Synlett 2015; 26(07): 950-952
DOI: 10.1055/s-0034-1380150
letter
© Georg Thieme Verlag Stuttgart · New York

Facile Synthesis of Cyanoarenes from Quinones by Reductive ­Aromatization of Cyanohydrin Intermediates

Florian Glöcklhofer*
Institute of Applied Synthetic Chemistry, Vienna University of Technology, Getreidemarkt 9/163, 1060 Vienna, Austria   Email: florian.gloecklhofer@tuwien.ac.at
,
Markus Lunzer
Institute of Applied Synthetic Chemistry, Vienna University of Technology, Getreidemarkt 9/163, 1060 Vienna, Austria   Email: florian.gloecklhofer@tuwien.ac.at
,
Johannes Fröhlich
Institute of Applied Synthetic Chemistry, Vienna University of Technology, Getreidemarkt 9/163, 1060 Vienna, Austria   Email: florian.gloecklhofer@tuwien.ac.at
› Author Affiliations
Further Information

Publication History

Received: 18 December 2014

Accepted after revision: 14 January 2015

Publication Date:
19 February 2015 (online)


Abstract

A novel synthesis of cyanoarenes from quinones by using PCl3 as the reagent for reductive aromatization of cyanohydrin intermediates is reported. In situ IR spectroscopic measurements were conducted to monitor the reactions and to develop a convenient one-pot protocol. 1,4-Dicyanobenzene and 9,10-dicyanoanthracene were prepared by the new procedure.

Supporting Information

 
  • References and Notes

    • 1a The Chemistry of the Quinonoid Compounds. Vol. 2. Patai S, Rappoport Z. Wiley; Chichester: 1988
    • 1b Nawrat CC, Moody CJ. Angew. Chem. Int. Ed. 2014; 53: 2056
    • 1c Kutyrev AA, Moskva VV. Russ. Chem. Rev. 1991; 60: 72
    • 1d Abraham I, Joshi R, Pardasani P, Pardasani RT. J. Braz. Chem. Soc. 2011; 22: 385
    • 2a Lin Y.-Z, Huang CH, Chang YJ, Yeh C.-W, Chin T.-M, Chi K.-M, Chou P.-T, Watanabe M, Chow TJ. Tetrahedron 2014; 70: 262
    • 2b Ghosh KR, Saha SK, Gao JP, Wang ZY. Chem. Commun. 2014; 50: 716
    • 2c Glöcklhofer F, Lumpi D, Stöger B, Fröhlich J. New J. Chem. 2014; 38: 2229
    • 2d Porz M, Paulus F, Höfle S, Lutz T, Lemmer U, Colsmann A, Bunz UH. F. Macromol. Rapid Commun. 2013; 34: 1611
    • 2e Liu D, Xu X, Su Y, He Z, Xu J, Miao Q. Angew. Chem. Int. Ed. 2013; 52: 6222
    • 2f Ichihara K, Kawai H, Togari Y, Kikuta E, Kitagawa H, Tsuzuki S, Yoza K, Yamanaka M, Kobayashi K. Chem. Eur. J. 2013; 19: 3685
    • 2g Takeda T, Tobe Y. Chem. Commun. 2012; 48: 7841
    • 2h Lehnherr D, Waterloo AR, Goetz KP, Payne MM, Hampel F, Anthony JE, Jurchescu OD, Tykwinski RR. Org. Lett. 2012; 14: 3660
    • 2i Liang Z, Tang Q, Mao R, Liu D, Xu J, Miao Q. Adv. Mater. 2011; 23: 5514
    • 2j Qu H, Chi C. Org. Lett. 2010; 12: 3360
    • 3a Anthony JE, Brooks JS, Eaton DL, Parkin SR. J. Am. Chem. Soc. 2001; 123: 9482
    • 3b Shim H, Kumar A, Cho H, Yang D, Palai AK, Pyo S. ACS Appl. Mater. Interfaces 2014; 6: 17804
    • 3c Gnoli A, Ustunel H, Toffoli D, Yu L, Catone D, Turchini S, Lizzit S, Stingelin N, Larciprete R. J. Phys. Chem. C 2014; 118: 22522
    • 3d Basu S, Adriyanto F, Wang Y.-H. Nanotechnology 2014; 25: 085201
    • 3e Giri G, Verploegen E, Mannsfeld SC. B, Atahan-Evrenk S, Kim DH, Lee SY, Becerril HA, Aspuru-Guzik A, Toney MF, Bao Z. Nature (London) 2011; 480: 504
    • 3f Hamilton R, Smith J, Ogier S, Heeney M, Anthony JE, McCulloch I, Veres J, Bradley DD. C, Anthopoulos TD. Adv. Mater. 2009; 21: 1166
    • 3g Lee SH, Choi MH, Han SH, Choo DJ, Jang J, Kwon SK. Org. Electron. 2008; 9: 721
    • 3h Kim DH, Lee DY, Lee HS, Lee WH, Kim YH, Han JI, Cho K. Adv. Mater. 2007; 19: 678
    • 3i Lim JA, Lee WH, Lee HS, Lee JH, Park YD, Cho K. Adv. Funct. Mater. 2008; 18: 229
    • 3j Sheraw CD, Jackson TN, Eaton DL, Anthony JE. Adv. Mater. 2003; 15: 2009
    • 4a Katsuta S, Miyagi D, Yamada H, Okujima T, Mori S, Nakayama K.-I, Uno H. Org. Lett. 2011; 13: 1454
    • 4b Kuo M.-Y, Chen H.-Y, Chao I. Chem. Eur. J. 2007; 13: 4750
    • 4c Liu C.-C, Mao S.-W, Kuo M.-Y. J. Phys. Chem. C 2010; 114: 22316
    • 4d Kaur I, Jia W, Kopreski RP, Selvarasah S, Dokmeci MR, Pramanik C, McGruer NE, Miller GP. J. Am. Chem. Soc. 2008; 130: 16274
  • 5 Akar KB, Çakmak O. Tetrahedron Lett. 2013; 54: 312
  • 6 Kim SS, Rajagopal G, Song DH. J. Organomet. Chem. 2004; 689: 1734
  • 7 Glöcklhofer F, Fröhlich J, Stöger B, Weil M. Acta Crystallogr., Sect. E 2014; 70: 77
  • 8 Olson SH, Danishefsky SJ. Tetrahedron Lett. 1994; 35: 7901
  • 9 Yamaguchi S, Hanafusa T. Chem. Lett. 1985; 14: 689
  • 10 Thibblin A. J. Org. Chem. 1993; 58: 7427
  • 11 Wiberg E, Wiberg N, Holleman AF. Inorganic Chemistry: 1st English Edition. Academic Press; San Diego: 2001: 705
  • 12 General Procedure (One-Pot): 1,4-Benzoquinone (1.0 equiv) was dissolved in MeCN (1 M) and added to a suspension of CsF (0.2 equiv) in MeCN (0.2 M) at 0 °C. The reaction was carefully purged with argon and TMSCN (2.0 equiv) was added dropwise, followed by another two additions after 4 min (0.1 equiv) and 6 min (0.1 equiv). After 10 min of total stirring time, DMF (2 small drops) and PCl3 (1.0 equiv) were added. The reaction was allowed to warm to r.t. and stirred for 90 min. The resulting suspension was diluted with CH2Cl2 and filtered through a pad of silica using CH2Cl2 as the eluent. Evaporation of the solvent afforded 1,4-dicyanobenzene (2) as a white solid (30% yield).