
Direct comparison of boron, phosphorus, and aluminum gettering
of iron in crystalline silicon

S. P. Phanga) and D. Macdonald
School of Engineering, The Australian National University, Canberra ACT 0200, Australia

(Received 12 May 2010; accepted 28 February 2011; published online 13 April 2011)

This paper presents a direct quantitative comparison of the effectiveness of boron diffusion,

phosphorus diffusion, and aluminum alloying in removing interstitial iron in crystalline silicon in

the context of silicon solar cells. Phosphorus diffusion gettering was effective in removing more

than 90% of the interstitial iron across a range of diffusion temperatures, sheet resistances, and iron

doses. Even relatively light phosphorus diffusions (145 X/h) were found to give very effective

gettering, especially when combined with extended low temperature annealing. Aluminum

alloying was extremely effective and removed more than 99% of the implanted iron for a range of

alloying temperatures and aluminum film thicknesses. In contrast, our experimental results showed

that boron diffusion gettering is very sensitive to the deposition conditions and can change from

less than 5% of the Fe being gettered to more than 99.9% gettered by changing only the gas flow

ratios and the post-oxidation step. VC 2011 American Institute of Physics. [doi:10.1063/1.3569890]

I. INTRODUCTION

Phosphorus doped n-type silicon solar cells have

received considerable attention in recent years1–3 due partly

to their greater resistance to metal contamination4–6 and also

due to the absence of light-induced boron-oxygen defects.

This makes n-type multicrystalline silicon an attractive sub-

strate for producing efficient solar cells because its resistance

to metal contamination could offset the detrimental effects

of the inherently higher metal content of multicrystalline sili-

con. Nevertheless results from Coletti et al.6 have shown that

Fe contamination can still degrade the lifetime in n-type

multicrystalline silicon although to a lesser extent than in p-

type material. Cuevas et al.1 and Coletti et al.6 have also

shown that the lifetime of the n-type multicrystalline wafers

can still be improved significantly after gettering. Of the get-

tering methods used for silicon solar cells, phosphorus diffu-

sion, aluminum alloying, and boron diffusion have all been

included to varying extents in the process steps of n-type

multicrystalline solar cells.6,7 However, other than indirect

comparisons in review papers,8,9 we are unaware of any

direct comparisons of the gettering effectiveness of the dif-

ferent methods adapted to n-type silicon solar cells. This

study provides a direct comparison of the gettering effective-

ness of B, P, and Al in silicon using a relevant range of diffu-

sion conditions and iron doses as well as a consistent iron

detection method for each of the gettering agents.

It is well established that phosphorus diffusion is effective

at gettering dissolved interstitial Fe, one of the main metal

impurities that can limit the lifetime of the material.8,10,11

Phosphorus diffusion gettering has an additional benefit in

that phosphorus diffusion is required to form the emitter in p-

type silicon solar cells, therefore it does not introduce extra

steps to the production. In the case of n-type cells, phosphorus

diffusions can be used to form a back surface field.6,12,13 Alu-

minum alloying has also been shown to provide effective get-

tering of iron.14,15 However, the extent to which Al alloying

can getter impurities from the whole thickness of the wafer is

uncertain due to the very short alloying times used for contact

firing (several seconds), and the fact that the Al layer is at the

rear of the device. Therefore the thermal budget is likely

insufficient for aluminum alloying to getter the metal impur-

ities close to the front surface.

On the other hand, it is expected that boron diffusions,

which would be required for front surface emitter formation

in n-type multicrystalline silicon solar cells, will be less

effective due to the low segregation coefficient for Fe at high

temperature.16,17 However, there have also been reports that

boron diffusion is effective in gettering metals under certain

conditions,7,18,19 such as when the boron dose is supersatu-

rated. Myers et al.18 demonstrated using ion implantation

that metal impurities can segregate into the Si-B precipitates

when the boron dose is supersaturated for temperatures rang-

ing from 800 to 1100 �C. Recently, Vähänissi et al.19 demon-

strated impressive boron gettering effectiveness by adding

extended low temperature annealing after 930 �C boron dif-

fusion. Their resultant iron concentration was more than an

order of magnitude lower than the solid solubility of iron and

also significantly lower than the expected value based on

segregation to the boron-doped emitter. They concluded that

the gettering effect observed was due to Si-B precipitates

formed in the supersaturated region close to the surface.

Using n-type multicrystalline silicon, Libal et al.7 observed

an increase in lifetime of more than 30% after boron diffu-

sion without extended low temperature annealing. Their

results are not expected on the basis of the segregation coef-

ficient at high temperature and were explained as gettering

by the boron rich layer (BRL), which can be considered as a

Si-B layer formed on the surface of the wafer when the Si

surface is supersaturated with boron.20 In this paper, we will

demonstrate that effective boron diffusion gettering of iron
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can be achieved using boron diffusion without the addition

of extended low temperature annealing but is very sensitive

to the gas flow ratios and the postoxidation step.

II. EXPERIMENT METHODS

Float-zone (FZ) single-crystal silicon wafers of (100)

orientation, 230 lm thickness, and resistivity of 0.6-1.0

X cm p-type boron doped were used in this study. Although

p-type wafers are used to take advantage of the Fe-B pair

breaking technique for measuring the interstitial Fe concen-

tration, it is expected that the results are applicable to n-type

silicon as well because the wafers are electronically intrinsic

at the gettering temperatures considered. The 40� 40 mm

wafers were chemically etched with a solution consisting of

HNO3:HF:CH3COOH (10:1:2) and RCA cleaned, and then

implanted with 56Fe at 70 keV with a dose corresponding to

a target volume concentration of 2.0� 1013 or 2.0� 1012

cm�3 in the center area of 30� 30 mm. After cleaning, the

implanted wafers, along with nonimplanted controls, were

annealed at 900 �C for 60 min in N2 to distribute the Fe uni-

formly throughout the wafer. The solubility of Fe in silicon

at 900 �C is 4� 1013 cm�3,21 so no significant precipitation

or out-diffusion of Fe should occur. Both sides of the wafers

were then etched by about 3 lm to remove any residual

implant damage at the surface, which has in any case been

shown to be minimal at such low doses and energies.22 After

surface passivation with SiN using plasma-enhanced chemi-

cal vapor deposition (PECVD) at 450 �C, the interstitial Fe

concentrations ([Fei]) were then determined from quasi-

steady-state photoconductance (QSSPC) lifetime measure-

ments23 applying the Fe-B pair breaking technique24,25 using

capture cross-section values from Macdonald et al.26 Fe-B

pair breaking was achieved using steady state light soaking

under 1 sun intensity for 1 min. A higher intensity xenon

flash lamp was used to further break the pairs if the sample

lifetime was less than 10 ls.

After stripping off the SiN layer using 10% HF solution,

and etching off another 3 lm from each side of the wafers,

sets of three wafers, containing the high dose (2.0� 1013

cm�3), low dose (2.0� 1012 cm�3), and nonimplanted con-

trol wafers were then subjected to either boron diffusion get-

tering, phosphorus diffusion gettering, or aluminum alloying

gettering. Boron and phosphorus diffusion gettering were

performed in quartz tube furnaces with dopant deposition by

BBr3 and POCl3, respectively, followed by a drive-in in N2

ambient. For the last two boron diffusion sets labeled “B2,”

the N2 flow for the BBr3 was doubled during deposition,

while keeping the other process parameters the same, to pro-

mote the growth of the BRL. Unless stated otherwise, all bo-

ron diffusions were terminated with a 6 min in situ post

oxidation7 at the diffusion temperature after driving in to

oxidize and remove the HF resistant BRL. After diffusion,

samples are dipped in 10% HF solution for more than 3 min

to check if the surface remained hydrophilic, which indicates

the presence of a BRL. High resistivity diffusion dummies

were included in the diffusion to allow for measurement of

the sheet resistance using a four-point probe. Sheet resistance

measurements on the dummy wafers show that both sides of

the wafers are doped by similar amounts, therefore the boron

and phosphorus diffusion gettering is considered to be from

both front and rear surfaces. For aluminum gettering,

99.999% pure Al metal was first thermally evaporated on

both sides, followed by annealing in N2 gas.

The variations in the process conditions are detailed in

Table I. In addition to constant temperature diffusions

between 850 to 950 �C for BBr3 and between 780 to 850 �C
for POCl3, the gettering effectiveness of extended low tem-

perature annealing or extended gettering27–29 between 600

and 650 �C was also tested by ramping down the furnace

temperature at an average rate of 10 �C/min after emitter for-

mation at high temperature. Other than the extended getter-

ing samples, the rest of the samples were removed from the

furnaces at the diffusion temperature and were air-cooled to

room temperature. The temperature of the wafers dropped to

below 300 �C within 1 min after removal from the furnace;

therefore significant precipitation or re-distribution of Fe is

avoided. After processing, about 10 lm was etched from

TABLE I. Process conditions used for boron diffusion gettering, phosphorus diffusion gettering and aluminum alloying gettering.

Boron Phosphorus Aluminum

Label

Time

(min) T( �C)

Sheet

resistance

(X/h) Label

Time

(min) T( �C)

Sheet

resistance

(X/h) Label

Time

(min) T( �C)

Al

thickness

(lm)

B1-950C 60 950 54 P850C 55 850 38 Al850C 55 850 0.64

B1-900C 60 900 97 P800C 55 800 102 Al850C-thin 55 850 0.07

B1-850C 60 850 141 P780C 72 780 145 Al750C 55 750 0.63

B1-950C þext650C 60þ 60 650 50 P850C þext650C 55 þ60 650 51 Al750C-RTA 15 s peak 750 0.63

B1-850C þext600C 60þ 60 600 140 P780C þext650C 72 þ60 650 200

B2-950C þpost-ox 60 950 45

B2-950C þno post-ox 60 950 43

The time shown does not include the ramp up from 700 �C. “ext” refers to the extended low temperature gettering, and the experiment conditions with the

extended low temperature annealing started with the same diffusion as the first part of the label, followed by ramp down to the lower temperature in the furnace

for extended annealing in N2 ambient for the time listed. For example, “P780þ ext650C” had the same phosphorus diffusion as P780C for 72 min and then

annealing at 650 �C for an additional 60 min. The boron diffusion sets B2 have double the BBr3 vapour concentration during the deposition process compared

to B1, but the other process parameters such as main N2 flow and the O2 concentration are kept unchanged. For “BRL950Cþ no post-ox.” the post oxidation

step at the end is replaced with a N2 anneal.
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both sides for all samples, followed by surface passivation

with SiN using PECVD at 450 �C. Some high dose samples

were also annealed in N2 at temperatures of 550, 650, 750,

800, and 850 �C for 1 h to check for precipitation of Fe. To

check for possible precipitation during the SiN deposition

process itself, the SiN layers were removed from some of the

gettered samples and deposited again using the same settings

for additional [Fei] measurements.

The uncertainty of the measured [Fei] was estimated by

taking three repeated measurements, each time allowing for

Fe-B re-pairing in the dark and calculating the upper and

lower limit of [Fei] based on an estimated uncertainty of 5%

in the lifetime measurements. The largest lower and upper

limits were then taken as the minimum lower limit and maxi-

mum upper limit of the three measurements, respectively.

III. RESULTS AND DISCUSSION

A. Controls and precipitation

First, to establish the baseline [Fei] in the experiments to

follow, Fig. 1 shows that the initial [Fei] in the “as cut” con-

trol wafers, which did not undergo implantation or annealing

in the furnace, is insignificant compared to the implanted

doses. Second, the measured concentration for the annealed

nonimplanted samples shows that the furnace contamination

was around 1� 1011 cm�3. This level of furnace contamina-

tion is significant but is at least one order of magnitude lower

than the lowest implanted dose, and therefore it does not

affect the total [Fei] dose significantly. Third, the samples

used as precipitation controls show that there is no signifi-

cant precipitation of Fe for annealing at temperatures higher

than 650 �C for 1 h. Figure 1 also indicates that [Fei]

decreases slightly after subsequent PECVD SiN depositions.

However, the amount precipitated is minimal compared to

the [Fei] gettered during phosphorus diffusion, aluminum

alloying, and some of the boron diffusion conditions. In any

case, the same SiN deposition is applied for all measure-

ments, so the small amount of Fe precipitation during surface

passivation affects all measurements equally and cancels out

when determining the gettering effectiveness. Therefore, the

measured gettering efficiencies are considered to be unaf-

fected by relaxation or precipitation gettering within the wa-

fer bulk during annealing or SiN deposition.

Furthermore, most of the gettering conditions were for

durations of at least 55 min as listed in Table I. At the lowest

gettering temperature used of 600 �C, the diffusion length of

Fe in 55 min is estimated to be 220 lm (Ref. 21) compared

to the distance from the center of the wafer volume to the

gettering region of 115 lm. Therefore the results will not be

diffusion limited [with the exception of the rapid thermal

annealed (RTA) Al sample, gettered for 15 s, discussed sepa-

rately in the following text]. If gettering is considered as a

three step process of release, transport, and capture,30 the

results from the experiments will therefore be mainly capture

limited. As such, the results presented here, in single-crystal

silicon with a fully dissolved concentration of interstitial

iron, may not directly correlate with improvements in recom-

bination lifetimes in multicrystalline silicon that may be

release limited as well due to the dissolution of precipitated

Fe, other metal impurities which are less easily gettered, and

dislocations and other defects that may act as competing get-

tering sites. Although the measured dose is more than a fac-

tor of 2 less than the target implant dose, the measured dose

is consistent between repeat samples, and around 5.4� 1012

cm�3 for the high dose and 1� 1012 cm�3 for the low dose.

For most of the gettering conditions considered, there is no

significant dose dependence for the results with the excep-

tion of the “B1” recipes with extended gettering (discussed

in the following text).

B. Phosphorus diffusion gettering

Consider first the standard phosphorus diffusion getter-

ing (PDG) without extended low temperature annealing; Fig.

2 shows that it is effective in removing more than 90% of the

interstitial Fe for the range of temperatures considered. Com-

paring the standard PDG at different temperature, it should

be noted that a high sheet resistance PDG (145 X/h) at a

lower diffusion temperature of 780 �C is more effective than

a PDG at 850 �C (38 X/h), despite the lower phosphorus

concentration. This is in agreement with the results of Sha-

bani et al.11 and indicates that the expected improvement in

segregation coefficient due to lower temperature is suffi-

ciently large to offset the effect of lower phosphorus doping

especially when the diffusion time is long enough to allow

for diffusion of Fe from the bulk to the gettering layers in

both cases. Despite of this, the result for PDG with extended

low temperature annealing clarifies the effect of heavier dop-

ing at the same gettering temperature of 650 �C and shows

that PDG is more effective for higher phosphorus doping

levels.

FIG. 1. Measured [Fei] for different implant doses and the precipitation con-

trol samples. A and B are repetition of the same experiment with different

wafers to check the consistency of the implanted dose. Note that the samples

used for the SiN precipitation controls are different from the samples for the

implant controls.
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The results in Fig. 2 indicate that adding a low tempera-

ture annealing at 650 �C improves the gettering effectiveness

by about a factor of 26 compared to the standard PDG at

850 �C, which results in about 99.9% [Fei] removed. The

nþ doping is not expected to increase much during the low

temperature annealing because of the limited diffusivity of

phosphorus at 650 �C, so the increase in gettering effective-

ness is mainly due to the higher segregation coefficient at

lower temperature.27,28,31 On the contrary, some of the phos-

phorus dopants may be electrically deactivated during the

extended gettering.32 Separate measurements on phosphorus

diffused wafers showed an increase in average sheet resist-

ance from 49 6 1 to 53 6 1 X/h after annealing at 650 �C
for 1 h. Such an increase is also seen in Table I, where the

sheet resistance increased for phosphorus diffused samples

that were subjected to an additional low temperature anneal.

Nevertheless, some of the increase in sheet resistance may

also be attributed to process variations from batch to batch.

C. Aluminum gettering

Aluminum alloying gettering is found to be extremely

effective (>99.9%) at both 750 and 850 �C, and the [Fei] mea-

surement results have reached the detection limit of the method

as indicated by the lower error bars reaching the bottom of the

graph in Fig. 2. Even when we attempted to decrease the get-

tering effectiveness by using a thinner aluminum layer of only

70 nm, the gettering effectiveness only decreased slightly and

remained close to the detection limit, showing that even very

thin Al layers give excellent gettering.

When the anneal time was reduced to only 15 s, as for

the Al750C-RTA sample, the gettering effectiveness

dropped to just 36%. This annealing condition is similar to

the Al back-surface field (BSF) firing step used in the fabri-

cation of industrial silicon solar cells. Using a simplified

model of Fei diffusion based on Fick’s second law of diffu-

sion and assuming that the Al layer acts as an infinite sink, it

is possible to predict that 37% of the Fe will be removed

from the bulk for the thermal profile used in the experiment.

The close agreement with our measured result shows that the

gettering is diffusion limited in this case. The estimated dif-

fusion length of Fe during the entire anneal step from

standby to ramp down is only 33.5 lm.21 This demonstrates

that the standard industrial BSF formation on p-type solar

cells would not be effective for gettering of Fe, and any Fe

that is removed will only come from the rear part of the de-

vice and not near the front junction, where gettering is most

crucial.

D. Boron diffusion gettering

After HF dipping, only the “B2þ no post-ox” set had

100% BRL coverage on both sides, while the other samples

all pulled dry completely in HF, indicating that no BRL

was present. Figure 2 shows that boron diffusion gettering

is completely ineffective for temperatures above 850 �C for

the “B1” recipe used in this study. The poor gettering

effectiveness can be explained by considering that the get-

tering is purely due to the enhanced solubility of Fe in the

heavily boron-doped emitter as modeled by McHugo

et al.17 The segregation coefficient for iron in the boron-

doped region, which is estimated to be 0.1 at 850 �C for

NB¼ 1� 1020 cm�3,17 coupled with the low thickness of

the boron emitter layer that is estimated to be less than 0.5

lm, means that the [Fei] gettered would be less than 4%.

The nonimplanted samples indicate that the boron diffu-

sions were in fact contaminating the wafers with Fe,

increasing [Fei] after boron diffusion by about 6� 1011

cm�3, presumably coming from the furnace tube. Never-

theless this contamination level is insignificant compared

to the high dose samples and does not affect the conclusion

that boron diffusion gettering is ineffective above 850 �C
when using our standard “B1” recipe.

Adding a low temperature anneal was effective in

increasing the segregation coefficient and was able to get-

ter about 70% of the interstitial Fe for the high dose sam-

ples but was ineffective for the low dose samples with less

than 4% [Fei] gettered. The furnace contamination as

measured on the nonimplanted control samples was less

than half of the [Fei] of the low dose samples and thus can-

not fully explain the poor gettering effectiveness for low

dose samples. The dose dependence of the extended getter-

ing suggests that the effect of the low temperature anneal-

ing is partly due to precipitation in the boron emitter

region. It should be pointed out that Terakawa et al.
reported a higher gettering effectiveness of up to 99% Fe

removed using CZ silicon wafers with annealing at

600 �C.29 It is clear that the surface precipitation mecha-

nism that they proposed was not effective in our

FIG. 2. Fraction of [Fei] remaining after gettering relative to [Fei] before getter-

ing, as a function of the final annealing temperature, for high dose samples.

Lower fraction represents more [Fei] removed and better gettering effectiveness.

Black filled symbols, gray filled symbols, and nonfilled symbols are for boron

diffusion, phosphorus diffusion, and aluminum alloying, respectively. Sheet

resistances for boron and phosphorus diffusion are shown for ease of reference.

Results for aluminum alloying at 850 �C are slightly displaced from the actual

temperature to avoid overlapping of the error bars. Note that Al-15s RTA has a

significantly shorter annealing time and is severely diffusion limited.
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experiment because more than half of the [Fei] remained

after gettering. This may be due to the differences in sur-

face and boron diffusion conditions or because surface pre-

cipitation is slower in FZ wafers.

In the case of the “B2” recipes with higher BBr3 concen-

tration during deposition, the gettering effectiveness of the

boron diffusion is greatly improved with close to 90% of the

[Fei] removed with the same postoxidation step as the “B1”

recipes. As demonstrated by the results of the set “B2þ no

post-ox,” replacing the postoxidation with a N2 anneal and

keeping the BRL improves the gettering effectiveness fur-

ther, resulting in more than 99.9% of the [Fei] removed,

without an extended gettering step. The significant improve-

ment in gettering effectiveness cannot be fully explained by

the increased solubility in the slightly more heavily doped

emitter in the “B2” recipe because the segregation coefficient

is still only about 0.05 even if NB is increased to 1� 1021

cm�3 at 950 �C.17 Surface precipitation29 and formation of

Si-B precipitates19 within the emitter region are insignificant

as well because the”B2” diffusions were removed at temper-

ature. Therefore we consider the segregation of Fe impurities

into the BRL7 on the surface of the silicon wafer as the most

likely explanation of the improved gettering effect. The de-

pendence on the postoxidation step can be explained if the

Fe segregated into the BRL is released back into the Si when

the BRL is oxidized, noting that the diffusion length of Fe at

950 �C for 6 min is about 250 lm.

The results show that with suitable conditions, boron

diffusions can act as excellent gettering layers without the

requirement for an additional low temperature anneal. This

is contrary to expectations based solely on considering equi-

librium segregation to the boron diffused layer and reflects

the important role that the BRL can play.

IV. CONCLUSIONS

The results indicate that boron diffusion, phosphorus

diffusion, and aluminum alloying can all getter more

than 99% of the dissolved Fei in monocrystalline float

zone silicon wafers with suitable adjustments and can

also be potentially applied to improve the lifetime of

multicrystalline silicon wafers. Phosphorus diffusion get-

tering is quite effective (90–95%) for a range of temper-

atures and sheet resistances and can be improved further

(>99%) by means of an extended low temperature

anneal. Aluminum alloying can be very effective as well

but is likely diffusion limited, hence ineffective, due to

the low thermal budget typically used in solar cell fabri-

cation. Compared to phosphorus and aluminum gettering,

boron diffusion gettering is very sensitive to the process

parameters, likely requiring supersaturation of boron dop-

ants. Doubling the vapor concentration of the boron

source during deposition and changing the postoxidation

step was found to increase the gettering effectiveness

dramatically from less than 5% [Fei] removed to more

than 99.9% removed. Such effectiveness of the boron

diffusion gettering, without an additional low tempera-

ture anneal, cannot be explained by the model of impu-

rity segregation to the boron-doped emitter, which

suggests that the boron rich layer or Si-B precipitates

within the pþ layer are effective traps for Fe and likely

other harmful metal impurities.18 The impressive getter-

ing effectiveness at high temperature, coupled with the

high thermal budget required for boron diffusion, which

can promote the release of impurities, suggest that a

properly optimized boron diffusion step may have the

potential to become an effective method for improving

the carrier lifetime and conversion efficiency of n-type

multicrystaline silicon solar cells.
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