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Abstract.
Plerions represent ideal laboratories for the search for neutron stars, the study of their relativistic

winds, and their interaction with their surrounding supernova ejecta and/or the interstellar medium.
As well, they are widely believed to represent efficient engines for particle acceleration up to the
knee of the cosmic ray spectrum (at about 1015 eV). Multi-wavelength observations from the radio
to the highest TeV energies, combined with modelling, have opened a new window to study these
objects, and particularly shed light on their intrinsic properties, diversity, and evolution. High-
resolution X-ray observations are further revealing the structure and sites for shock acceleration.
The missing shells in the majority of these objects remain puzzling, and the presence of plerions
around highly magnetized neutron stars is still questionable. I review the current status and statistics
of observations of plerionic supernova remnants (SNRs), highlighting combined radio and X-ray
observations of a growing class of atypical, non Crab-like,plerionic SNRs in our Galaxy. I will
also briefly describe the latest developments to our high-energy SNRs catalogue recently released
to the community, and finally highlight the key questions to be addressed in this field with future
high-energy missions, including Astro-H in the very near future.
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PLERIONIC SUPERNOVA REMNANTS

Supernova Remnants (SNRs) are generally classified under three categories: Shells,
Filled-centre, or Composites1. Filled-centre SNRs have been referred to in the literature
as ‘plerions’ or Pulsar Wind Nebulae (PWNe), and Composite-type SNRs are classified
as either Plerionic Composites (those powered by plerions)or thermal Composites
(also referred to as ‘Mixed-Morphology’ SNRs). The term ‘plerion’ originates from
the ancient greek word pleres (πληρηs) [36] which means ‘filled’; the centrally filled
morphology arising from the non-thermal emission powered by a neutron star.

Typified by the Crab nebula, plerions are bubbles of relativistic particles inflated by
the pulsar’s relativistic wind. As such they are ‘calorimeters’ for the study of neutron
stars and, in the absence of a pulsar detection, excellent pathfinders for pulsar discovery.
They allow us to probe the interaction between the neutron stars’ relativistic winds and
their surroundings, which consist of the supernova ejecta at the earlier stages of SNR
evolution, the shocked interstellar matter or supernova blast wave as the neutron star
encounters the expanding SNR shell, and the interstellar medium (ISM) after the neutron

1 see Dave Green’s catalogue, http://www.mrao.cam.ac.uk/surveys/snrs/, for a compilation and classifica-
tion of the Galactic Supernova Remnants based on radio studies.
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star has left its hosting SNR. Plerions seed the Galaxy with highly energetic particles
and strong magnetic fields, and are thus considered efficientengines for cosmic ray
acceleration up to TeV energies.

Plerions are observed from radio to the highest energy gamma-rays, and aregenerally
characterized by the following properties: 1) an increase in the brightness towards the
centre, unlike shells which have a limb-brightened morphology; 2) their X-ray size
is generally shorter than their radio and optical size, due to the smaller synchrotron
lifetimes of the higher energy photons; 3) a flat radio spectral index,α = 0–0.3 (Sν∼να )
with a steeper index in the X-ray due to synchrotron and radiation losses and with an
average photon indexΓ = α+1∼2; and 4) they are highly polarized with a preferentially
radial magnetic field whose strength varies from a fewµG – mG.

Modern X-ray telescopes, combined with numerical simulations, have greatly ad-
vanced our understanding of plerions [15, 18, 19, 10]. In particular, they have allowed
us to 1) zoom in on the interaction of the relativistic pulsarwind with its surroundings,
showing evidence of torus and jet-like structures successfully reproduced in simula-
tions, and 2) map the photon index across the plerion, answering questions related to
the energetics of the powering engine and the wind magnetization parameter at the ter-
mination shock. Correlating the X-ray with radio and gamma-ray studies sheds light on
the magnetic field configuration and strength, the conditions of the confining ambient
medium, the age and the distance to the object. While their radio to X-ray emission
arises from synchrotron radiation from relativistic particles injected by the neutron star.
their gamma-ray emission arises, in the leptonic model, from Inverse Compton scatter-
ing (with the seed photons coming from the synchrotron emitting relativistic particles in
the pulsar wind, or from the cosmic microwave background, dust and starlight), and in
the hadronic model from pion decay.

Evolution of Plerions

The evolution of a plerion in an SNR has been studied by several authors, including
[8, 9, 35]. Initially plerions expand in the freely moving ejecta of the SNR. As the SNR
evolves from the free expansion phase into the Sedov-Taylorphase, a reverse shock
develops that runs back into the expanding ejecta and can eventually reach the central
plerion on a timescale of∼10 kyr. This is followed by a crushing and re-expansion
phases of the plerion. This action displaces the plerion from the pulsar, leaving a
‘relic’ nebula which can still be detected in the radio. The ‘crushing’ phase is subject
to Rayleigh-Taylor instabilities that result in the mixingof thermal (ejecta) and non-
thermal (PWN) fluids. Furthermore, asymmetries in the position of the plerion relative to
the pulsar and explosion site arise from asymmetries in the surrounding ISM. Meanwhile
the continuous injection of relativistic particles from the neutron star forms an X-ray
nebula surrounding it and that is offset from the relic nebula. The pulsar’s motion inside
the SNR further causes this wind bubble of freshly injected particles to move with it
through the SNR interior. When its motion becomes supersonic, it forms a bow-shock
nebula.

The best and most studied example for a remnant displaying both a bow-shock and



relic nebulae interacting with an asymmetrical reverse shock is the Vela-X region in the
∼11-kyr old SNR Vela. The complex morphology and properties of the nebula in the
radio [13], X-rays [24, 30, 23] and gamma-rays [2] suggest that a reverse shock has
displaced the original plerion (Vela X) from the pulsar. While Vela X is believed to be
a relic nebula, the Vela pulsar has created a new nebula in itsvicinity that clearly has a
bow-shock morphology [8, 11]. Another example of an offset plerion likely interacting
with the reverse shock is in the Composite-type SNR G327.1−1.1 [34], estimated to
have an age of∼18 kyr and recently discovered in TeV gamma-rays with H.E.S.S. [1].
The overall morphology is also similar to that seen in other offset TeV PWNe, such as
HESS J1825−139 [3].

STATISTICS AND THE FIRST X-RAY PLUS GAMMA-RAY SNR
CATALOGUE

As of October 2012, we know of 309 Galactic SNRs; see [14] for aan up-to-date (and
first of its kind) catalogue2 of X-ray and gamma-ray observations of all Galactic SNRs.
Our high-energy catalogue complements Dave Green’s catalogue based on radio studies.
Out of these 309 remnants,∼90 SNRs contain plerions or plerionic candidates, about 30
of which lack shells (including the Crab). These will be referred to as ‘naked’ PWNe.
Out of the 70 Galactic TeV known sources, about half are identified as PWNe or PWN
candidates. In the majority of the latter class, the TeV emission is found to be offset
from the X-ray peak suggestive of ‘relic’ PWNe (like for Vela-X). The TeV detections
are particularly useful for studying low-magnetic field plerions, since these could be
X-ray faint but gamma-ray bright.

GROWING CLASS OF ‘UNUSUAL’ PLERIONS

For over three decades, our view of plerions has been shaped by the study of the young
and bright Crab nebula. However, there are several plerionswhose properties differ from
the Crab, hinting to a diversity of PWNe which include many previously missed evolved
objects. In the following, I highlight some interesting cases that we have been studying
using coordinated radio and X-ray observations, and that need to be further investigated
in gamma-rays and with deeper X-ray observations.

DA 495 (G65.7+1.2) and G76.9+1.0

The SNRs DA 495 (G65.7+1.2) and G76.9+1.0 (see Fig. 1) are unusual due to the
following reasons: 1) unlike shell-type SNRs, they are not limb-brightened, but their
non-thermal flux falls off away from centre, implying a neutron star as a central engine;
2) their radio spectrum has a very steep spectral index,α ∼ 0.6, which is more typical

2 http://www.physics.umanitoba.ca/snr/SNRcat



FIGURE 1. Top: The radio images of the plerionic SNRs DA 495 (left) and G76.9+1.1 (right), with the
arrow pointing to the location of the X-ray source discovered with Chandra. The bottom panels show the
Chandra images of the central regions of the SNRs highlighting the discovery of compact X-ray nebulae,
inside the depression seen in the radio, surrounding pulsarcandidates. For DA 495, the X-ray nebula
is ∼40′′ in diameter surrounding the point-like source CXOU J202221.68+384214. For G76.9+1.0, the
X-ray image has a scale size of 1′×1′ and the central ellipse shows the compact nebula with a size of
8′′.3×5′′.1 surrounding PSR J2022+3842. Adapted from figures and datapublished in [5], [20], and [6].

of Shell-type remnants; 3) they are large and have a low-frequency spectral break in the
radio; and 4) in polarized emission, they have a strong axisymmetry and a double-lobed
morphology.

TABLE 1. Summary of the properties of the plerion and pulsar candidate/pulsar in the SNRs
DA 495 and G76.9+1.0 [5, 6]. All models are power-law except for the point source in DA 495
which is fitted with a blackbody model.

Component DA495 Nebula pulsar candidate G76.9+1.0 Nebula PSR J2022+3842

NH ≤0.4×1022 cm−2 ... 1.6±0.3×1022 cm−2 ...
Γ/kT (MK) 1.6 2.5 1.4 1.0±0.2
Lx

∗ 3.3×1031 ∼1031 5.6×1032 7×1033

∗ in units of erg s−1, and at a distance of 1 kpc for DA 495 and 10 kpc for G76.9+1.0

While their nature as SNRs has been questioned in the past,Chandra observations
have allowed the discovery of compact non-thermal nebulae surrounding point-like



sources, sitting in the heart of the radio depression. The morphology and spectral prop-
erties of both the nebulae and point-like sources (see Table1) left no doubt about their
nature as plerions. Combined X-ray and radio studies have further suggested that these
are evolved PWNe with a very low X-ray to radio luminosity andsize ratios, suggestive
of a high nebular magnetic field [20]. Follow-up radio pulsation searches failed to detect
a pulsar in DA 495, but led to the discovery of a 24 ms pulsar (PSR J2022+3842) in
G76.9+1.0, a result that was confirmed in X-rays with the Rossi X-ray Timing Explorer
[6]. While DA 495 hasn’t been yet detected in gamma-rays, there has been recently a
reported Fermi detection in G76.9+1.0 [27].

CTB 87 (G74.9 +1.2) and G63.7+1.1

FIGURE 2. Left Panel: TheChandra greyscale X-ray image of CTB 87 with the Canadian Galactic
Plane Survey radio contours overlaid (in red). The top rightpanel shows the RGB energy image of the
extended diffuse nebula with a cometary morphology poweredby a pulsar candidate. The bottom panel
shows a more compact nebula surrounding the putative pulsarwith evidence of faint jet-like and torus-like
structures. See [26] for details.

CTB 87 and G63.7+1.1 are two plerionic candidates, previously unexplored in X-
rays, but that also have unusual characteristics in radio wavelengths although with a
morphology different from the plerions discussed in the previous section. They both
have a centrally filled morphology (as for plerions) but theyare also unusual in that they
have 1) a steep radio spectral index (α = 0.4–0.5), 2) a low-frequency spectral break in
the radio, and 3) they are unusually large implying evolved PWNe. OurChandra and
XMM-Newton studies unveiled faint X-ray PWNe in both objects, surrounding pulsar
candidates, and that are clearly offset from the peak of the radio emission (papers in
preparation). In CTB 87 shown in Fig. 2, we find evidence of both a compact nebula
with a torus/jet-like structure and a diffuse nebula with a cometary-like morphology
[26]. The radio and X-ray study suggests that CTB 87 represents an evolved (∼10–



20 kyr old) plerion where the radio emission peak corresponds to a relic PWN, similar
to what’s observed in G327.1–1.1. Recent gamma-ray observations with VERITAS led
to the detection of this source [4].

Plerions around highly magnetized neutron stars?

FIGURE 3. Right: The compact PWN and jet discovered withChandra surrounding the high-magnetic
field pulsar J1119−6127 [31] in the SNR G292.2−0.5 shown in the left panel.Left: XMM-Newton image
and contours in greyscale, with theChandra contours overlaid in blue (darker contours). The red contours
show the optical/DSS emission illustrating the presence ofdark clouds in theeastern field of G292.2−0.5.
The purple cross in thewestern field refers to the H.E.S.S. detection in the SNR interior [12]. Figure
adapted from figures published in [22] and [31] and best seen in colour in the electronic version.

The question on whether highly magnetized neutron stars power plerions remains
to be answered. So far among the known 23 magnetars plus 7 X-ray detected high-
magnetic radio field pulsars, there are only 4 objects confirmed to power PWNe discov-
ered or detected in X-rays: the high-magnetic field pulsars PSR J1119−6127 in the SNR
G292.2−0.5 [31, 16] (see Fig. 3) and PSR J1846−0258 in the SNR Kes 75 [21, 17, 28],
PSR J1819-1458 (classified as a RRAT or Rotating Radio Transient) [32], and the mag-
netar Swift J1834.9−0846 [37]. The PWN claimed to be associated with the anomalous
X-ray pulsar 1E 1547.0−5408 [7] was recently proposed to be a dust scattering halo
[29]. Among these, Kes 75 and G292.2−0.5 have been detected in gamma-rays with
H.E.S.S.3,4. In G292.2−0.5, the H.E.S.S. source was located in the western field of the
SNR, between the pulsar and the SNR shell where hard non-thermal X-ray emission
was also detected (Fig. 3). While the origin of the gamma-rayemission is not yet un-
derstood, it could be attributed to an offset plerion, wherethe nebula has been displaced
after being crushed by an asymmetric reverse shock [22, 12].

3 http://www.mpi-hd.mpg.de/hfm/HESS/pages/home/som/2008/10/
4 http://www.mpi-hd.mpg.de/hfm/HESS/pages/home/som/2009/11/



FIGURE 4. Left: The young plerionic SNR G21.5−0.9 with Chandra showing evidence for thermal
emission from ‘knots’ outside the main PWN component, and a limb-brightened shell to the east. Image
credit: [25].Right: The compositeChandra (in blue) and radio (in red) image of the Composite-type SNR
G327.1–1.1 harbouring an offset plerion recently detectedin gamma-rays. Image credit: [34].

CONCLUSIONS AND FUTURE PROSPECTS

The synergy between radio and high-energy observations hasbeen crucial to under-
standing the emission mechanism in plerions and in addressing their apparent diversity.
In particular, radio plus X-ray observations are allowing the discovery of a new class of
plerions which seem to have unusual properties, but that likely represent evolved objects.
Some of the outstanding questions in this field include:

• Where is the shell around the dozens of ‘naked’ plerions? Is the absence of a shell
caused by the nature of the progenitor star creating a wind-blown bubble in which
the plerion is expanding? Are they born in lower energy supernova explosions?

• Do all high magnetic field pulsars and magnetars power nebulae? What powers
their X-ray emission: rotation, magnetism, both, or some other mechanism?

Deep observations with current observatories as well as targeted multi-wavelength
observations will address these, and other, questions related to plerion physics and
evolution. In X-rays, we look forward to the launch of the Astro-H mission [33] which
will have an unprecedented spectral resolution and sensitivity, as well as a broadband
coverage in the 0.5–600 keV energy range. This will allow thesearch for the long
sought SNR shells and thermal plasma in the ‘naked’ plerions, and for the thermal
emission expected in evolved plerions crushed by the reverse shock (see Fig. 4). The
unique broadband coverage will also measure their broadband X-ray spectra and, in
conjunction with radio and gamma-ray studies, help constrain their magnetic field and
emission mechanism (leptonic versus hadronic). Finally, the synergy between X-ray and
gamma-ray observations with current and the new generationobservatories (including
Fermi, H.E.S.S. II, VERITAS, and the Cerenkov Telescope Array in the future) will
allow us to complete the census of Plerionic SNRs in our Galaxy and beyond.
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