
distinguished via the projection and also through its symmetric place in the Fibonacci classification
in Ref. 1, which we will discuss further in Secs. IV A and IV B. All three translations belonging to
the special three cases of H a f f

i and the induced H=
i and H̄=

i are found to be distinguished. We also
note that the Galois-conjugate translations yield the same cardinalities, i.e., the rows corresponding
to σ and τ have identical entries. Investigating the corresponding cases for H<

3 , one finds that the
Galois conjugate affine roots α0 = 1

2 T5 and ᾱ0 = − 1
2σ T5 yield the same cardinality of 212. For H>

3 ,
the conjugate pair α0 = T5 and ᾱ0 = −σ T5 has the same cardinality 330. Note that these are all
distinguished translations. The cardinalities are lower than for H a f f

3 , H=
3 , and H̄=

3 where αH = T2

= (1, 0, 0), since there are thirty 2-fold but only twelve 5-fold axes of icosahedral symmetry.
Twarock and Patera20 considered the simply-laced affine extensions H a f f

i of H2, H3, and H4

in the context of quasicrystals in two, three, and four dimensions. As mentioned above, the affine
reflections of those extensions yield translations T of length 1 along the highest root αH. Such
H a f f

2 -induced quasicrystal fragments Q2(1), Q2(2), and Q2(3) are depicted in panels (a)–(c) in
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(a) |P2(1)| = 36 (b) | P2(2)| = 90 (c) | P2(3)| = 185

(d) |P2(1)| = 40 (e) |P 2(2)| = 101 (f) | P2(3)| = 206

(g) |P2(1)| = 40 (h) |P 2(2)| = 101 (i) | P2(3)| = 206

FIG. 8. Quasicrystal fragments for various affine extensions of H2 (the black dots are the decagonal root system): Vertically,
the affine root is of length 1 and parallel to the highest root for the first row of panels (a)–(c), which are the Ha f f

2 -quasicrystal
fragments considered in Ref. 20. The second row of panels (d)–(f) is the quasicrystal fragments obtained for the extension
H=

2 induced from A=
4 considered here, where the translation length is τ . The third row of panels (g)–(i) is the quasicrystal

fragments obtained for the extension H̄=
2 with translation length − σ , or alternatively one may think of it in terms of(

A
(
H=

2

))T
. Horizontally, the panels show the point sets Q2(1), Q2(2), and Q2(3) derived from the root system by letting

the translation operator T act once (red dots), twice (blue dots), and three times (green dots). Thus, panels (a), (d), and (g)
correspond to the point sets with cardinalities 36 and 40 listed in Table I. The cardinalities of the shells |P2(n)| are also given.
We note that Galois conjugate translations yield the same cardinalities.

Fig. 8. Quasicrystals are often induced via a cut-and-project method from a projection of the root
lattice, much as in the projection framework considered here. We thus consider the implications of
our induced affine extensions for the quasicrystal setting. Our new projection construction yields
different affine extensions from the above H a f f

i s, with translation lengths τ and − σ along the
highest root αH. These are new cases with asymmetric Cartan matrices and would therefore not
arise in the symmetric setting. However, following the same construction as in Ref. 20 but with the
different translation lengths τ and − σ results in a similar subset of a vertex set of a quasicrystal.
For H=

2 , the resulting quasicrystal fragments Q2(1), Q2(2), and Q2(3) are shown in panels (d)–(f) in
Fig. 8, and the corresponding fragments for H̄=

2 are shown in panels (g)–(i). We furthermore give
the cardinalities |P2(1)|, |P2(2)|, and |P2(3)| in each case. Here, panel (a) corresponds to the point set
of cardinality 36 in Table I, and panels (d) and (g) correspond to the entries with cardinality 40. We
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again note that Galois conjugate affine roots yield the same cardinalities, as in the higher-dimensional
cases before. Our novel construction thus leads to different types of quasicrystalline point arrays.
We will later consider whether the extensions from Ref. 20 could similarly be induced from a
higher-dimensional setting. We will see that they would correspond to Cartan matrices with positive
and fractional (cf. H<

3 and H>
3 in Eqs. (14) and (15)) off-diagonal entries (Sec. V), making the case

for a suitable generalisation of the standard approach by analysing generalised Cartan matrices over
extended number fields. In the Kac-Moody algebra context, the generalized Cartan matrix entries are
integers, as they appear as powers of the adjoint action in the Chevalley-Serre relations. However,
since we are working with a non-crystallographic root system for which no Kac-Moody algebras
exist, we relax this condition here.

The above projection procedure has thus yielded asymmetric induced Cartan matrices. In the
context of Kac-Moody algebras and Coxeter groups, it is often of interest to know if an asymmetric
(generalised) Cartan matrix A is symmetrisable:

Definition 3.4 (Symmetrisability). An asymmetric Cartan matrix A is symmetrisable if there
exists a diagonal matrix D with positive integer entries and a symmetric matrix S such that A = DS.

We have investigated the symmetrisability of the induced non-symmetric Cartan matrices.1

They are indeed symmetrisable, but the entries of the resulting symmetric matrices are no longer
from Z[τ ] (see also the discussion in Sec. V). Given that the Cartan matrix is defined in terms of
the geometry of the roots as Aij = 2(αi|αj)/(αi|αi), i.e., is given in terms of the angles between root
vectors and their length, such matrices would imply a geometry for the root system that is no longer
compatible with an (aperiodic) quasilattice, and the corresponding affine groups would therefore
lose their distinctive structure. Indeed, it is that relation with quasilattices that makes these affine
extended groups mathematically interesting, and distinguishes them from the free group obtained
by an extension via a random translation. Therefore, we will not use these symmetric matrices in
our context.

B. Invariance of the projections under Dynkin diagram automorphisms

Before we classify the induced affine extensions, we show in this section that no additional
induced extensions arise from the Dynkin diagram automorphisms of the simple and affine Lie
algebras considered above.

Lemma 3.5 (Invariance of the induced extensions). The induced affine extensions H=
2 , H>

3 , H=
3 ,

H<
3 , H̄=

2 , H̄>
3 , H̄=

3 , and H̄<
3 are invariant under the Dynkin diagram automorphisms of A4, D6, A=

4 ,
D>

6 , D=
6 , and D<

6 .

Proof. We consider the four cases in turn.

1. The Dynkin diagram of D6 has a Z2-automorphism that acts by permuting the roots α5 and
α6 (denoted as 5 ↔ 6 in the following). The projection displayed in Fig. 3, however, is not
symmetric in α5 and α6. Therefore, the choice of projection could potentially alter the induced
affine extension. However, as can be seen from Eqs. (6)–(8), all three possible affine roots are
in fact invariant under the exchange of a5 and a6, so that the result of the projection is not
affected.

2. Similarly, the simply-laced extension D=
6 has an additional D4 automorphism symmetry (here

Dn denotes the dihedral group of order n) that allows one to swap the roots labelled by
5 ↔ 6 or 0 ↔ 1 separately, as well as an overall left-right symmetry of the diagram obtained
by swapping the pairs of terminal roots (0, 1) ↔ (5, 6) together with 2 ↔ 4, 3 ↔ 3.2 This
symmetry is made manifest in the diagram shown in Fig. 9. Thus, the four terminal roots are
equivalent, and one could define four different projections, depending on which terminal root
one considered as the affine root. Once one decides on the affine root, the rest of the diagram
is fixed by the projection. However, the formula for the affine root is symmetric in (0, 1, 5, 6)
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α0

α1

α2 α3 α4

α5

α6

FIG. 9. A more symmetric version of the D=
6 Dynkin diagram that makes the D4-automorphism symmetry manifest.

as can be seen from Eq. (6). Thus, the induced affine extension is again independent of which
projection one chooses.

3. Likewise, the A4 diagram has a Z2-symmetry swapping left and right, that is broken by the
projection. However, the affine root in Eq. (9) is again invariant, so that the induced affine
extension is not affected.

4. The extended diagram A=
4 has an enhanced D5-automorphism symmetry,2 under which the

affine root can be seen as invariant by rewriting Eq. (9) as

α0 + α1 + α2 + α3 + α4 = 0. (18)

Thus, in this case, one could choose any of the roots of the extended diagram as the affine root,
and the others are then fixed by the projection.

The invariance is at the level of the affine roots before projection, so it does not matter into
which invariant subspace one projects. Thus, the Dynkin diagram automorphisms do not affect the
induced affine extensions. �

C. Extending by two nodes

Until now, we have considered extending a diagram by a single root, and we have projected this
single affine root onto the single induced affine root. However, as is shown in Fig. 2, other roots
are projected in pairs, e.g., α1 and α7 project onto a1 and τa1, which results in the single H4-root
a1. In analogy, we now consider affine extensions of the diagrams by two nodes such that the two
additional roots project as a pair onto a single affine root. This can be achieved by further extending
the above affine extensions by another node, or by extending the initial diagrams by two nodes at
once.

We first check whether further extending the above groups A=
4 , D>

6 , D=
6 , D<

6 , and E=
8 by another

node leads to new induced affine extensions. We show that in such a case, the only possibilities are
in fact the above diagrams with a disconnected node. Thus, this type of extension is trivial, and the
additional affine root will not be a superposition of the other roots:

Lemma 3.6. The affine extensions of A=
4 , D>

6 , D=
6 , D<

6 , and E=
8 by a further node are discon-

nected.

Proof. The determinants of general Kac-Moody-type affine extensions of A=
4 , D>

6 , D=
6 , D<

6 ,
and E=

8 are quadratic in the entries in the new row and column with negative coefficients. Since the
entries are non-positive, the determinant is therefore also non-positive. Since the zero entries in a
Cartan matrix are symmetric, the determinant vanishes if and only if all the entries in the new row
and column vanish. Thus, the extended diagram has a disconnected node. �
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FIG. 10. Double extensions A++
4 of A4.

The other possibility is to extend by two nodes at once, and to demand that the Cartan matrix of
the double-extension be affine, i.e., that it has zero determinant, but that none of the principal minors
has this property.

Definition 3.7 (Affine double extension). An affine double extension is a Kac-Moody-type exten-
sion of a diagram by two nodes.

We analyse here the simply-laced double extensions with a trivial projection kernel, which give
292 such matrices for E8, 27 for D6, and 6 for A4. Note, however, that the number of different Dynkin
diagrams is actually lower. For instance, there are only three diagrams that occur for A++

4 , which
are displayed in Fig. 10. The first corresponds to a single extension of the D-series, cf. D=

6 above.
The second is a single extension of A5, and the third a diagram with a trivial disconnected node.
The diagrams for D6 and E8 have a richer mathematical structure. However, it shall suffice here
to consider these matrices from the projection point of view—a more detailed analysis of double
extensions will be relegated to future work.

Lemma 3.8. There are no simply-laced affine double extensions of A4, D6, and E8 with a trivial
projection kernel.

Proof. In all the cases mentioned above (292 for E8, 27 for D6, and 6 for A4), it is not possible
to express both additional roots simultaneously in terms of linear combinations of the roots of the
unextended group, cf. the diagrams for A4 in Fig. 10. Hence, the Cartan matrices can be obtained
only in terms of higher-dimensional vectors, i.e., the kernel is non-trivial. �

Corollary 3.9. simply-laced affine double extensions of A4, D6, and E8 with a trivial projection
kernel do not induce any further affine extensions of the non-crystallographic Coxeter groups.

Earlier, we have demonstrated that the induced affine extensions do not depend on the non-trivial
automorphism properties of the simple and extended diagrams. Therefore, in summary, we conclude
that the ten cases considered above are actually the only cases that arise in the context of trivial
projection kernels.

IV. CLASSIFICATION OF INDUCED AFFINE EXTENSIONS

The affine extensions induced via the projection in Sec. III (right arrow in Fig. 1) are subsets of
the infinite families developed purely in a non-crystallographic framework in Ref. 1 (bottom arrow
in Fig. 1). Therefore, we first summarise the relevant results from this paper in Subsection IV A,
and then analyse in Subsection IV B how the induced affine extensions relate to our classification in
Refs. 1.

A. Construction of affine extensions in the non-crystallographic case

In the case of non-crystallographic Coxeter groups, which have Cartan matrices given in terms
of the extended integer ring Z[τ ], the earlier definition of affine extensions from Sec. II C via
introducing affine hyperplanes Hα0,i as solutions to the equations (x|α0) = i , where x ∈ E , α0 ∈ �,
and i ∈ Z, is not possible because the crystallographic restriction15 implies that the planes cannot
be stacked periodically; however, i ∈ Z[τ ] is too general because Z[τ ] is dense in R.
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5
2

5
2

5
A Haff

2 =

⎛
⎝

2 τ ′ τ ′

τ ′ 2 −τ
τ ′−τ 2

⎞
⎠

5

5
2 A Haff

3 =

⎛
⎜⎜⎝

2 0 τ ′ 0
0 2 −1 0
τ ′−1 2 −τ
0 0 −τ 2

⎞
⎟⎟⎠

5
2 5

A Haff
4 =

⎛
⎜⎜⎜⎜⎝

2 τ ′ 0 0 0
τ ′ 2 −1 0 0
0−1 2 −1 0
0 0 −1 2 −τ
0 0 0 −τ 2

⎞
⎟⎟⎟⎟⎠

FIG. 11. Coxeter-Dynkin diagrams and Cartan matrices for (from top to bottom) Ha f f
2 , Ha f f

3 , and Ha f f
4 , the unique

symmetric affine extensions given in Ref. 20. Note that Coxeter angles of 2π /5 lead to labels 5
2 (or, τ ′ in the notation of

Ref. 20). In Ref. 1, we have found infinite families of generalisations of these examples, which are obtained from the symmetric
cases via scalings with τ and thus follow a Fibonacci recursion relation. We have also found more general examples, which
likewise display this scaling property.

In contrast, the definition of affine extensions of non-crystallographic Coxeter groups via the
Kac-Moody-type extensions of their Cartan matrices in Definition 2.7 still works. For instance,
affine extensions along a 2-fold axis of icosahedral symmetry T2 = (1, 0, 0) (i.e., along the simple
roots) have the following general form1

A =

⎛
⎜⎜⎝

2 0 x 0
0 2 −1 0
y −1 2 −τ

0 0 −τ 2

⎞
⎟⎟⎠, (19)

since T2 is orthogonal to two of the simple roots, and thus there is only one pair of off-diagonal
entries that is non-zero. This family of matrices contains H=

3 in Eq. (13) as a special case. For this
type of matrix to be affine, the determinant constraint det A = xy − σ 2 = 0 determines the product
A13A31 = xy of the non-zero entries x and y as xy = 2 − τ = σ 2. From the definition of the Cartan
matrix, the products of the off-diagonal entries give the angle of the affine root with the simple roots,
such that xy gives the only non-trivial angle of the affine root with the simple roots. Corresponding
extensions of H2 and H4 satisfy the same constraint. This determinant constraint therefore includes
the symmetric affine extensions H a f f

i (i = 2, 3, 4) found in Ref. 20, which satisfy x = y = σ (τ ′

in their notation) and are displayed in Fig. 11. Writing x = (a + τb) and y = (c + τd) with
a, b, c, d ∈ Z, and denoting (x, y) by the quadruplet (a, b; c, d), the H a f f

i correspond to the simplest
case (a, b; c, d) = (1, − 1; 1, − 1). The units in Z[τ ] are the powers of τ , so scaling x → τ − kx and
y → τ ky (k ∈ Z) leaves the product xy invariant, and thus one can generate a series of solutions to
the determinant constraint from any particular reference solution. In terms of quadruplets (a, b; c,
d), this scaling of the series of solutions by (τ − k, τ k) amounts to (a, b; c, d) → (b − a, a; d, c + d),
which is a Fibonacci defining relation. The case x = y = σ is distinguished by its symmetry, and we
choose to generate the whole Fibonacci series of solutions from this particular reference solution.
Thus, under the τ -rescaling (τ − 1, τ ), H=

3 is the “first” asymmetric example with (x, y) = ( − σ 2,
− 1) = (τ − 2, − 1) corresponding to the quadruplet ( − 2, 1; − 1, 0). Since the powers of τ are
the only units in Z[τ ], these solutions are in fact the only solutions to the determinant constraint.
The length of a root is given by

√
x/y, so that τ -rescalings do not change the angle but generate

affine roots of different lengths. There is thus a countably infinite set (k ∈ Z) of affine extensions
of Hi with affine reflection hyperplanes at distances τ k/2 from the origin. For any given k, there is
an infinite stack of parallel planes with separation τ k/2, including one containing the origin, which
corresponds to one of the reflections in the unextended group.
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By choosing an ansatz similar to Eq. (19), one can also obtain translations along 3- and 5-fold
axes of icosahedral symmetry, T3 = (τ , 0, σ ) and T5 = (τ , − 1, 0). These cases correspond to one
pair of non-zero entries (x, y) in the Cartan matrix in the fourth row and column, and in the second
row and column, respectively, since these symmetry axes are again orthogonal to two of the simple

roots. From now on, we will use the notation Aa f f =
(

2 vT

w A

)
to write affine extensions succinctly

in terms of the vectors v and w in the additional row and column. Thus, affine extensions along a
3-fold axis correspond to v = (0, 0, x)T and w = (0, 0, y)T , while affine extensions along a 5-fold
axis correspond to v = (x, 0, 0)T and w = (y, 0, 0)T . These affine extensions lead to determinant
constraints that do not have solutions in Z[τ ], e.g., xy = 4

3σ 2 for an affine extension along a 3-fold
axis. If one is prepared to relax the conditions on the Cartan matrix entries to Q[τ ] instead of Z[τ ],
one can solve the determinant constraint in Q[τ ], and generate similar families of affine extensions
via τ -rescalings from a particular reference solution. We introduce a pair of fractions γ, δ ∈ Q and
write the entries of the Cartan matrix as Z[τ ]-integers multiplied by γ , δ as x = γ (a + τb) and y
= δ(c + τd). The solution is therefore now given by a quadruplet (a, b; c, d) plus multipliers (γ ,
δ). The latter need to make up the fraction in the determinant constraint, e.g., γ δ = 4

3 for an affine
extension along a 3-fold axis. For instance, (1, − 1; 1, − 1) and (1, 4

3 ) correspond to the solution
(σ, 4

3σ ) of length
√

x/y = 1
2

√
3 = 1

2 |T3|.
For extensions along the 5-fold axis, the determinant constraint is proportional to (3 − τ ),

which cannot be solved symmetrically (x = y) in Z[τ ]; one solution is, for instance, (1, − 2; 1, − 1).
This implies that swapping x and y produces a different solution to the determinant constraint. Since
the length of the affine root is given by

√
x/y, this generates a solution of different length. These two

solutions are independent and generate two Fibonacci families of affine roots by τ -multiplication.
For the previous determinant constraints with symmetric solutions, transposition and τ -rescalings
are equivalent, such that only one Fibonacci family arises.

In summary, one can thus label an affine extension in the following way: A solution is given
in terms of an integer quadruplet (a, b; c, d) that is related to a particular reference solution via
rescaling with a power k of τ , together with a multiplier pair (γ , δ).

B. Identification of the induced affine extensions in the Fibonacci classification

We now identify the induced affine extensions derived in Sec. III within the Fibonacci families
from Ref. 1 discussed in Sec. IV A.

The affine extensions H=
i induced from the three simply-laced affine extensions of the crys-

tallographic groups are all related to the H a f f
i s via τ -rescalings. In particular, we have seen that

H=
i corresponds to ( − 2, 1; − 1, 0), which is derived from the symmetric solution (1, − 1; 1, − 1)

corresponding to H a f f
i via rescaling (x, y) as (τ − 1x, τy). Likewise,

(
A(H=

i )
)T

corresponds to (τx,
τ − 1y) and is equivalent to H̄=

i . The induced affine extensions found in this paper are therefore the
“first” asymmetric solutions in the Fibonacci family with the symmetric reference solution H a f f

i
obtained by rescaling with one power of τ . Since for these examples, the determinant constraint xy
= σ 2 is solved in Z[τ ], the multiplier pair (γ , δ) is trivially (1, 1).

The determinant constraint for the other two induced affine extensions of H3 found above,
H<

3 and H>
3 , is xy = 4

5 (3 − τ ), which has no symmetric solution. Thus, two inequivalent series of
solutions are generated by the quadruplets ( − 1, 0; − 3, 1) and ( − 3, 1; − 1, 0) or, equivalently,
from their τ -multiples (1, − 1; 1, − 2) and (1, − 2; 1, − 1). In our notation, the multiplier pair
(γ, δ) = ( 4

5 , 1) and the quadruplet ( − 3, 1; − 1, 0) give H<
3 , and (γ, δ) = ( 2

5 , 2) with ( − 3, 1; − 1,
0) gives H>

3 , such that they both belong to a Fibonacci family found in Ref. 1, represented by (1,
− 2; 1, − 1) and scaled by (τ − 1, τ ).

We summarise the relation of all induced affine extensions to the Fibonacci classification1 in
Table II.

Theorem 4.1 (Classification). The only affine extensions of the non-crystallographic groups
H4, H3, and H2 induced via projection from at most simply-laced double extensions of E8, D6, and

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

129.234.252.66 On: Fri, 24 Jan 2014 13:26:47



093508-18 Dechant, Bœhm, and Twarock J. Math. Phys. 54, 093508 (2013)

TABLE II. Identification of the induced extensions of H2, H3, and H4 within the Fibonacci classification: For x = γ (a +
τb), y = δ(c + τd), theZ[τ ]-quadruplet part (a, b; c, d) of the solution (x, y) to the determinant constraint xy (second column)
is given by scaling a representative reference solution within a Fibonacci family, e.g., one distinguished by its symmetry
(see Sec. IV A) like (1, − 1; 1, − 1), (third column) by a power τ k of τ (fourth column). The rational part of the solution
is contained in the multiplier pair (γ , δ) (fifth column). This contains all the information to construct the row and column
vectors v and w in the extended Cartan matrix for H=

4 , H=
3 , H<

3 , H>
3 , and H=

2 , which are given in the last two columns. The
affine extensions induced by projection into the other invariant subspace H̄=

4 , H̄=
3 , H̄<

3 , H̄>
3 , and H̄=

2 have Cartan matrices
that are Galois conjugate to the above five cases and that follow a similar Fibonacci classification in terms of σ = 1 − τ .
They are essentially equivalent to transposes of the former type since the two sets of simple roots ai and āi generate equivalent
compact groups Hi.

Group xy (a, b; c, d)ref k (γ , δ) vT wT

H=
4 2 − τ (1, − 1; 1, − 1) − 1 (1, 1) (τ − 2, 0, 0, 0) ( − 1, 0, 0, 0)

H=
3 2 − τ (1, − 1; 1, − 1) − 1 (1, 1) (0, τ − 2, 0) (0, − 1, 0)

H<
3

4
5 (3 − τ ) (1, − 2; 1, − 1) − 1 ( 4

5 , 1) ( 4
5 (τ − 3), 0, 0) ( − 1, 0, 0)

H>
3

4
5 (3 − τ ) (1, − 2; 1, − 1) − 1 ( 2

5 , 2) ( 2
5 (τ − 3), 0, 0) ( − 2, 0, 0)

H=
2 2 − τ (1, − 1; 1, − 1) − 1 (1, 1) (τ − 2, τ − 2) ( − 1, − 1)

A4 with a trivial projection kernel are those in Table II, and they are a subset of the Fibonacci
Classification scheme presented in Ref. 1.

Proof. The five known affine extensions of E8, D6, and A4 give the induced extensions listed
in the table. By the Invariance Lemma, the projection is invariant under the (extended) Dynkin
diagram automorphisms. Further extensions by a single node would be disconnected, and the simply-
laced double extensions are incompatible with the projection formalism via Lemmas 3.6 and 3.8
described in Sec. III C. Thus, no more cases arise in this setting. The classification was performed in
Ref. 1. �

V. DISCUSSION

We have shown that via affine extensions of the crystallographic root systems E8, D6, and A4

(upper arrow in Fig. 1) and subsequent projection (dashed arrow), one obtains affine extensions
of the non-crystallographic groups H4, H3, and H2 of the type considered in Ref. 1 (lower arrow).
This provides an alternative construction of affine extensions of this type, and by placing them
into the broader context of the crystallographic group E8, we open up new potential applications
in Lie theory, modular form theory, and high energy physics. The ten induced extensions derived
here are a subset of the extensions in the Fibonacci classification scheme derived in Ref. 1. The
Fibonacci classification contains an infinity of solutions of which the ones derived here are thus a
subset distinguished by the projection. For the simply-laced cases, the induced extensions H=

i and
H̄=

i (since this is equivalent to A(H=
i )T ) can be derived from the symmetric solutions H a f f

i from
Ref. 20 via rescaling with τ and are in that sense the “first” asymmetric members of the corresponding
Fibonacci families of solutions. These distinguished affine extensions could thus have a special rôle
in practical applications, e.g., in quasicrystal theory, virology, and carbon chemistry.

The induced extensions are Z[τ ]-valued in the simply-laced cases, and Q[τ ]-valued for the
other two non-simply-laced cases. This suggests to further generalise the Kac-Moody framework
of Ref. 1 to allow extended number fields in the entries in the extended Cartan matrices of H2, H3,
and H4; this could be Q[τ ], but a milder extension might also suffice. One could therefore argue to
also allow corresponding generalisations in the extended Cartan matrices of E8, D6, and A4, from
which the non-crystallographic cases are obtained via projection. Such a generalisation might lead
to interesting mathematical structures and could open up novel applications in hyperbolic geometry
and rational conformal field theory, where similar fractional values can occur.36, 46, 47 Various other
approaches hint at this same generalisation, which we now explore in turn.

In particular, the projection (left arrow in Fig. 1) is in fact one-to-one, since integer Cartan
matrix entries in the higher-dimensional setting project onto Z[τ ]-integers in half the number of
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dimensions, and the two parts in a Z[τ ]-integer do not mix. This is due to the irrationality of the
projection angle, which projects a lattice in higher dimensions to an aperiodic quasilattice in lower
dimensions, without a null space of the same dimension. Thus, one can invert the projection by
“lifting” the affine roots and thereby Cartan matrices of the non-crystallographic groups considered
in the Fibonacci classification in Ref. 1 to those of the crystallographic groups (i.e., by inverting the
dashed arrow). We now lift (denoted by L) such extended Cartan matrices of H4, H3, and H2 in order
to determine what type of extensions of E8, D6, and A4 could induce them via projection (denoted
by P). Again, we denote generic extensions E+

8 , D+
6 , and A+

4 by their additional row and column
vector in the Cartan matrix as follows:

A
(
E+

8

) =
(

2 vT

w E8

)
, A

(
D+

6

) =
(

2 vT

w D6

)
and A

(
A+

4

) =
(

2 vT

w A4

)
.

We begin by lifting the affine extensions H a f f
i from Ref. 20, which are the symmetric special

cases in the Fibonacci families of solutions. One might have thought intuitively that these H a f f
i

would arise via projection, rather than the H=
i . It is thus interesting to lift the affine roots of the

H a f f
i to the higher-dimensional setting and to see which Cartan matrix they would therefore give

rise to. For example, for H a f f
4 the vectors giving the additional row and column in the Cartan matrix

are given by

L
(

A
(

H a f f
4

))
=

(
2 vT

w E8

)
with va f f

4 = wa f f
4 = (1, 0, 0, 0, 0, 0,−1, 0)T . (20)

Similarly, the vectors corresponding to H a f f
3 and H a f f

2 are given by va f f
3 = wa f f

3 =
(0, 1, 0,−1, 0, 0)T and va f f

2 = wa f f
2 = (1,−1,−1, 1)T , respectively. We note that the lifted versions

of the symmetric extensions H a f f
i are also symmetric. However, the requirement of non-positivity

of the off-diagonal Cartan matrix entries that is usual in the Lie algebra context is not satisfied by
these matrices. This is in agreement with the fact that the only standard affine extensions of E8, D6,
and A4 are the five cases presented in Sec. II C. The lifted versions of H a f f

i could thus motivate
to relax this requirement of non-positivity in order to arrive at an interesting more general class of
Cartan matrices.

Analogously, one can consider lifting the transposes of the Cartan matrices obtained earlier that
are induced from π‖ (cf. Eqs. (11)–(16)), e.g.,

(
A

(
H=

4

))T
. In particular, they are also contained

in the Fibonacci classification of affine extensions in Ref. 1 (see Sec. IV A). They are in fact also
related to the extensions induced by π⊥, since they give rise to equivalent compact parts with the
same translation lengths. For example, lifting the transpose

(
A

(
H=

4

))T
of A

(
H=

4

)
in Eq. (11) gives

the following matrix in 9D

LT P
(

A
(
E=

8

)) = L
((

A
(
H=

4

))T
)

=
(

2 vT

w E8

)
with v=

4 = 1

2
w=

4 = (−1, 0, 0, 0, 0, 0,
1

2
, 0)T ,

(21)
where we have denoted the combination of projecting the affine extension of E8, transposing, and
lifting again, by LTP. We note that there are again positive, but now also fractional entries—neither
occurs in the context of simple Lie theory. We also observe that the consistency conditions (the
lemma in Ref. 1) stipulated in our previous paper are still obeyed. One may find rational entries
surprising, but these actually arise naturally in the context of the affine extensions considered in the
non-crystallographic setting,1 e.g., H<

3 . Perhaps, therefore generalising integer to rational entries
also in the higher-dimensional crystallographic case could lead to interesting new mathematical
structures. The other cases corresponding to D<

6 , D>
6 , D=

6 , and A=
4 are given by v<

3 = 5
12 w<

3 =
(−1, 0, 0, 0, 0, 1

3 )T , v>
3 = 5

3 w>
3 = (−2, 0, 0, 0, 0, 2

3 )T , v=
3 = 1

2 w=
3 = (0,−1, 0, 1

2 , 0, 0)T , and v=
2 =

1
2 w=

2 = (−1, 1
2 , 1

2 ,−1)T , respectively. In an analogous manner, one could proceed to lift all the

solutions in the Fibonacci family rather than just H a f f
i and A

(
H=

i

)T
, but these instructive examples

shall suffice to give some indication towards the generalisations that arise.
As explained in Definition 3.4 in Sec. III A, in the Coxeter group and Lie algebra contexts, one

is often interested in symmetrisable Cartan matrices. For completeness, we therefore present here
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the symmetrised version of LT P
(

A
(
E=

8

))
, which we denote by SLTP, as an example of which type

of matrix arises through symmetrisation

SLT P
(

A
(
E=

8

)) =
(

1 vT

w E8

)
with vT = wT = (−1, 0, 0, 0, 0, 0,

1

2
, 0). (22)

Here we have relaxed the requirement that the symmetrised matrix be integer-valued, since even
before symmetrisation, the Cartan matrix has fractional values. Again, positive and fractional values
arise. This matrix is positive semi-definite, which was expected as that corresponds to the affine case.
Thus, even the criterion of symmetrisability suggests positive entries and extending the number field
for the Cartan matrix entries to Q[τ ] or Z[τ ] + 1

2Z[τ ].
In summary, we have provided a novel, alternative construction of affine extensions of the

type considered in Ref. 1 from the two familiar concepts of affine extensions of crystallographic
groups and projection of root systems. This construction results in a special subset of the point
arrays used in mathematical virology and carbon chemistry that is distinguished via the projection,
which could therefore play a special rôle in applications. It also extends the quasicrystal framework
considered in Ref. 20 to a wider class of quasicrystals. We furthermore made the case for admitting
extended number fields in the Cartan matrix. These extended number fields arise in a variety of
cases, namely in the lower-dimensional picture,1 via projection, via lifting the Fibonacci family of
solutions (including H a f f

i from Ref. 20 and transposes of H=
i ) and via symmetrising. Fractional

entries in Cartan matrices arise in hyperbolic geometry and rational conformal field theory. Our
construction here is thus another example of such fractional entries that could open up a new type
of analysis and enticing possibilities in these fields.
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