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Solution-based n-doping of the polymer poly{[N,N0-bis(2-octyldodecyl)-naphthalene-1,

4,5,8-bis(dicarboximide)-2,6-diyl]-alt-5,50-(2,20-bithiophene)} [P(NDI2OD-T2)] and the small

molecule 6,13-bis(tri- (isopropyl)silylethynyl)pentacene (TIPS-pentacene) is realized with the

air-stable dimers of rhodocene, [RhCp2]2, and ruthenium(pentamethylcyclopentdienyl)

(1,3,5-triethylbenzene), [Cp*Ru(TEB)]2. Fermi level shifts, measured by direct and inverse

photoemission spectroscopy, and orders of magnitude increase in current density and film

conductivity point to strong n-doping in both materials. The strong reducing power of these

air-stable dopants is demonstrated through the n-doping of TIPS-pentacene, a material with low

electron affinity (3.0 eV). Doping-induced reduction of the hopping transport activation energy indicates

that the increase in film conductivity is due in part to the filling of deep gap states by carriers released

by the dopants. VC 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.3689760]

Chemical doping of organic semiconductors has been

shown to be an effective method to circumvent issues of low

material conductivity and inefficient charge injection.1

Charges transferred from the dopants fill, and effectively

remove, deep states in the gap of the organic host2,3 and

increase the carrier concentration, thereby enhancing carrier

mobility and film conductivity. Doping enables the control

of energetic barriers to electron transfer at organic/electrode4

and organic/organic5 interfaces, leading to the possibility of

ohmic contacts and low operating voltages for organic devi-

ces.6 Key criteria for selecting dopants are (1) the ability to

p- or n-dope materials with a given ionization energy (IE) or

electron affinity (EA), respectively, (2) diffusional stability,

and (3) air-stability and solution processability for non-

vacuum processing.1,7–10 In that regard, the air stability of

powerful n-dopants is a particularly challenging issue given

the facile oxidation of reducing agents with IE lower than

�4.0 eV.10–18 Previous attempts to address this problem

made use of stable precursors, such as pyronin B (Refs. 15

and 19) or rhodamine B salts. However, this type of app-

roach has yet to dope challenging low-EA electron-transport

materials and generally suffers from the detrimental incorpo-

ration of non-doping by-products in the organic film. Air-

stable benzoimidazole derivatives have been used to n-dope

fullerene derivatives, e.g., [6,6]-Phenyl-C61-butyric acid

methyl ester (PCBM), in solution,10 yet again the doping

ability demonstrated to date is limited to compounds with

EA� 4.0 eV. We present here the results obtained for

solution doping of two compounds, the electron-transport

polymer poly{[N,N0-bis(2-octyldodecyl)-naphthalene-1,

4,5,8-bis(dicarboximide)-2,6-diyl]-alt-5,50-(2,20-bithiophene)},

(P(NDI2OD-T2); Ref. 20) and 6,13-bis(triisopropylsilylethy-

nyl)pentacene (TIPS-pentacene; Ref. 21) with the dimers of

rhodocene, [RhCp2]2, and ruthenium(pentamethylcyclopenta-

dienyl)(1,3,5-triethylbenzene), [Cp*Ru(TEB)]2 (Figure 1).

We recently showed that dimers of this type are relatively

stable in air, yet clearly undergo reactions with acceptors in

which electrons are transferred and C—C bonds cleaved to

afford the corresponding monomeric cations and the

acceptor radical anion.22 In this paper, we demonstrate that

efficient n-doping is achieved in both P(NDI2OD-T2), an

electron-transport polymer with sufficiently large EA

(3.95 eV) for air-stable electronics, and TIPS-pentacene,

which is typically used for hole-transport and presents a far

greater challenge for n-doping (EA� 3.0–3.1 eV).

[RhCp2]2 and [Cp*Ru(TEB)]2 (Figure 1) were synthe-

sized as previously described.22 These solid compounds

were exposed to ambient air for significant periods of time

(hours) prior to being used; we have shown that such expo-

sure results in no detectable decomposition according to 1H

NMR spectroscopy. P(NDI2OD-T2) (Polyera) and TIPS-

pentacene (Sigma Aldrich) were used as host materials. A

9:1 mixture of TIPS-pentacene and polystyrene (PS) (Sigma

Aldrich) was used to improve the film morphology (hereafter

called TIPS:PS). Undoped and doped thin films (thickness

10–20 nm for electron spectroscopy and 50–100 nm for tran-

sport measurements) were prepared by spin coating in a N2

glove box, using a simple semiconductor-dopant co-solution

method to control the doping ratio. P(NDI2OD-T2) and

TIPS:PS were dissolved in chlorobenzene and toluene,

respectively. We have previously determined the rate law

and rate constant for the solution reaction of [Cp*Ru(TEB)]2

and TIPS-pentacene.22 Under the pseudo-first-order condi-

tions of the current solution doping procedure, where the

concentration of TIPS-pentacene is large and effectively

constant, the half-life of the dimeric dopant can be estimated

as ca. 2 min at room temperature. Accordingly, under the

conditions used for solution preparation prior to spin coating
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(10 min sonication at room temperature and 15 min at 90 �C),

the reaction should be effectively complete. The reaction of

[RhCp2]2 and P(NDI2OD-T2) is expected to be even more

rapid owing to the lower barrier estimated (based on electro-

chemical data) for this reaction. Thus, effectively all the dop-

ant molecules are expected to participate in doping in both

cases. Conducting substrates (Au/Si or ITO) were used for

in-vacuum electron spectroscopy and for simple current-

voltage (I-V) diode measurements in N2 performed with a

Hg probe. The Au substrates were cleaned in solvents,

whereas ITO surfaces were cleaned and treated with oxygen

plasma. Quartz substrates prepared with a pattern of interdi-

gitated Au electrodes were used for in-vacuum variable-

temperature I-V (VTIV) transport measurements. Ultra-

violet photoemission spectroscopy (UPS) and inverse photo-

emission spectroscopy (IPES) were performed in ultra-high

vacuum to determine IE, EA, and work function (WF) of all

undoped and doped films. Measurement resolutions in UPS

and IPES were 0.15 eV and 0.45 eV, respectively. The posi-

tion of the Fermi level (EF) was determined with both techni-

ques by measuring the Fermi step on a bare Au sample.

Detailed UPS and IPES spectra (not shown here) were

recorded for P(NDI2OD-T2) spin-coated on Au, undoped, or

doped with 2 wt. % [RhCp2]2, and for TIPS:PS spin-coated

on ITO, undoped, or doped with either 0.5 or 5 wt. %

[Cp*Ru(TEB)]2. The P(NDI2OD-T2) IE, EA, and single-

particle gap are found to be 5.52 eV, 3.92 eV, and 1.60 eV,

respectively, in good agreement with previously reported

values.20,23 The TIPS:PS IE (5.04 eV) and EA (3.02 eV) are

found to be very close to those of pentacene,24 however, at

variance with previously reported values of 5.8 eV and

4.8 eV, respectively.25 Upon doping, the P(NDI2OD-T2) and

TIPS:PS spectrum line shapes remain unchanged except for

a rigid shift toward higher binding energy. This is equivalent

to an upward movement of EF in the gap, indicative of n-

doping. The results are summarized in Figure 1. Most rele-

vant to the current study, the energy difference between the

bottom edge of the LUMO and EF, measured with the combi-

nation of UPS and IPES, decreases from 0.54 eV to 0.1 eV

upon doping P(NDI2OD-T2) with 2 wt. % [RhCp2]2 and

from 1.54 eV to 0.68 eV and 0.43 eV upon doping TIPS:PS

with 0.5 and 5 wt. % [Cp*Ru(TEB)]2, respectively. The ini-

tial EF position in the undoped film is not particularly signifi-

cant, as it depends on the nature and work function of the

substrate. However, the significance lies in the movement of

EF upon doping and its ultimate position in the gap of the

semiconductor.

I-V characteristics of the undoped and doped films,

measured in N2 with a Hg probe, are shown in Figures 2(a)

and 2(b). In the P(NDI2OD-T2) case, the current density in

FIG. 1. Left panel: (top) Chemical

structures of P(NDI2OD-T2) and

[RhCp2]2; (bottom) energy diagram of

P(NDI2OD-T2) showing HOMO and

LUMO positions relative to the vacuum

level and the Fermi level as a function

of doping concentration of [RhCp2]2

(all energies are in eV). Right panel:

Same as left, for TIPS-pentacene and

[Cp*Ru(TEB)]2.

FIG. 2. Current density–electric field

(J–F) characteristics for (a) undoped and

2 wt. % [RhCp2]2 doped P(NDI2OD-T2)

samples, and (b) undoped and 0.5 wt. %,

5 wt. % [Cp*Ru(TEB)]2 doped TIPS:PS

blend (9:1) samples.
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the doped sample (2 wt. % [RhCp2]2) (positive bias on Hg,

electrons injected from ITO) is enhanced by several orders

of magnitude, depending on the bias (e.g., 5� 104 times for

a field of 2� 105 V/cm). In the low-field ohmic conduction

regime (J ! V), the doped films sustain a strong current den-

sity. The slope of the current increases with injection and

trap-filling at fields higher than 3� 104 V/cm. The current in

the undoped films is too low to be measured with our set-up

below 100 kV/cm (<10 pA).

In TIPS:PS (Figure 2(b)), the evolution of the current

with doping is more complex. Undoped TIPS-pentacene is a

hole transport material. With positive bias on Hg, the current

is dominated by holes injected from Hg (work function

�4.5 eV) rather than electrons injected from ITO (work

function 4.7–4.8 eV). The energy diagram of Figure 1 shows

the large electron injection barrier at the TIPS:PS/ITO inter-

face. The hole injection barrier at the Hg contact, although

not measured directly, is presumed to be �0.7–0.8 eV. When

the film is n-doped with only 0.5 wt. % [Cp*Ru(TEB)]2, EF

moves upward in the gap, increasing hole barriers at both Hg

and ITO contacts and leading to a current drop. As the dop-

ant concentration increases to 5 wt. %, the semiconductor

becomes n-doped, EF approaches the LUMO, and the current

switches to electrons injected at the ITO electrode. The data

recorded for negative bias applied to Hg (not shown here)

show precisely the same trend. Note that this type of transi-

tion from hole- to electron-dominated current was already

observed in the case of another hole-transport material, i.e.,

copper phthalocyanine (CuPc) n-doped with decamethylco-

baltocene (CoCp2*).11

To further explore transport vs. T in doped P(NDI2OD-

T2), VTIV measurements were performed on both undoped

and doped (2 wt. % [RhCp2]2) P(NDI2OD-T2) films. Trans-

port is in the plane parallel to the film, between Au electro-

des separated by 150 lm, making the contact resistance

irrelevant and allowing measurement of the bulk conductiv-

ity of the material. The applied voltage ranged from �50 to

50 V, with maximum field of 3.3 kV/cm. For the doped sam-

ples, I-V curves were recorded for temperatures ranging

between 170 K and 410 K (the current was too low for reli-

able measurement below 170 K), and were found to be linear

over the entire field range. The undoped samples were meas-

ured only between 350 K and 410 K because of their lower

conductivity and gave linear I-V curves over the entire field

range. The conductivity plots (ln(r) vs. T) of the undoped

and doped films, extracted from the linear fits to the I-V

curves, are shown in Figure 3. As expected, the doped sam-

ples are orders of magnitude more conductive than the

undoped samples. The conductivity of the doped samples

reaches 5.1� 10�4 S/cm at room temperature. In both cases,

the conductivity follows a simple Arrhenius dependence on

temperature, from which an activation energy (Ea) can be

extracted for the hopping transport, r ¼ r0e�
Ea
kT , where r0 is

a constant prefactor. Ea equals 1.19 eV for undoped

P(NDI2OD-T2) and 0.23 eV for the 2 wt. % doped film.

Similar drops in Ea were previously reported for

hole-transport materials a-NPD p-doped with tris[1,2-bis(tri-

fluoromethyl-)ethane-1,2-dithiolene] (Mo(tfd)3) (Ref. 26) and

pentacene p-doped with 2,3,5,6-tetrafluoro-7,7,8,8-tetracyano-

quinodimethane (F4-TCNQ).27 The large activation energy in

the undoped material results from the presence of disorder-

(static and dynamic) and impurity-related states extending

deep above the HOMO edge in the electronic gap, which trap

carriers. Doping fills these traps with holes, rendering them

electronically inactive. In the P(NDI2OD-T2) case, the current

is dominated by electrons and the process presumably

involves electron trapping in deep states below the LUMO

edge. As in the hole-case, defects play a key role. Oxygen-

and water-related traps are also known to affect electron trans-

port in these materials. The abrupt decrease in Ea upon doping

is entirely consistent with the filling of these trap states by

electrons released on oxidation and cleavage of the dimer.

Electron transport then occurs in/from states significantly

closer to the mobility edge, with much lower activation

energy, a phenomenon also observed in poly[2-methoxy-5-(2-

ethylhexyloxy)-1,4-phenylenevinylene] (MEH-PPV) n-doped

with decamethylcobaltocene.3 However, it should be noted

that conductivity is a product of both the density of carriers

and their mobility, and it is still unclear how much of the con-

ductivity increase in the present case is due to each of these

two components.

In summary, we demonstrated n-doping of the polymer

P(NDI2OD-T2) and the small molecule TIPS-pentacene via

co-solution with the air-stable [RhCp2]2 and [Cp*Ru(TEB)]2

dimers, respectively. The reducing power of these dopants is

evidenced by the effective n-doping of TIPS-pentacene, a

host with a 3.0 eV electron affinity. The dopants are con-

verted to the monomeric cations RhCp2
þ and Cp*Ru(TEB)þ,

respectively.22 Doping and increase in conductivity are dem-

onstrated via electron spectroscopy and room and low tem-

perature I-V measurements. The (orders of magnitude)

increase in conductivity is the result of a combination of

doping-induced filling of deep electron trap states in the

material and increase in the density of available carriers.
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