Semin Respir Crit Care Med 2013; 34(04): 499-507
DOI: 10.1055/s-0033-1351123
Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

Novel Modes of Mechanical Ventilation

Mashael Al-Hegelan
1   Department of Medicine, Duke University Medical Center, Durham, North Carolina
,
Neil R. MacIntyre
1   Department of Medicine, Duke University Medical Center, Durham, North Carolina
› Author Affiliations
Further Information

Publication History

Publication Date:
11 August 2013 (online)

Abstract

The overarching goal of positive pressure mechanical ventilation is to provide adequate gas exchange support while not causing harm. Indeed, positive pressure mechanical ventilators are only support technologies, not therapeutic technologies. As such they cannot be expected to “cure” disease; they can only “buy time” for other therapies (including the patient's own defenses) to work.

Conventional approaches to positive pressure ventilation involve applying ventilatory patterns mimicking normal ones through either masks or artificial airways. This is usually done with modes of support incorporating assist/control breath-triggering mechanisms, gas delivery patterns governed by either a set flow or pressure, and breath cycling based on either a set volume, a set inspiratory time, or a set flow. Often this support includes positive end-expiratory pressure and supplemental oxygen. In recent decades several novel or unconventional approaches to providing mechanical ventilatory support have been introduced. For these to be considered of value, however, it would seem reasonable that they address important clinical challenges and be shown to improve important clinical outcomes (e.g., mortality, duration of ventilation, sedation needs, complications). This article focuses on challenges facing clinicians in providing mechanical ventilatory support and assesses several novel approaches introduced over the last 2 decades in the context of these challenges.

 
  • References

  • 1 International consensus conferences in intensive care medicine: ventilator-associated lung injury in ARDS. Am J Respir Crit Care Med 1999; 160 (6) 2118-2124
  • 2 Kolobow T, Moretti MP, Fumagalli R , et al. Severe impairment in lung function induced by high peak airway pressure during mechanical ventilation. An experimental study. Am Rev Respir Dis 1987; 135 (2) 312-315
  • 3 Dreyfuss D, Saumon G. Ventilator-induced lung injury: lessons from experimental studies. Am J Respir Crit Care Med 1998; 157 (1) 294-323
  • 4 Tremblay L, Valenza F, Ribeiro SP, Li J, Slutsky AS. Injurious ventilatory strategies increase cytokines and c-fos m-RNA expression in an isolated rat lung model. J Clin Invest 1997; 99 (5) 944-952
  • 5 Rouby JJ, Brochard L. Tidal recruitment and overinflation in acute respiratory distress syndrome: yin and yang. Am J Respir Crit Care Med 2007; 175 (2) 104-106
  • 6 Ranieri VM, Suter PM, Tortorella C , et al. Effect of mechanical ventilation on inflammatory mediators in patients with acute respiratory distress syndrome: a randomized controlled trial. JAMA 1999; 282 (1) 54-61
  • 7 Gajic O, Dara SI, Mendez JL , et al. Ventilator-associated lung injury in patients without acute lung injury at the onset of mechanical ventilation. Crit Care Med 2004; 32 (9) 1817-1824
  • 8 Jia X, Malhotra A, Saeed M, Mark RG, Talmor D. Risk factors for ARDS in patients receiving mechanical ventilation for > 48 h. Chest 2008; 133 (4) 853-861
  • 9 Yilmaz M, Keegan MT, Iscimen R , et al. Toward the prevention of acute lung injury: protocol-guided limitation of large tidal volume ventilation and inappropriate transfusion. Crit Care Med 2007; 35 (7) 1660-1666 , quiz 1667
  • 10 Crotti S, Mascheroni D, Caironi P , et al. Recruitment and derecruitment during acute respiratory failure: a clinical study. Am J Respir Crit Care Med 2001; 164 (1) 131-140
  • 11 Rimensberger PC, Pristine G, Mullen BM, Cox PN, Slutsky AS. Lung recruitment during small tidal volume ventilation allows minimal positive end-expiratory pressure without augmenting lung injury. Crit Care Med 1999; 27 (9) 1940-1945
  • 12 Webb HH, Tierney DF. Experimental pulmonary edema due to intermittent positive pressure ventilation with high inflation pressures. Protection by positive end-expiratory pressure. Am Rev Respir Dis 1974; 110 (5) 556-565
  • 13 Vaporidi K, Voloudakis G, Priniannakis G , et al. Effects of respiratory rate on ventilator-induced lung injury at a constant PaCO2 in a mouse model of normal lung. Crit Care Med 2008; 36 (4) 1277-1283
  • 14 Rich PB, Reickert CA, Sawada S , et al. Effect of rate and inspiratory flow on ventilator-induced lung injury. J Trauma 2000; 49 (5) 903-911
  • 15 Nahum A, Hoyt J, Schmitz L, Moody J, Shapiro R, Marini JJ. Effect of mechanical ventilation strategy on dissemination of intratracheally instilled Escherichia coli in dogs. Crit Care Med 1997; 25 (10) 1733-1743
  • 16 Villar J, Kacmarek RM, Pérez-Méndez L, Aguirre-Jaime A. A high positive end-expiratory pressure, low tidal volume ventilatory strategy improves outcome in persistent acute respiratory distress syndrome: a randomized, controlled trial. Crit Care Med 2006; 34 (5) 1311-1318
  • 17 Jenkinson SG. Oxygen toxicity. New Horiz 1993; 1 (4) 504-511
  • 18 Slutsky AS. Mechanical ventilation. American College of Chest Physicians' Consensus Conference. Chest 1993; 104 (6) 1833-1859 . Erratum in: Chest 1994;106(2):656.
  • 19 MacIntyre NR, Cook DJ, Ely Jr EW , et al. Evidence based guidelines for weaning and discontinuing mechanical ventilatory support: a collective task force facilitated by the American College of Chest Physicians; the American Association for Respiratory Care; and the American College of Critical Care Medicine. Chest 2001; 120 (6, suppl): 375-395
  • 20 Thille AW, Rodriguez P, Cabello B, Lellouche F, Brochard L. Patient-ventilator asynchrony during assisted mechanical ventilation. Intensive Care Med 2006; 32 (10) 1515-1522
  • 21 Flick GR, Bellamy PE, Simmons DH. Diaphragmatic contraction during assisted mechanical ventilation. Chest 1989; 96 (1) 130-135
  • 22 Vassilakopoulos T, Petrof BJ. Ventilator-induced diaphragmatic dysfunction. Am J Respir Crit Care Med 2004; 169 (3) 336-341
  • 23 Levine S, Nguyen T, Taylor N , et al. Rapid disuse atrophy of diaphragm fibers in mechanically ventilated humans. N Engl J Med 2008; 358 (13) 1327-1335
  • 24 Sassoon CSh. Triggering of the ventilator in patient-ventilator interactions. Respir Care 2011; 56 (1) 39-51
  • 25 MacIntyre NR, Cheng KC, McConnell R. Applied PEEP during pressure support reduces the inspiratory threshold load of intrinsic PEEP. Chest 1997; 111 (1) 188-193
  • 26 MacIntyre NR, McConnell R, Cheng KC, Sane A. Patient-ventilator flow dyssynchrony: flow-limited versus pressure-limited breaths. Crit Care Med 1997; 25 (10) 1671-1677
  • 27 Yang LY, Huang YC, Macintyre NR. Patient-ventilator synchrony during pressure-targeted versus flow-targeted small tidal volume assisted ventilation. J Crit Care 2007; 22 (3) 252-257
  • 28 Habashi NM. Other approaches to open-lung ventilation: airway pressure release ventilation. Crit Care Med 2005; 33 (3, Suppl): S228-S240
  • 29 Putensen C, Zech S, Wrigge H , et al. Long-term effects of spontaneous breathing during ventilatory support in patients with acute lung injury. Am J Respir Crit Care Med 2001; 164 (1) 43-49
  • 30 Varpula T, Valta P, Niemi R, Takkunen O, Hynynen M, Pettilä VV. Airway pressure release ventilation as a primary ventilatory mode in acute respiratory distress syndrome. Acta Anaesthesiol Scand 2004; 48 (6) 722-731
  • 31 Myers TR, MacIntyre NR. Respiratory controversies in the critical care setting: does airway pressure release ventilation offer important new advantages in mechanical ventilator support?. Respir Care 2007; 52 (4) 452-458 , discussion 458–460
  • 32 Cole AGH, Weller SF, Sykes MK. Inverse ratio ventilation compared with PEEP in adult respiratory failure. Intensive Care Med 1984; 10 (5) 227-232
  • 33 Tharratt RS, Allen RP, Albertson TE. Pressure controlled inverse ratio ventilation in severe adult respiratory failure. Chest 1988; 94 (4) 755-762
  • 34 Maxwell RA, Green JM, Waldrop J , et al. A randomized prospective trial of airway pressure release ventilation and low tidal volume ventilation in adult trauma patients with acute respiratory failure. J Trauma 2010; 69 (3) 501-510 , discussion 511
  • 35 Gonzalez M, Arroliga A, Frutos-Vivar F , et al. Airway pressure release ventilation versus assist-control ventilation: a comparative propensity score and international cohort study. Int Care Med. 2010; 36 (5) 817-827
  • 36 Froese AB. High-frequency oscillatory ventilation for adult respiratory distress syndrome: let's get it right this time!. Crit Care Med 1997; 25 (6) 906-908
  • 37 Chang HK. Mechanisms of gas transport during ventilation by high-frequency oscillation. J Appl Physiol 1984; 56 (3) 553-563
  • 38 Fessler HE, Hager DN, Brower RG. Feasibility of very high-frequency ventilation in adults with acute respiratory distress syndrome. Crit Care Med 2008; 36 (4) 1043-1048
  • 39 Derdak S. High-frequency oscillatory ventilation for acute respiratory distress syndrome in adult patients. Crit Care Med 2003; 31 (4, Suppl): S317-S323
  • 40 Sud S, Sud M, Friedrich JO , et al. High frequency oscillation in patients with acute lung injury and acute respiratory distress syndrome (ARDS): systematic review and meta-analysis. BMJ 2010; 340: c2327
  • 41 Young D, Lamb SE, Shah S , et al; OSCAR Study Group. High-frequency oscillation for acute respiratory distress syndrome. N Engl J Med. 2013; 368 (9) 806-813
  • 42 Ferguson ND, Cook DJ, Guyatt GH , et al; OSCILLATE Trial Investigators; Canadian Critical Care Trials Group. N Engl J Med 2013; 368 (9) 795-805
  • 43 Plataki M, Hubmayr RD. The physical basis of ventilator-induced lung injury. Expert Rev Respir Med 2010; 4 (3) 373-385
  • 44 Bollen CW, Uiterwaal CS, van Vught AJ. Cumulative metaanalysis of high-frequency versus conventional ventilation in premature neonates. Am J Respir Crit Care Med 2003; 168 (10) 1150-1155
  • 45 Courtney SE, Durand DJ, Asselin JM, Hudak ML, Aschner JL, Shoemaker CT. Neonatal Ventilation Study Group. High-frequency oscillatory ventilation versus conventional mechanical ventilation for very-low-birth-weight infants. N Engl J Med 2002; 347 (9) 643-652
  • 46 Chung KK, Wolf SE, Renz EM , et al. High-frequency percussive ventilation and low tidal volume ventilation in burns: a randomized controlled trial. Crit Care Med 2010; 38 (10) 1970-1977
  • 47 Campbell RS, Branson RD, Johannigman JA. Adaptive support ventilation. Respir Care Clin N Am 2001; 7 (3) 425-440 , ix
  • 48 Iotti GA, Polito A, Belliato M , et al. Adaptive support versus conventional ventilation for total ventilator support in acute respiratory failure. Int Care Med 2010; 36 (8) 1371-1379
  • 49 Veelo DP, Dongelmans DA, Binnekade JM, Paulus F, Schultz MJ. Adaptive support ventilation: a translational study evaluating the size of delivered tidal volumes. Int J Artif Organs 2010; 33 (5) 302-309
  • 50 Laubscher TP, Heinrichs W, Weiler N, Hartmann G, Brunner JX. An adaptive lung ventilation controller. IEEE Trans Biomed Eng 1994; 41 (1) 51-59
  • 51 Laubscher TP, Frutiger A, Fanconi S, Jutzi H, Brunner JX. Automatic selection of tidal volume, respiratory frequency and minute ventilation in intubated ICU patients as start up procedure for closed-loop controlled ventilation. Int J Clin Monit Comput 1994; 11 (1) 19-30
  • 52 Laubscher TP, Frutiger A, Fanconi S, Brunner JX. The automatic selection of ventilation parameters during the initial phase of mechanical ventilation. Intensive Care Med 1996; 22 (3) 199-207
  • 53 Weiler N, Eberle B, Latorre F, von Paczynski S, Heinrichs W. Adaptive lung ventilation (AVL). Evaluation of new closed loop regulated respiration algorithm for operation in the hyperextended lateral position [in German]. Anaesthesist 1996; 45 (10) 950-956
  • 54 Belliato M, Palo A, Pasero D, Iotti GA, Mojoli F, Braschi A. Evaluation of the adaptive support ventilation (ASV) mode in paralyzed patients. Int J Artif Organs. 2004; 27 (8) 709-716
  • 55 Tassaux D, Dalmas E, Gratadour P, Jolliet P. Patient-ventilator interactions during partial ventilatory support: a preliminary study comparing the effects of adaptive support ventilation with synchronized intermittent mandatory ventilation plus inspiratory pressure support. Crit Care Med 2002; 30 (4) 801-807
  • 56 Weiler N, Eberle B, Heinrichs W. Adaptive lung ventilation (ALV) during anesthesia for pulmonary surgery: automatic response to transitions to and from one-lung ventilation. J Clin Monit Comput 1998; 14 (4) 245-252
  • 57 Linton DM, Potgieter PD, Davis S, Fourie AT, Brunner JX, Laubscher TP. Automatic weaning from mechanical ventilation using an adaptive lung ventilation controller. Chest 1994; 106 (6) 1843-1850
  • 58 Dongelmans DA, Paulus F, Veelo DP, Binnekade JM, Vroom MB, Schultz MJ. Adaptive support ventilation may deliver unwanted respiratory rate-tidal volume combinations in patients with acute lung injury ventilated according to an open lung concept. Anesthesiology 2011; 114 (5) 1138-1143
  • 59 Branson RD. Dual control modes, closed loop ventilation, handguns, and tequila. Respir Care 2001; 46 (3) 232-233
  • 60 Branson RD, Davis Jr K. Dual control modes: combining volume and pressure breaths. Respir Care Clin N Am 2001; 7 (3) 397-408 , viii
  • 61 Ranieri VM. Optimization of patient-ventilator interactions: closed-loop technology to turn the century. Intensive Care Med 1997; 23 (9) 936-939
  • 62 Piotrowski A, Sobala W, Kawczyński P. Patient-initiated, pressure-regulated, volume-controlled ventilation compared with intermittent mandatory ventilation in neonates: a prospective, randomised study. Intensive Care Med 1997; 23 (9) 975-981
  • 63 Kocis KC, Dekeon MK, Rosen HK , et al. Pressure-regulated volume control vs volume control ventilation in infants after surgery for congenital heart disease. Pediatr Cardiol 2001; 22 (3) 233-237
  • 64 Guldager H, Nielsen SL, Carl P, Soerensen MB. A comparison of volume control and pressure-regulated volume control ventilation in acute respiratory failure. Crit Care 1997; 1 (2) 75-77
  • 65 D'Angio CT, Chess PR, Kovacs SJ , et al. Pressure-regulated volume control ventilation vs synchronized intermittent mandatory ventilation for very low-birth-weight infants: a randomized controlled trial. Arch Pediatr Adolesc Med 2005; 159 (9) 868-875
  • 66 Roth H, Luecke T, Lansche G, Bender HJ, Quintel M. Effects of patient-triggered automatic switching between mandatory and supported ventilation in the postoperative weaning period. Intensive Care Med 2001; 27 (1) 47-51
  • 67 MacIntyre NR, Sessler CN. Are there benefits or harm from pressure targeting during lung-protective ventilation?. Respir Care 2010; 55 (2) 175-180 , discussion 180–183
  • 68 Kallet RH, Campbell AR, Dicker RA, Katz JA, Mackersie RC. Work of breathing during lung-protective ventilation in patients with acute lung injury and acute respiratory distress syndrome: a comparison between volume and pressure-regulated breathing modes. Respir Care 2005; 50 (12) 1623-1631
  • 69 Randolph AG, Wypij D, Venkataraman ST , et al; Pediatric Acute Lung Injury and Sepsis Investigators (PALISI) Network. Effect of mechanical ventilator weaning protocols on respiratory outcomes in infants and children: a randomized controlled trial. JAMA 2002; 288 (20) 2561-2568
  • 70 Strickland Jr JH, Hasson JH. A computer-controlled ventilator weaning system. Chest 1991; 100 (4) 1096-1099
  • 71 Tong DA. Weaning patients from mechanical ventilation: a knowledge-based system approach. Comput Methods Programs Biomed 1991; 35 (4) 267-278
  • 72 Strickland Jr JH, Hasson JH. A computer-controlled ventilator weaning system: a clinical trial. Chest 1993; 103 (4) 1220-1226
  • 73 Jaber S, Delay JM, Matecki S, Sebbane M, Eledjam JJ, Brochard L. Volume-guaranteed pressure-support ventilation facing acute changes in ventilatory demand. Intensive Care Med 2005; 31 (9) 1181-1188
  • 74 Iotti GA, Braschi A. Closed-loop support of ventilatory workload: the P0.1 controller. Respir Care Clin N Am 2001; 7 (3) 441-464 , ix
  • 75 Dojat M, Harf A, Touchard D, Laforest M, Lemaire F, Brochard L. Evaluation of a knowledge-based system providing ventilatory management and decision for extubation. Am J Respir Crit Care Med 1996; 153 (3) 997-1004
  • 76 Dojat M, Harf A, Touchard D, Lemaire F, Brochard L. Clinical evaluation of a computer-controlled pressure support mode. Am J Respir Crit Care Med 2000; 161 (4 Pt 1) 1161-1166
  • 77 Lellouche F, Mancebo J, Jolliet P , et al. A multicenter randomized trial of computer-driven protocolized weaning from mechanical ventilation. Am J Respir Crit Care Med 2006; 174 (8) 894-900
  • 78 Rose L, Presneill JJ, Johnston L, Cade JF. A randomised, controlled trial of conventional versus automated weaning from mechanical ventilation using SmartCare/PS. Intensive Care Med 2008; 34 (10) 1788-1795
  • 79 Jaber S, Sebbane M, Verzilli D , et al. Adaptive support ventilation and pressure support ventilation behavior in response to increased ventilator demand. Anesthesiology 2009; 110 (3) 620-627
  • 80 Lellouche F, Brochard L. Advanced closed loops during mechanical ventilation (PAV, NAVA, ASV, SmartCare). Best Pract Res Clin Anaesthesiol 2009; 23 (1) 81-93
  • 81 Dongelmans DA, Veelo DP, Binnekade JM , et al. Adaptive support ventilation with protocolized de-escalation and escalation does not accelerate tracheal extubation of patients after nonfast-track cardiothoracic surgery. Anesth Analg 2010; 111 (4) 961-967
  • 82 Linton DM, Potgieter PD, Davis S, Fourie AT, Brunner JX, Laubscher TP. Automatic weaning from mechanical ventilation using an adaptive lung ventilation controller. Chest 1994; 106 (6) 1843-1850
  • 83 Sulzer CF, Chioléro R, Chassot PG, Mueller XM, Revelly JP. Adaptive support ventilation for fast tracheal extubation after cardiac surgery: a randomized controlled study. Anesthesiology 2001; 95 (6) 1339-1345
  • 84 Cassina T, Chioléro R, Mauri R, Revelly JP. Clinical experience with adaptive support ventilation for fast-track cardiac surgery. J Cardiothorac Vasc Anesth 2003; 17 (5) 571-575
  • 85 Petter AH, Chioléro RL, Cassina T, Chassot PG, Müller XM, Revelly JP. Automatic “respirator/weaning” with adaptive support ventilation: the effect on duration of endotracheal intubation and patient management. Anesth Analg 2003; 97 (6) 1743-1750
  • 86 Younes M. Proportional assist ventilation, a new approach to ventilatory support. Theory. Am Rev Respir Dis 1992; 145 (1) 114-120
  • 87 Grasso S, Ranieri VM. Proportional assist ventilation. Respir Care Clin N Am 2001; 7 (3) 465-473 , ix–x
  • 88 Dreher M, Kabitz HJ, Burgardt V, Walterspacher S, Windisch W. Proportional assist ventilation improves exercise capacity in patients with obesity. Respiration 2010; 80 (2) 106-111
  • 89 Moderno EV, Yamaguti WP, Schettino GP , et al. Effects of proportional assisted ventilation on exercise performance in idiopathic pulmonary fibrosis patients. Respir Med 2010; 104 (1) 134-141
  • 90 Mitrouska J, Xirouchaki N, Patakas D, Siafakas N, Georgopoulos D. Effects of chemical feedback on respiratory motor and ventilatory output during different modes of assisted mechanical ventilation. Eur Respir J 1999; 13 (4) 873-882
  • 91 Sinderby C. Neurally adjusted ventilatory assist (NAVA). Minerva Anestesiol 2002; 68 (5) 378-380
  • 92 Sinderby C, Navalesi P, Beck J , et al. Neural control of mechanical ventilation in respiratory failure. Nat Med 1999; 5 (12) 1433-1436
  • 93 Coisel Y, Chanques G, Jung B , et al. Neurally adjusted ventilatory assist in critically ill postoperative patients: a crossover randomized study. Anesthesiology 2010; 113 (4) 925-935
  • 94 Terzi N, Pelieu I, Guittet L , et al. Neurally adjusted ventilatory assist in patients recovering spontaneous breathing after acute respiratory distress syndrome: physiological evaluation. Crit Care Med 2010; 38 (9) 1830-1837
  • 95 Bengtsson JA, Edberg KE. Neurally adjusted ventilatory assist in children: an observational study. Pediatr Crit Care Med 2010; 11 (2) 253-257