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Abstract

We report on joint works, past and in progress, with K.Fredenhagen
and with J.E.Roberts, on the quantum structure of spacetime in the
small which is dictated by the principles of Quantum Mechanics and of
General Relativity; we comment on how these principles point to a deep
link between coordinates and fields. This is an expanded version of a
lecture delivered at the 37th Karpacz School in Theoretical Physics,
February 2001.

1 Spacetime Uncertainty Relations

At large scales spacetime is a pseudo Riemanniann manifold locally modeled
on Minkowski space. But the concurrence of the principles of Quantum
Mechanics and of Classical General Relativity points at difficulties at the
small scales, which make that picture untenable. For if we try to locate an
event in say a spherically symmetric way around the origin in space with
accuracy a, according to Heisenberg principle an uncontrollable energy E
of order 1/a has to be transferred, which will generate a gravitational field
with Schwarzschild radius R ≃ E (~ = c = G = 1). Hence a & R ≃ 1/a and
a & 1, i.e. in CGS units

a & λP ≃ 1.6 · 10−33cm. (1)

If however we measure one of the space coordinates of our event with
great precision a, but allow large uncertainties L in the knowledge of the
other coordinates, the energy 1/a may spread over a thin disk of radius L
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and thus generate a gravitational potential that would vanish everywhere as
L→ ∞.

One has therefore to expect Space Time Uncertainty Relations emerg-
ing from first principles, already at a semiclassical level. Carrying through
such an analysis [1, 2] one finds indeed that, if the smallest and largest
space uncertainties of an event are denoted by a, b respectively, and the
time uncertainty by τ , the gravitational potential generated by the energy
1/min(a, τ) localized at some instant with accuracies a, b, τ , is at most of
the order

|V | ≃
1

b ·min(a, τ)
(2)

Now our basic requirement is that the localization experiment should
not deform spacetime in such a way that no signal from the region we wish
to observe can reach infinity in space, otherwise this would put the observed
event out of reach for any distant observer; namely

g00 = 1 + 2V > 0, (3)

where V is the potential generated by the energy transferred with the
localization measurement itself; hence by (2) a necessary condition is

b ·min(a, τ) & 1. (4)

The Space Time Uncertainty Relations strongly suggest that spacetime
has a Quantum Structure at small scales, expressed, in generic units, by

[qµ, qν ] = iλ2PQµν (5)

where Q has to be chosen not as a random toy mathematical model, but
in such a way that necessary restrictions like (4) follow from (5). Further
we want to impose (full) Lorentz invariant conditions on Qµν , so that our
models are compatible with Special Relativity; since in (5) Q is dimension-
less, the commutator will effectively vanish for large distances compared to
the Planck scale.

But we do not insist on covariance under general coordinate transforma-
tions, which, at a quantum level and at small scales, cannot be supported
by conceptual experiments, as the freely falling laboratory, in presence of
fields which vary significantly over Planckian distances. Moreover, for the
sake of Elementary Particle Physics, an asymptotically flat background is
an appropriate idealization, for the distribution of masses in the Universe
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should not affect significantly the outcome of collision experiments in our
laboratories.

The noncommutativity of the operators q0, ..., q3 can be measured by the
fundamental invariants

QµνQ
µν ;

[q0, ..., q3] := det







q0 · · · q3
...

. . .
...

q0 · · · q3






:=

εµνλρqµqνqλqρ = −(1/2)Qµν(∗Q)µν

(6)

but the second is invariant only under the proper Lorentz transforma-
tions and only its square is invariant under space and time reflections as
well.

If we (temporarily) assume that the components of Q commute with one
another, and let e,m denote the triples of electric respectively magnetic
components, we have

(−1/2)QµνQ
µν = e2 −m2; (7)

since e and m respectively govern the space-time and space-space un-
certainty relations, symmetry and (4) suggest the condition

QµνQ
µν = 0. (8)

Therefore the basic Quantum Condition must read

[q0, ..., q3]
2 = S, (9)

where S is a Lorentz invariant.
We will see later how more general choices for S are important, but (4)

suggest a multiple of I. If we also require that the Q commute with the q,
we get the Basic Model introduced and discussed in detail in [1] that we will
briefly report on in the next Section.

Other approaches to uncertainty relations affected by gravity and re-
lated phenomena can be found e.g. in [7],..., [15]. We do not attempt to
give a complete list of references related to this subject, which became quite
numerous in the last three years; approaches based on the quantum de-
formations of the Poincaré Algebra received a lot of attention, cf [17] and
references therein.
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2 The Basic Model

In the notation introduced above the quantum conditions of the Basic Model
may be rewritten as

[qµ, Qλρ] = 0, (10)

e2 = m2, e ·m = ±I. (11)

In this model the following weaker form of (4) is implemented, cf [1, 2] :

∆q0 ·

3
∑

j=1

∆qj & 1;
∑

1≤j<k≤3

∆qj∆qk & 1. (12)

Relations (11) define an algebraic manifold with two connected compo-
nents each isomorphic to the coset space of the proper Lorentz group modulo
boosts along a fixed direction and rotations around it, i.e. to SL(2,C)/C∗,
where C∗ is embedded in SL(2,C) as the 1,1 component of diagonal ma-
trices. Each pair (e′,m′) as in (11) can be obtained from a pair such that
e = ±m by a boost with velocity, say v, orthogonal to e, hence by (11) e

and m are vectors in the unit sphere S2 in three dimensional space, and v

is a tangent vector to S2 ; summarizing

Σ+ ≃ Σ− ≃ SL(2,C)/C∗ ≃ TS2. (13)

While classical Spacetime is described by the commutative C* algebra
of continuous functions vanishing at infinity, Quantum Spacetime will be
described by a noncommutative C* algebra E , to which the q are affiliated
in the sense of [18], cf [1], i.e each representation of E determines operators qµ
fulfilling our Quantum condition, and all ”regular” representations appear
this way.

We adopted in [1] the following paradigm, which may well apply to
more general cases (cf [4]): if we interpret (5) as defining a bundle of Lie
algebras, in that case over Σ, the regular representations will be those which
are integrable to a representation of the corresponding bundle of simply
connected Lie groups; the C* algebra E will then arise as a continuous field
of group C* algebras.

In the basic model the fibers are just Heisenberg groups with a non
degenerate C-number commutator matrix (the generic point in Σ ), hence
we get a continuous field of the algebra of all compact operators (on a
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separable infinite Hilbert space) which can be proved to be trivial (see [1]),
i.e.

E ≃ C0(Σ,K). (14)

These findings fit very well in the theory of strict deformation quantiza-
tion [19].

This C* algebra carries a natural action of the (full) Poincaré group
P as automorphisms, which is actually determined by its extension to the
affiliated q’s, fulfilling the natural relations

αL(q) = L−1q , L ∈ P. (15)

Thus E is a Quantum space but its global symmetries are the classical
ones, as expected since at large scales the model turns classical again, and
the Poincaré transformations are global motions, acting the same way in
the small and in the large. This situation parallels the familiar one in non-
relativistic Quantum Mechanics, where the Schroedinger Operators q and p
do not commute, but the Galilei invariance is expressed by an action of the
classical Galilei Group as automorphisms (representations up to a phase ap-
pear only in the unitary implementations). Actually this structure is indeed
a special case of our present model, cf below.

The classical concept of points in a space has to be replaced by pure states
with minimal uncertainties, i.e. pure states which are optimally localized in
the sense that the quantity

(∆q0)
2 + ...+ (∆q3)

2 (16)

is minimal; this is a frame dependent condition, which picks a point
e = ±m in the spectrum of the Q’s, i.e. a point in the base S2 × {±1}
if we think of Σ as a tangent manifold, so that the q’s fulfilling (5) now
become the Schroedinger operators q, p for a particle in two dimensions
(the four dimensional translations acting as Galilei transformations), and
the expression (16) being minimal implies that its value is 2 and that our
state is the ground state of the harmonic oscillator for those Schroedinger
operators.

Such states ought to have a preferred role in discussing the large scale
limit of the Quantum space; since in (14) the Planck length appears only in
the exponential in the Weyl relations, which force the fiber to be K, and in
the large scale limit K deforms to C0(R

4), we see that the quantum spacetime
becomes R

4 × Σ in the large scale limit, while, if only optimally localized
states are considered, the limit is rather
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R
4 × S2 × {±1} .

Thus the discrete space {±1} appears because the spectrum of the centre
of the algebra generated by the Q’s is not connected (a consequence of
imposing symmetry under reflections too), and while the continuous factor
in the ghost manifold is not compact, only a compact manifold, actually a
sphere with radius the square of the Planck length, plays a role if we are
testing with optimally localized states.

The paradigm we adopted in attaching a C* algebra to relations (5) in
our model tells us how to calculate functions f(q): as in the von Neumann
-Wigner-Moyal calculus, write f as the Fourier transform of its ordinary
anti-Fourier transform, and replace the exponentials by the Weyl operators
exp i(αq); the multiplication of these exponentials is precisely governed by
the bundle of Lie groups associated to the models; thus this paradigm can,
and will be, applied in some more general context. Moreover space integra-
tion at time t and spacetime integration can be easily defined and related
to the trace in each fiber, so that we can introduce Free Fields on QST, the
free Hamiltonian, which turns out to be unchanged by the quantum defor-
mation, and interaction Hamiltonians, i.e. we can lay down the setup to
apply the usual perturbation expansion (cf [1]).

While integration over space or spacetime poses no problem in this
model, integration over Σ does, since we tacitly assumed that our fields do
not depend on the points of Σ ; but we have no bounded invariant measure
on Σ so we cannot integrate to get an invariant result.

The way out chosen in [1] was to integrate over the base S2×{±1} of Σ,
thus keeping only rotation invariance; but in the end we face a more serious
difficulty. Namely the perturbation expansion is found to be exactly that of
a non local theory on the classical Minkowski space.

Of course (4) suggests that causality breaks down at short distances:
but it should be recovered at large scales with respect to Planck length (say
at QCD scales, 10−17 cm.), while the acausal effects of ordinary nonlocal
theories might cumulate after summing the perturbation expansion in a
disruptive way.

Strangely enough, these lessons of [1] have been largely neglected; well
after the appearance of [1] we assisted to a flow of papers on QFT models
on a QST which is characterized by (5) with a fixed C-number tensor on
the right, disregarding the physical meaning of noncommutativity and the
need of Lorentz invariance, but extensively applying the calculation aspect
of what we exposed, summarized by the use of the “star product”.
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The negative conclusions referred to above might lead us to reanalyze the
concept of interaction over QST; in particular the ordinary Wick product
should not be allowed: if e.g. we are to define the Wick square of the field A,
we can evaluate A(q)A(q′) on distinct variables q, q′, but then we cannot set
q−q′ = 0, since these operators obey similar relations to (4); we can however
evaluate a conditional expectation defined by an optimally localized state
on q− q′; as this is the ground state of an harmonic oscillator, it introduces
a Gaussian nonlocality factor which violates again causality, but might fully
regularize the theory, and in fact might give rise to a Gaussian fall off of
cross sections at large energies [5].

The problems with causality lead us [5] to enquire about light propaga-
tion, i.e. classical ED on QST; while the local gauge group of Classical ED
on Minkowski space is the unitary group of C0(R

4)+C·I, it is that of E+C·I
in the case of QST. Treating it the usual way we found that ED is charac-
terized by nonlinearly selfinteracting equations, for which a plane wave is a
stationary solution, but superpositions of two different plane waves are not,
with a propagation into massive modes; in principle, this effect ought to
be detectable splitting a monochromatic laser beam into a superposition of
states with different momenta with the help of a partially reflecting mirror
(or detecting the light of a distant galaxy split by a gravitational lens); but
the fraction of energy density which would go into these massive modes,
calculated to the lowest order in the Planck length, turns out to be of order
lower than 10−130.

More seriously, such a theory has a huge gauge group, so it is difficult to
propose testable effects, no matter how tenuous, in terms of gauge invariant
quantities.

For recent discussions of possible testable effects of Quantum Gravity cf
e.g. [21, 22].

Another drastic consequence is the nonvanishing of the current diver-
gence, due to quantum gravitational anomalies.

But the Gauge Principle expresses the point nature of interactions, and
is the basic principle lying behind locality in ordinary QFT, so it might well
by itself provide a rigid substitute to causality in QFT on QST. This hope
motivates a long standing attempt to a general formulation of gauge theories
on a noncommutative manifolds using the absolute differential calculus ([5,
6]; this calculus emerged also in other papers appeared meanwhile, cf e.g.
[16]). One might expect that a proper noncommutative approach might lead
to a new picture of interactions at Planck scale, which avoids the unpleasant
features met when we just replace products with ∗-products.

An approach to gauge theories on noncommutative spaces based on the
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notion of covariant coordinates has been proposed in [24] and references
therein.

3 Deformed Models

The remaining sections are based on work in progress with K. Fredenhagen,
D. Bahns and G. Piacitelli.

The basic model discussed in the previous section has many virtues in-
cluding simplicity, even if it does not implement in full relations (4). However
these relations appear, as relations (12), only necessary to guarantee (at least
at a semiclassical level) the gravitational stability of localization of events,
but not a priori sufficient to that purpose; furthermore it might well turn
out to be impossible to formulate a necessary and sufficient condition which
involves solely the background geometry, without a dynamical description
of spacetime, cf next section. However, if we relax the drastic simplifica-
tion (10) that the Q’s are central, and instead we only assume that they
commute with one another, keeping the other Quantum Conditions, there
is room for deformed models where the Spacetime Uncertainty relations are
implemented in forms stronger than (12).

One such model ([5]; partly announced in [4]) can be formulated in-
troducing self adjoint central operators, which form two antisymmetric 2-
tensorsH,T and a four vector C, and adding to the q’s two scalar commuting
generators R,S, and imposing

[qµ, qν ] = i(Hµν + TµνR),

[qµ, R] = iCµS,

[qµ, S] = −iCµR,

[R,S] = 0,

(17)

where S2 + R2 is central and can be set equal to I, and, by Jakobi
identity,

CµTνλ + CνTλµ + CλTµν = 0, for all µ, ν, λ. (18)

Furthermore, the contraction of T and of its Hodge dual ∗T with itself
and with H should vanish, while H fulfills the same conditions as Q in the
basic model.
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The full Lorentz group L will act transitively on the spectrum of the
centre, so that here, at large scales, the classical limit of our QST will be

R
4 ×L (19)

a manifold with 10 dimensions, which would effectively reduce here too
if we restricted attention to optimally localized states. A more detailed
account of this model will be discussed elsewhere [27].

4 A Dynamical Picture of Quantum Spacetime

The models of QST outlined above try to implement in the noncommutative
nature of the underlying geometry some of the minimal limitations on the
localization of an event which are imposed by our present knowledge of
the principles of Physics. Developing QFT in the appropriate way on this
underlying geometry rather than on Minkowski space should avoid some of
the contradictions we would be otherwise bound to meet. But we might
expect that the very structure of spacetime in the small, hence the algebraic
structure of the underlying model, should depend on the dynamics, and thus
on the quantum state. We propose a general scenario where this would be
the case.

Let us first note that if we develop QFT over a fixed geometric back-
ground described by a (noncommutative C*) algebra E , carrying an action
of the Poincaré group by automorphisms, the (bounded functions of the)
field operators (or more generally [23] local observables) should take values
in a quasilocal C* algebra A, and fields would be (functions from QST to
A) described by elements of (or affiliated to) the tensor product

E ⊗ A (20)

But a more realistic picture of QST might well involve operators in (20)
which cannot be easily split in the two factors; the commutators of the q’s
would then appear as functions of the fields, more specifically of the metric
gµν , coupled to all fields by Einstein Equation, the fields themselves being at
the same time functions of the q’s. Thus the commutation relations between
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the q’s should appear as part of the equations of motion:

[qµ, qν ] = iQµν(g)

Rµν − (1/2)Rgµν = 8πTµν(ψ)

F (ψ) = 0,

(21)

where Tµν(ψ) is the energy momentum tensor of the fields involved,
except gravitation, and the last line is symbolic for their equation of motion,
where g enters too through the covariant derivatives. Of course the action
of translations on the q’s will no longer be just the addition of multiples of
the identity, since the q’s depend on the metric g on which translations act
as well.

As an attempt to investigate the form of (21,a), suppose we adopt a
semiclassical approach, replacing the right hand side of (21,b) by its expec-
tation value in a given state and let g be a classical solution; if we perform a
measurement to localize an event in this state, we should repeat the consid-
erations of [1], cf Section 1 above, in the background g; in the approximation
of linearized gravity, with V as in equation (3), we should now impose

g00 + 2V > 0; (22)

hence

g00 · b ·min(a, τ) & 1. (23)

If we forget for a moment not only general covariance, according to which
g should have no intrinsic meaning, but even Lorentz covariance, we could
fulfill (23) requiring

[qµ, qν ] = iQµνg
−1
00

(24)

where Qµν does not depend of g, and is defined as above in this report.
According to General Relativity the Ricci tensor Rµν is physically sig-

nificant but the metric tensor g is not; yet it has been proposed [15] that
Quantum Mechanics might alter this view, a possibility to be kept in mind
while trying to rewrite a more convincing covariant extrapolation of (24).

The first natural guess would be to replace g−1

00
in (24) by a scalar de-

pending only on the local variations of g, as the scalar curvature R; hence,
using Einstein Equation (21,b) we would write

[qµ, qν ] = −8παiQµνg
λρTλρ(ψ), (25)
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where a further constant factor α has been allowed; or, even more gen-
erally, we could replace the Quantum Conditions by

QµνQ
µν = 0,

[q0, ..., q3]
2 = (αR)4.

(26)

Equations (25) and (26) do not reduce to our background model where
R = 0, so we are tempted to replace αR by I + αR; we limit ourself here
to support the scenario expressed in (21) without committing ourself to a
choice, but point out (maybe only as a curiosity) that if our state is strictly
localized in a tiny region, expectations of observables which are spacelike to
that tiny region will be the same as in the vacuum and there we will find
the following semiclassical approximation to (25)

[qµ, qν ] = −8παiQµνg
λρ〈Tλρ〉0; (27)

we might here insert the empiric evidence that 〈T00〉0 is not zero but
equal to the cosmological constant Λ ; in a relativistic vacuum

〈Tλρ〉0 = Λ · diag(1,−1,−1,−1);

now if g is a spherically symmetric stationary solution with gj0 = g0j =
0, j = 1, 2, 3, and −g is its space part, (27) takes the form

[qµ, qν ] = −8παΛiQµν(g
−1
00

+ tr(g−1));

for the Schwarzschild solution, for instance, the last term in brackets
would be equal to g−1

00
+g00+2; but if there is a preferred frame (that of the

Cosmic Background Radiation) where 〈T00〉0 = Λ, 〈Tjj〉0 = 0, j = 1, 2, 3, we
would get exactly (24).

These comments do not pretend to be neither satisfactory nor in a final
shape (we used in our heuristic argument strict locality, which is bound to
fail at Planck distances); yet it might well turn out that the quantum na-
ture of spacetime does say something on the problem of the cosmological
constant; for the presence of T in the right hand side of our spacetime com-
mutation relations should imply an effective repulsion at short distances,
and since quantum spacetime links aspects in the small (ultraviolet) to as-
pects in the large (infrared), this short range repulsion might well give rise
to long range effects.

11



5 Hints of Relations to String Theory

With the notation of Section 1, our Space Time Uncertainty Relations read

a · b & 1,

τ · b & 1;
(28)

the second one had been actually proposed earlier on the basis of a
qualitative argument in String Theory [7], and derived later in the context
of D-branes [11, 8]. Other recent findings in that domain lead to relations
similar to our first relation too [16].

Other superficial coincidences can be noted: U(1) gauge theory on QST
described by the basic model is actually a U(∞) gauge theory (more pre-
cisely, the gauge group will be the unitary group of E + C · I, namely the
product of the torus T with the group of continuous functions equal to I at
infinity from Σ to the group of unitaries which are perturbations of I by a
compact operator), while U(N) gauge theory in the limit N → ∞ is believed
to merge with String Theory; the QST version of Wick product leads to ul-
traviolet finite theories with a Gaussian like falloff of the transition matrix
elements above Planckian energy-momentum values [26].

These facts might be no more than fortuitous coincidences, but suggest
that the physical principles underlying the proposal of Quantum Spacetime
might even turn out to provide the fundamental physical motivations which
are still lacking in String Theory.
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