Semin Liver Dis 2004; 24(2): 139-154
DOI: 10.1055/s-2004-828891
Copyright © 2004 by Thieme Medical Publishers, Inc., 333 Seventh Avenue, New York, NY 10001, USA.

Serum and Bile Markers for Cholangiocarcinoma

Oliver Nehls1 , 2 , Michael Gregor2 , Bodo Klump2
  • 1Post-doctoral Research Fellow, Department of Internal Medicine I, University Hospital Tübingen, Germany
  • 2Department of Internal Medicine I, University Hospital Tübingen, Germany
Further Information

Publication History

Publication Date:
11 June 2004 (online)

Surgery remains the only curative treatment option for cholangiocarcinoma (CC). Currently, both early identification of CC in affected individuals at high risk and accurate diagnosis of unexplained biliary strictures are problematic. However, growing insights into biochemical and molecular mechanisms underlying biliary carcinogenesis have suggested serum and bile markers for the diagnosis of CC. These tools include tumor antigens or products (e.g., carbohydrate antigen [CA] 19-9), cytokines (e.g., interleukin-6), metabolic products (e.g., lactate), proteases (e.g., trypsinogen-2), regulatory peptides (e.g., pancreatic polypeptide), and (epi-)genetic lesions (e.g., K-ras and p53 mutations, p16INK4a or p14ARF promoter hypermethylation). In this article we discuss these new potential tumor markers for the diagnosis of CC.

REFERENCES

  • 1 Patel T. Increasing incidence and mortality of primary intrahepatic cholangiocarcinoma in the United States.  Hepatology. 2001;  33 1353-1357
  • 2 Taylor-Robinson S D, Toledano M B, Arora S et al.. Increase in mortality rates from intrahepatic cholangiocarcinoma in England and Wales, 1968-1998.  Gut. 2001;  48 816-820
  • 3 Khan S A, Taylor-Robinson S D, Toledano M B et al.. Changing international trends in mortality rates for liver, biliary and pancreatic tumours.  J Hepatol. 2002;  37 806-813
  • 4 Davillla J A, El-Serag H B. Cholangiocarcinoma: the “other” liver cancer on the rise.  Am J Gastroenterol. 2002;  97 3199-3200
  • 5 Yamamoto J, Kosuge T, Takayama T et al.. Surgical treatment of intrahepatic cholangiocarcinoma: four patients surviving more than five years.  Surgery. 1992;  111 617-622
  • 6 Gores G J. Cholangiocarcinoma: current concepts and insights.  Hepatology. 2003;  37 961-969
  • 7 Shaib Y, El-Serag H B. The epidemiology of cholangiocarcinoma.  Semin Liver Dis. 2004;  24 115-126
  • 8 Kornfeld D, Ekbom A, Ihre T. Survival and risk of cholangiocarcinoma in patients with primary sclerosing cholangitis. A population-based study.  Scand J Gastroenterol. 1997;  32 1042-1045
  • 9 Marsh J W, Iwatsuki S, Makowka L et al.. Orthotopic liver transplantation for primary sclerosing cholangitis.  Ann Surg. 1988;  207 21-25
  • 10 Stieber A C, Marino I R, Iwatsuki S, Starzl T E. Cholangiocarcinoma in sclerosing cholangitis. The role of liver transplantation.  Int Surg. 1989;  74 1-3
  • 11 Farrant J M, Hayllar K M, Wilkinson M L et al.. Natural history and prognostic variables in primary sclerosing cholangitis.  Gastroenterology. 1991;  100 1710-1717
  • 12 Miros M, Kerlin P, Walker N et al.. Predicting cholangiocarcinoma in patients with primary sclerosing cholangitis before liver transplantation.  Gut. 1991;  32 1369-1373
  • 13 Nashan B, Schlitt H J, Tusch G et al.. Biliary malignancies in primary sclerosing cholangitis: timing for liver transplantation.  Hepatology. 1996;  23 1105-1111
  • 14 Broome U, Olsson R, Loof L et al.. Natural history and prognostic factors in 305 Swedish patients with primary sclerosing cholangitis.  Gut. 1996;  38 610-615
  • 15 Aadland E, Schrumpf E, Fausa O et al.. Primary sclerosing cholangitis: a long-term follow-up study.  Scand J Gastroenterol. 1987;  22 655-664
  • 16 Rosen C B, Nagomey D M. Cholangiocarcinoma complicating primary sclerosing cholangitis.  Semin Liver Dis. 1991;  11 26-30
  • 17 Wiesner R H, Porayko M K, Dickson E R et al.. Selection and timing of liver transplantation in primary biliary cirrhosis and primary sclerosing cholangitis.  Hepatology. 1992;  16 1290-1299
  • 18 Jarnagin W R, Fong Y, deMatteo R P et al.. Staging, resectability, and outcome in 225 patients with hilar cholangiocarcinoma.  Ann Surg. 2001;  234 507-519
  • 19 Parker S L, Tong T, Bolden S, Wingo P A. Cancer statistics, 1996.  CA Cancer J Clin. 1996;  46 5-27
  • 20 Hejna M, Pruckmayer M, Raderer M. The role of chemotherapy and radiation in the management of biliary cancer: a review of the literature.  Eur J Cancer. 1998;  34 977-986
  • 21 De Groen P C, Gores G J, LaRusso N F et al.. Biliary tract cancers.  N Engl J Med. 1999;  341 1368-1378
  • 22 Campbell W L, Ferris J V, Holbert B L et al.. Biliary tract carcinoma complicating sclerosing cholangitis: evaluation with CT, cholangiography, US, and MR imaging.  Radiology. 1998;  207 41-50
  • 23 Foutch P G. Endobiliary cytotechniques for cancer diagnosis.  Endoscopy. 1996;  28 712-717
  • 24 Howell D A, Parsons W G, Jones M A et al.. Complete tissue sampling of biliary strictures at ERCP using a new device.  Gastrointest Endosc. 1996;  43 498-501
  • 25 de Groen P C. Cholangiocarcinoma in primary sclerosing cholangitis: who is at risk and how do we screen.  Hepatology. 2000;  31 247-248
  • 26 Kim H-J, Kim M-H, Myung S-J et al.. A new strategy for the application of CA 19-9 in the differentiation of pancreaticobiliary cancer: analysis using a receiver operating characteristic curve.  Am J Gastroenterol. 1999;  94 1941-1946
  • 27 Rashid A. Cellular and molecular biology of biliary tract cancers.  Surg Oncol Clin N Am. 2002;  11 995-1009
  • 28 Koprowaski H, Steplewski Z, Mitchell K et al.. Colorectal carcinoma antigens detected by hybridoma antibodies.  Somatic Cell Genet. 1979;  5 957-972
  • 29 Mangani J L, Steplewski Z, Koprowski H, Ginsburg V. Identification of the gastrointestinal and pancreatic cancer associated antigen detected by monoclonal antibody 19-9 in the sera of patients as a mucin.  Cancer Res. 1983;  43 5489-5492
  • 30 Vestergaard E M, Hein H O, Meyer H et al.. Reference values and biological variation for tumor marker CA 19-9 in serum for different Lewis and secretor genotypes and evaluation of secretor and Lewis genotyping in a caucasian population.  Clin Chem. 1999;  45 54-61
  • 31 Steinberg W. The clinical utility of the CA 19-9 tumor-associated antigen.  Am J Gastroenterol. 1990;  85 350-355
  • 32 Rhodes J M. Usefullness of novel tumour markers.  Ann Oncol. 1999;  10(Suppl) S118-S121
  • 33 Duffy M J. CA 19-9 as a marker for gastrointestinal cancers: a review.  Ann Clin Biochem. 1998;  35 364-370
  • 34 Lamerz R. Role of tumour markers, cytogenetics.  Ann Oncol. 1999;  10(Suppl) 145-149
  • 35 Akdogan M, Sazmaz N, Kyhan B et al.. Extraordinarily elevated CA 19-9 in benign conditions: a case report and review of the literature.  Tumori. 2001;  87 337-339
  • 36 Albert M B, Steinberg W M, Henry J P. Elevated serum levels of tumor markers CA 19-9 in acute cholangitis.  Dig Dis Sci. 1988;  33 1223-1225
  • 37 Patel A H, Harnois D M, Klee G G et al.. The utilità of CA 19-9 in the diagnosis of cholangiocarcinoma in patients without primary sclerosing cholangits.  Am J Gastroenterol. 2000;  95 204-207
  • 38 Siqueira E, Schoen R E, Silverman W et al.. Detecting cholangiocarcinoma in patients with primary sclerosing cholangitis.  Gastrointest Endosc. 2002;  56 40-47
  • 39 Chalasani N, Baluyut A, Ismail A et al.. Diagnostic role of serum CA 19-9 for cholangiocarcinoma in patients with primary sclerosing cholangitis: a multicenter case-control study.  Hepatology. 2000;  31 7-11
  • 40 Lindberg B, Arnelo U, Bergquist A et al.. Diagnosis of biliary strictures in conjunction with endoscopic retrograde cholangiopancreaticography, with special reference to patients with primary sclerosing cholangitis.  Endoscopy. 2002;  34 909-916
  • 41 Björnsson E, Kilander A, Olsson R et al.. CA 19-9 and CEA are unreliable markers for cholangiocarcinoma in patients with primary sclerosing cholangitis.  Liver. 1999;  19 501-508
  • 42 Ramage J K, Donaghy A, Farrant J M et al.. Serum tumor markers for the diagnosis of cholangiocarcinoma in primary sclerosing cholangitis.  Gastroenterology. 1995;  108 865-869
  • 43 Nichols J C, Gores G J, LaRusso N F et al.. Diagnostic role of serum CA 19-9 for cholangiocarcinoma in patients with primary sclerosing cholangitis.  Mayo Clin Proc. 1993;  68 874-879
  • 44 Buffet C, Fourreé C, Altman C et al.. Bile levels in carcinoembryonic antigen in patients with hepatopancreaticobiliary disease.  Eur J Gastroenterol Hepatol. 1996;  8 131-134
  • 45 Hultcrantz R, Olsson R, Danielsson A et al.. A 3-year prospective study on serum tumor markers used for detecting cholangiocarcinoma in patients with primary sclerosing cholangitis.  J Hepatol. 1999;  30 669-673
  • 46 Duffy M J. Carcinoembryonic antigen as a marker for colorectal cancer: is it clinically useful?.  Clin Chem. 2001;  47 624-630
  • 47 Torzilli G, Makuushi M, Ferrero A et al.. Accuracy of the preoperative determination of tumor markers in the differentiation of liver mass lesions in surgical patients.  Hepatogastroenterology. 2002;  49 740-745
  • 48 Strom B L, Iliopoulos D, Atkinson B et al.. Pathophysiology of tumor progression in human gallbladder: flow cytometry, CEA, and CA 19-9 levels in bile and serum in different stages of gallbladder disease.  J Natl Cancer Inst. 1989;  81 1575-1580
  • 49 Ker C G, Chen J S, Lee K T, Sheen P C, Wu C C. Assessment of serum and bile levels of CA 19-9 and CA 125 in cholangitis and bile duct carcinoma.  J Gastroenterol Hepatol. 1991;  6 505-508
  • 50 Chen C Y, Shiesh S C, Tsao H C, Lin X Z. The assessment of biliary CA 125, CA 19-9 and CEA in diagnosing cholangiocarcinoma-the influence of sampling time and hepatolithiasis.  Hepatogastroenterology. 2002;  49 616-620
  • 51 Ohshio G, Manabe T, Watanabe Y et al.. Comparative studies of DU-PAN-2, carcinoembryonic antigen, and CA 19-9 in the serum and bile of patients with pancreatic and biliary tract diseases: evaluation of the influence of obstructive jaundice.  Am J Gastroenterol. 1990;  85 1370-1376
  • 52 Tatsuta M, Iishi H, Ischii M et al.. Values of carcinoembryonic antigen, elastase 1, and carbohydrate antigen determinant in aspirated pancreatic cystic fluid in the diagnosis of cysts of the pancreas.  Cancer. 1986;  57 1836-1839
  • 53 Nakeeb A, Lipsett P A, Lillemoe K D et al.. Biliary carcinoembryonic antigen levels are a marker for cholangiocarcinoma.  Am J Surg. 1996;  171 147-153
  • 54 Akiyama H, Yamamoto M, Sumiyoshi H, Tahara E, Iwamori S. Carcinoembryonic antigen (CEA) in gallbladder bile and mucosa in cholecystolithiasis.  Acta Chir Scand. 1986;  152 509-513
  • 55 Plebani M, Basso D, Panozzo M P et al.. Tumor markers in the diagnosis, monitoring and therapy of pancreatic cancer: state of the art.  Int J Biol Markers. 1995;  10 189-199
  • 56 Kuusela P, Haglund C, Roberts P J. Comparison of a new tumor marker CA 242 with CA 19-9, CA 50 and carcinoembryonic antigen (CEA) in digestive tract diseases.  Br J Cancer. 1991;  63 636-640
  • 57 Haglund C, Lindgren J, Roberts P J, Nordling S. Difference in tissue expression of tumor markers CA 19-9 and CA 50 in hepatocellular carcinoma and cholangiocarcinoma.  Br J Cancer. 1991;  63 386-389
  • 58 Carpelan-Holmström M, Louhimo J, Stenman U H et al.. CEA, CA 19-9 and CA 72-4 improve the diagnostic accuracy in gastrointestinal cancers.  Anticancer Res. 2002;  22 2311-2316
  • 59 Bhargava A K, Petrelli N J, Karna A et al.. Serum levels of cancer-associated antigen CA 195 in gastrointestinal cancers and its comparison with CA 19-9.  J Clin Lab Anal. 1989;  3 370-377
  • 60 Moll R, Franke W W, Schiller D L, Geiger B, Krepler R. The catalog of human cytokeratins: patterns of expression in normal epithelia, tumors and cultured cells.  Cell. 1982;  31 11-24
  • 61 Van Eyken P, Desmet V J. Cytokeratin expression in hepatocellular carcinoma and cholangiocarcinoma.  Liver. 1993;  13 113-122
  • 62 Kashihara T, Ohki A, Kobayashi T et al.. Intrahepatic cholangiocarcinoma with increased serum CYFRA 21-1 levels.  J Gastroenterol. 1998;  33 447-453
  • 63 Uenishi T, Kubo S, Hirohashi K et al.. Cyterkeratin-19 fragments in serum (CYFRA 21-1) as a marker in primary liver cancer.  Br J Cancer. 2003;  88 1894-1899
  • 64 Enjoji M, Nakashima M, Nishi H et al.. The tumor associated antigen, RCAS1, can be expressed in immune-mediated diseases as well as in carcinomas of the biliary tract.  J Hepatol. 2002;  36 786-792
  • 65 Noguchi K, Enjoji M, Nakamuta M et al.. Expression of a tumor associated antigen RCAS1 in hepatocellular carcinoma.  Cancer Lett. 2001;  168 197-202
  • 66 Watanabe H, Enjoji M, Nakashima M et al.. Clinical significance of serum RCAS1 levels detected by monoclonal antibody 22-1-1 in patients with cholangiocellular carcinoma.  J Hepatol. 2003;  39 559-563
  • 67 Liebman H A, Furie B C, Tong M J et al.. Des-γ-carboxy (abnormal) prothrombin as a serum marker for primary hepatocellular carcinoma.  N Engl J Med. 1984;  310 1427-1431
  • 68 Nakao A, Taniguchi K, Inoue S et al.. Clinical application of a new monoclonal antibody (19B7) against PIVKA-II in the diagnosis of hepatocellular carcinoma and pancreaticobiliary malignancies.  Am J Gastroenterol. 1997;  92 1031-1034
  • 69 Korner T, Kopf J, Hackler R et al.. Fibronectin in human bile fluid for diagnosis of malignant biliary diseases.  Hepatology. 1996;  23 423-428
  • 70 Chen C Y, Lin X Z, Tsao H C, Shiesh S C. The value of biliary fibronectin for diagnosis of cholangiocarcinoma.  Hepatogastroenterology. 2003;  50 924-927
  • 70a Haglund C, Ylätupa S, Mertariemi P, Partanen P. Cellular fibronectin concentration in the plasma of patients with malignant and benign diseases acomparison with CA-19-9 and CEA.  By J Cancer. 1997;  76 777-783
  • 71 Park J, Tadlock L, Gores L J, Patel T. Inhibition of interleukin-6 mediated mitogen-activated protein kinase activation attenuates growth of a cholangicarcinoma cell line.  Hepatology. 1999;  30 1128-1133
  • 72 Sugawara H, Yasoshima M, Katayanagi K et al.. Relationship between interleukin-6 and proliferation and differentiation in cholangiocarcinoma.  Histopathology. 1998;  33 145
  • 73 Goydos J S, Brumfield A M, Frezza E et al.. Marked elevation of serum interleukin-6 in patients with cholangiocarcinoma.  Ann Surg. 1998;  227 398-404
  • 74 Hedström J, Leinonen J, Sainio V et al.. Time-resolved immunofluorometric assay of trypsin-2 complexed with α1-antitrypsin in serum.  Clin Chem. 1994;  40 1761-1765
  • 75 Hedström J, Haglund C, Haapiainen R, Stenman U-H. Serum trypsinogen-2 and trypsinogen-2-α1-antitrypsin complex in malignant and benign digestive-tract diseases. Preferential elevation in patients with cholangiocarcinomas.  Int J Cancer. 1996;  66 326-331
  • 76 Nathan J D, Liddle R A. Neurohormonal control of pancreatic exocrine secretion.  Curr Opin Gastroenterol. 2002;  18 536-544
  • 77 Bruckner H, Chesser M, Mandeli J, Farber L A, DiGiovanni G. Circulating pancreatic polypeptide in patients with adenocarcinoma of the bile duct.  Acta Oncol. 1993;  32 627-629
  • 78 Haug H, Schramm C. Metabolic pattern of free amino acids, glucose, lactic acid, pyruvic acid, fatty acids, BUN, uric acid, etc. in serum of 21 healthy persons and 24 patients with malignant tumors.  Clin Chem. 1975;  21 1025
  • 79 Ohsaka A, Yoshikawa K, Matsuhashi T et al.. Detection by proton nuclear magnetic resonance of elevated lactate concentration in serums from patients with malignant tumors.  Jpn J Med Sci Biol. 1979;  32 305-309
  • 80 Nishijima T, Nishina M, Fujiwara K. Measurement of lactate levels in serum and bile using proton nuclear magnetic resonance in patients with hepatobiliary diseases: its utility in detection of malignancies.  Jpn J Clin Oncol. 1997;  27 13-17
  • 81 Barbacid M. Ras genes.  Annu Rev Biochem. 1987;  56 779-827
  • 82 Kang Y K, Kim W H, Lee H W et al.. Mutation of p53 and k-ras, and loss of heterozygosity of APC in intrahepatic cholangiocarcinoma.  Lab Invest. 1999;  79 477-483
  • 83 Isa T, Tomita S, Nakachi A et al.. Analysis of microsatellite instability, K-ras gene mutation and p53 protein overexpression in intrahepatic cholangiocarcinoma.  Hepatogastroenterology. 2002;  49 604-608
  • 84 Ohashi K, Nakajima Y, Kanehiro H et al.. Ki-ras mutations and p53 protein expressions in intrahepatic cholangiocarcinomas: relation to gross tumor morphology.  Gastroenterology. 1995;  109 1612-1617
  • 85 Tada M, Omata M, Ohto M. High incidence of ras gene mutation in intrahepatic cholangiocarcinoma.  Cancer. 1992;  69 1115-1118
  • 86 Furobo S, Harada K, Shimonishi T et al.. Protein expression and genetic alterations of p53 and ras in intrahepatic cholangiocarcinoma.  Histopathology. 1999;  35 230-240
  • 87 Levi S, Urbano-Ispizua A, Gill R et al.. Multiple K-ras codon 12 mutations in cholangiocarcinoma demonstrated with a sensitive polymerase chain reaction technique.  Cancer Res. 1991;  51 3497-3502
  • 88 Watanabe M, Asaka M, Tanaka J et al.. Point mutation of K-ras gene codon 12 in biliary tract tumors.  Gastroenterology. 1994;  107 1147-1153
  • 89 Imai M, Hoshi T, Ogawa K. K-ras codon 12 mutations in biliary tract tumors detected by polymerase chain reaction denaturing gradient gel electrophoresis.  Cancer. 1994;  73 2727-2733
  • 90 Ohashi K, Tsutsumi M, Nakajima Y et al.. High rates of ki-ras point mutation in both intra- and extra-hepatic cholangiocarcinomas.  Jpn J Clin Oncol. 1994;  24 305-310
  • 91 Wattanasirichaigoon S, Tasanakhajorn U, Jesadapatarakul S. The incidence of K-ras codon 12 mutations in cholangiocarcinoma detected by polymerase chain reaction technique.  J Med Assoc Thai. 1998;  81 316-323
  • 92 Lee J C, Lin P W, Lin Y J et al.. Analysis of K-ras gene mutations in periampullary cancers, gallbladder cancers and cholangiocarcinomas from paraffin-embedded tissue sections.  J Formos Med Assoc. 1995;  94 719-723
  • 93 Tannapfel A, Benicke M, Katalinic A et al.. Frequency of p16ink4A alterations and K-ras mutations in intrahepatic cholangiocarcinoma of the liver.  Gut. 2000;  47 721-727
  • 94 Boberg K M, Schrumpf E, Bergquist A et al.. Cholangiocarcinoma in primary sclerosing cholangitis: K-ras mutations anf Tp53 dysfunction are implicated in neoplastic development.  J Hepatol. 2000;  32 374-380
  • 95 Kubicka S, Kühnel F, Flemming P et al.. K-ras mutations in the bile of patients with primary sclerosing cholangitis.  Gut. 2001;  48 403-408
  • 96 Tada M, Omata M, Kawai S et al.. Detection of ras gene mutations in pancreatic juice and peripheral blood of patients with pancreatic adenocarcinoma.  Cancer Res. 1993;  53 2472-2474
  • 97 Itoi T, Takei K, Shinohara Y et al.. K-ras con 12 and p53 mutations in biopsy specimens and bile from biliary tract cancers.  Pathol Int. 1999;  49 30-37
  • 98 Ito R, Tamuara K, Ashida H et al.. Usefulness of k-ras gene mutation at codon 12 in bile for diagnosing biliary strictures.  Int J Oncol. 1998;  12 1019-1023
  • 99 Van Laethem J-L, Bourgeois V, Parma J et al.. Relative contribution of ki-ras gene analysis and brush cytology during ERCP for the diagnosis of biliary and pancreatic diseases.  Gastrointest Endosc. 1998;  47 479-485
  • 100 Sturm P DJ, Rauws E AJ, Hruban R H et al.. Clinical value of K-ras codon 12 analysis and endobiliary brush cytology for the diagnosis of malignant extrahepatic bile duct stenosis.  Clin Cancer Res. 1999;  5 629-635
  • 101 Van Heek N T, Rauws E AJ, Caspers E et al.. Long-term follow-up of patients with clinically benign extrahepatic biliary stenosis and K-ras mutation in endobiliary brush cytology.  Gastrointest Endosc. 2002;  55 883-888
  • 102 Wang Y, Yasushi Y, Watanabe H et al.. Usefulness of p53 gene mutations in the supernatant of bile for diagnosis of biliary tract carcinoma: comparison with K-ras mutation.  J Gastroenterol. 2002;  37 831-839
  • 103 Saurin J C, Joly-Pharaboz M O, Pernas P et al.. Detection of ki-ras point mutations in bile specimens for the differential diagnosis of malignant and benign biliary strictures.  Gut. 2000;  47 357-361
  • 104 Müller P, Ostwald C, Püschel K et al.. Low frequency of p53 and ras mutations in bile of patients with hepato-biliary disease: a prospective study in more than 100 patients.  Eur J Clin Invest. 2001;  31 240-247
  • 105 Yamashita K, Yoshiki K, Shinoda H et al.. K-ras mutations in the supernatants of pancreatic juice and bile are reliable for diagnosis of pancreas and biliary tract carcinomas complementary to cytologic examination.  Jpn J Cancer Res. 1999;  90 240-248
  • 106 Lee J G, Leung J W, Cotton P B et al.. Diagnostic utility of k-ras mutational analysis on bile obtained by endoscopic retrograde cholangiopancreatography.  Gastrointest Endosc. 1995;  42 317-320
  • 107 Levine A J, Momand J, Finlay C A. The p53 tumor suppressor gene.  Nature. 1991;  351 453-456
  • 108 Harris C C, Hollstein M. Clinical implications of the p53 tumor-suppressor gene.  N Engl J Med. 1993;  329 1318-1327
  • 109 Chang F, Syrjanen S, Syrjanen K. Implications of the p53 tumor-suppressor gene in clinical oncology.  J Clin Oncol. 1995;  13 1009-1022
  • 110 Tannapfel A, Sommerer F, Benicke M et al.. Genetic and epigenetic alterations of the INK4a-ARF pathway in cholangiocarcinoma.  J Pathol. 2002;  197 624-631
  • 111 Suto T, Habano W, Sugai T et al.. Aberrations of the K-ras, p53, and APC genes in extrahepatic bile duct cancer.  J Surg Oncol. 2000;  73 158-163
  • 112 Laurent-Puig P, Lubin R, Semhoun-Ducloux S et al.. Antibodies against p53 protein in serum of patients with benign or malignant pancreatic and biliary diseases.  Gut. 1995;  36 455-458
  • 113 Sherr C J. Tumour surveillance via the ARF-p53 pathway.  Genes Dev. 1998;  12 2984-2991
  • 114 Kamijo T, Zindy F, Roussel M F et al.. Tumor suppression at the mouse INKa locus mediated by the alternative reading frame product p19ARF .  Cell. 1997;  91 649-659
  • 115 Herman J G, Merlo A, Mao L et al.. Inactivation of the CDKN2/p16/MTS1 gene is frequently associated with aberrant DNA methylation an all common human cancers.  Cancer Res. 1995;  55 4525-4530
  • 116 Liggett W H, Sidransky D. Role of the p16 tumor suppressor gene in cancer.  J Clin Oncol. 1998;  16 1197-1206
  • 117 Sherr C J. Cancer cell cycles.  Science. 1996;  276 1672-1677
  • 118 Merlo A, Herman J G, Mao L et al.. 5′CpG island methylation is associated with transcriptional silencing of the tumor suppressor p16/CDKN2/MTS1 in human cancers.  Nat Med. 1995;  7 686-692
  • 119 Kamb A. Cell-cycle regulators and cancer.  Trends Genet. 1995;  11 136-140
  • 120 Herman J G, Merlo A, Mao L et al.. Inactivation of the CDK/N2/p16/MTS1 gene is frequently associated with aberrant methylation in all common human cancers.  Cancer Res. 1995;  55 4525-4530
  • 121 Caca K, Feisthammel J, Klee K et al.. Inactivation of the INK/ARF locus and p53 in sporadic extrahepatic bile duct cancers and bile duct cancer cell lines.  Int J Cancer. 2002;  97 481-488
  • 122 Klump B, Hsieh C-J, Holzmann K et al.. Hypermethylation of the CDKN2/p16 promoter during neoplastic progression in Barett's esophagus.  Gastroenterology. 1998;  115 1381-1386
  • 123 Hsieh C J, Klump B, Holzmann K et al.. Hypermethylation of the p16INK4a promoter in colectomy specimens of patients with long-standing and extensive ulcerative colitis.  Cancer Res. 1998;  58 3942-3945
  • 124 Belinsky S A, Nikula K J, Palmisano W A et al.. Aberrant methylation of p16INK4 is an early event in lung cancer and a potential biomarker for early diagnosis.  Proc Natl Acad Sci USA. 1998;  95 11891-11896
  • 125 Esteller M, Sanchez-Cespedes M, Rosell R et al.. Detection of aberrant promoter hypermethylation of tumor suppressor genes in serum DNA from non-small cell cancer patients.  Cancer Res. 1999;  59 67-70
  • 126 Carnero A, Hudson J D, Price C M, Beach D H. p16INK4 and p19ARF act in overlapping pathways in cellular immortalization.  Nat Cell Biol. 2000;  2 148-155
  • 127 Klump B, Hsieh C J, Dette S et al.. Promoter methylation of INKa/ARF as detected in bile-significance for differential diagnosis in biliary disease.  Clin Cancer Res. 2003;  9 1773-1778
  • 128 Taniai M, Higuchi H, Burgart L J. p16INK4a promoter mutations are frequent in primary sclerosing cholangitis (PSC) and PSC-associated cholangiocarcinoma.  Gastroenterology. 2002;  123 1090-1098
  • 129 Rew D. Significance of aneuploidy.  Br J Surg. 1994;  81 1416-1422
  • 130 Rickaert F, Gelin M, van Gansbeke D et al.. Computerized morhonuclear characterisitcs and DNA content of adenocarcinoma of the pancreas, chronic pancreatitis, and normal tissues: relationship with histopathologic grading.  Hum Pathol. 1992;  23 1210-1215
  • 131 Ryan M E, Baldauf M C. Comparison of flow cytometry for DNA content and brush cytology for detection of malignancy in pancreaticobiliary strictures.  Gastrointest Endosc. 1994;  40 133-139
  • 132 Rumalla A, Baron T H, Leontovich O et al.. Improved diagnostic yield of endoscopic biliary brush cytology by digital image analysis.  Mayo Clin Proc. 2001;  76 29-33
  • 133 Yeaton P, Kiss R, Deviere J et al.. Use of cell image analysis in the detection of cancer from specimens obtained during endoscopic retrograde cholangiopanacreatography.  Am J Clin Pathol. 1993;  100 497-501
  • 134 Sears R J, Duckworth C W, Decaestecker C et al.. Image cytometry as a discriminant tool for cytologic specimens obtained by endoscopic retrograde cholangiopancreatography.  Cancer. 1998;  84 119-126
  • 135 Chen X Q, Stroun M, Magnenat J L et al.. Microsatellite alterations in plasma DNA of small cell lung cancer patients.  Nat Med. 1996;  2 1033-1035
  • 136 Chang Y C, Ho C L, Chen H HW et al.. Molecular diagnosis of primary liver cancer by microsatellite DNA analysis in the serum.  Br J Cancer. 2002;  87 1449-1453
  • 137 Su W-C, Shiesh S-C, Liu H-S. Expression of oncogene products HER2/Neu and ras and fibrosis-related growth factors bFGF, TGF-β, and PDGF in bile from biliary malignancies and inflammatory disorders.  Dig Dis Sci. 2001;  46 1387-1392

B. KlumpM.D. 

Medizinische Universitätsklinik und Poliklinik, Abteilung Innere Medizin I

Otfried-Müller-Str. 10

D-72076 Tübingen, Germany

Email: bodo.klump@med.uni-tuebingen.de

    >