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Abstract: The issue considered in the current study is the problem of adaptive distributed estimation based on diffusion strategy
which can exploit sparsity in improving estimation error and reducing communications. It has been shown that distributed
estimation leads to a good performance in terms of the error value, convergence rate, and robustness against node and link
failures in wireless sensor networks. However, the main focus of many works in the field of distributed estimation research is on
convergence speed and estimation error, neglecting the fact that communications among the nodes require a lot of
transmissions. In this work, the focus is on a solution based on sparse diffusion least mean squares (LMS) algorithm, and a new
version of sparse diffusion LMS algorithm is proposed which takes both communications and error cost into account. Also, the
computation complexity and communication cost for every node of the network, as well as performance analysis of the
proposed strategy, is provided. The performance of the proposed method in comparison with the existing methods is illustrated
by means of simulations in terms of computational and communicational cost, and flexibility to signal changes.

1 Introduction

In this paper, we consider the problem of distributed diffusion
estimation over an adaptive network [1] which can exploit sparsity
in improving estimation error and reducing communications. In
distributed adaptive network, the parameter values of interest are
estimated using collaboration among the nodes, and the running
estimation algorithm can easily adapt to the changes of network
conditions quickly. Furthermore, the range of communications in
the distributed adaptive network is small since the transmissions
are allowed only between the neighbour nodes. Hence, the
communication cost, bandwidth usage, and power consumption are
lower than the centralised network. As a result, numerous
applications, such as environmental monitoring, transportation,
factory instrumentation, and new emerging usages in Internet of
things can benefit from distributed estimation methods [2—4].
Consider a wireless sensor network (WSN) which is deployed
in a field in order to estimate an interested unknown parameter
vector @, of size M X 1 by allowing the neighbour nodes to share
data and collaborate with each other. We assume that the vector w,
is sparse with K <« M non-zero coefficients. There are numerous
researches on estimating the vector w, using various kinds of
collaboration among the nodes. Recently, a lot of researches [1, 5—
7] have focused on this issue by using a diffusion mode of
cooperation among the nodes. However, the number of
communications can be reduced by using probabilistic diffusion
mode of cooperation, where each node is allowed to communicate
only with a subset of its neighbours [2]. Another typical mode of
cooperation between nodes is incremental, where each node
communicates only with its direct neighbour at each time instant
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Fig. 1 Modes of cooperation [2]
(a) Incremental, (b) Diffusion, (¢) Probabilistic diffusion

over a cyclic path in the network [2]. These modes of cooperation
are depicted in Fig. 1. However, in order to avoid the very costly
processing of finding cyclic paths covering the whole network,
which is sensitive to link and node failures, only diffusion mode of
cooperation is considered. Moreover, various adaptation algorithms
have been proposed to estimate the parameter vector @,. Diffusion
least mean squares (LMS) [1], diffusion recursive least-squares
(RLS) [8], incremental affine projection algorithm [9], and
diffusion affine projection algorithm [6] are some of the researches
performed in adaptive estimations networks.

Additionally, when the intended parameter vector w, is sparse,
which is the case in many applications of distributed estimation,
one can utilise this to improve the estimation error of adaptive
algorithms as in [7, 10]. Knowledge about the sparsity is mainly
used in compressed sensing (CS) to reconstruct the signal of
interest [11]. Focus of most initial CS recovery solutions is on the
batch methods, and the node(s) should recover the sparse signal
utilising a collection of fixed number of measurements. However,
batch algorithms are off-line, slow, and require high memory
capacity. Therefore, many adaptive (on-line) methods have been
proposed such that they are able to track changes of data over time
[6, 7, 12-14]. These methods have improved the estimation
performance of the distributed adaptive filtering for the purpose of
recovering the sparse vector @, but suffer from high
communication cost of the diffusion strategy. As mentioned earlier,
one method to alleviate this is to use probabilistic diffusion
strategy. Although this strategy can reduce communication cost, it
may lose the opportunity of using innovative measurements.

In this paper, the distributed diffusion estimation problem is
considered which uses sparsity of parameter vector @, for
improving estimation error and reducing communications. The
main contribution of this paper is to reduce communication cost at
the time of estimating a sparse parameter vector in WSNs. First, a
method to select and transmit the data necessary to recover the
sparse vector @, is proposed; so, the data transmission cost is
reduced in the network. Then, the cost function, which is
dependent on the proposed method for data transmission, is
developed. Although the proposed method demands extra
processing to find the proper data to be transmitted, additionally it
is proposed to benefit from the wisely selected data to reduce
processing cost, which can be interpreted as compensation for the



extra amount of processing required for the proposed method.
Next, the complexity of different operations needed to run the
algorithm at every node of the network is computed. Then, the
convergence condition, as well as the approximate steady-state
Mean square deviation (MSD) level, is computed for the proposed
algorithm. Finally, the performance of the proposed method is
illustrated through simulations and compared with the well-known
sparse diffusion LMS algorithm [7] which has low computational
requirements.

We use the following general notations throughout the paper:
(-)" is the complex conjugate; ( - )! is the transpose of a vector or

matrix; (-)" is the Hermitian transpose; (-)"*’ indicates the
solution to a problem; [E is the expectation operator; the symbol Iy
is the N X N identity matrix; 1 is N X 1 vector with unit entries;
[l - llos I - Il,, and || - || are the /p-norm, /;-norm, and /;-norm,
respectively; Anax( - ) is the largest eigenvalue of a matrix; tr( - ) is
the trace of a matrix; rank(-) is the rank of a matrix; ® is the
Kronecker product; diag{---} is a diagonal matrix where its
diagonal is formed from its arguments; vec{ -} is the column
vector obtained by stacking the columns of the input matrix on top
of each other; and [( - ) is the indicator function, where it returns 1
and 0 for non-zero and zero elements, respectively. We use
boldface lower case letters for the vectors and boldface upper case
letters for the matrices. Other symbols and notations will be
explained in their context throughout the paper.

The remainder of this paper is organised as follows. In Section
2, the estimation problem is described and the general class of the
distributed diffusion LMS algorithm is explained briefly. In Section
3, the proposed strategy to reduce amount of data which is to be
transmitted is explained. In Section 4, the computational
complexity as well as the required packet length to be broadcast are
computed. In Section 5, the analysis of proposed distributed
algorithm with reduced communication cost is studied. In Section
6, simulation results and comparisons are included. Finally in
Section 7, conclusions are presented and some possible future
extensions are pointed out.

2 Description of sparse diffusion LMS strategy

Consider a WSN with N nodes distributed over a given
geographical area in order to estimate unknown sparse parameter
vector

@y = [0)0.1,-~~7w0,M]T~ (D

It is assumed that the nodes in the network are connected to at least
one other node in the network with a point-to-point link; in WSNss,
two nodes are connected if they are in the transmission range of
each other. In addition, every two nodes are assumed to be
connected by some path in the network. These mean that the
network is assumed to be partially connected.

At every time instant i, each node k takes a noisy scalar
measurement d;(i) of the vector @, as

di(i) = ot (i) + (i), 2)

where u;(i) is the M X 1 random regression (or input) signal vector,
and (i) is the scalar additive Gaussian noise with zero mean and
variance o, ;. The cooperative sparse estimation problem can be
stated as the distributed minimisation of the cost function [7]

N
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where @ is a M X 1 vector, f(w) is a sparsity promoting penalty
function, and p > 0 is a regularisation parameter. Two common
choices for function f(w) are /;-norm penalty || @ ||;, leading to
zero attracting (ZA) update algorithms, and log-sum penalty
>l log(e + lw;l), leading to reweighed ZA (RZA) update
algorithms [15].

According to [1, 7], two kinds of adaptive diffusion algorithms
can be developed based on the cost function (3), adapt-then-
combine (ATC) and combine-then-adapt (CTA). However, we
cannot possibly rehash and explain the main technical steps from
[7] in this paper, because of space limitations. So, only the final
resulted algorithms based on ATC and CTA strategies are
represented.

ATC [7]: This strategy, as its name suggests, consists of two
steps at every iteration i of the algorithm. The first step is the
adaptation step, where each node k=1,...,N aggregates the
measurements {d,(i), u,(i)} from all of its neighbour nodes [ € /4,
where /4 is the set of neighbour nodes of node £ including node %

itself. Then, each node k& uses an adaptive algorithm such as LMS
and RLS to obtain a local estimate y; (i) of vector @, i.e.

vl = oli = D+ Y cpni)ei(i)
leNy 4)

—pep Of (@i (i — 1)),

where the LMS adaptive algorithm is chosen here and the strategy
is called LMS-ATC, w;(i — 1) is the estimate vector of iteration
i — 1, index / indicates the neighbour node / linked to node £, the
scalar value ¢(i) = di(i) — wf'(i — Duy(i) denotes the error
corresponding to the measurement {d(i),u,(i)} received from
neighbour [ € A4, vector df(x) is a sub-gradient of function f at
point x, the small positive coefficient {y;} is the step size of LMS
algorithm, and the real non-negative weighting coefficients {cy}
satisfy

Clk=0 lflf./Vk,
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which determine how much the measurements {d(i),u,(i)} of
nodes [ € ./ participate in the algorithm running at each node .
The second step of the algorithm running at the iteration i
begins when the nodes completed the adaptation step. This step is
called the combination step, and each node k& combines the
collected local estimates y(i) of all its neighbour nodes [ € /4 to

generate the estimate (i) of vector @, i.e.

o)=Y agp (i), 6)
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where the real non-negative weighting coefficients {ay} satisfy

ag=0 ifl& Ny, Zazk=1, %)
le Ny

which can be calculated through the uniform, the Metropolis, the
Laplacian, or the relative degree rules [1]. Therefore, the sparse
diffusion LMS-ATC strategy is written as

Sparse diffusion LMS-ATC strategy

Start with {w;(—1) =0} foralll=1,...,N
For each iteration ¢ > 0, each node k
performs the update:
Pi(i) = wi(i— 1) + pe Y, cnur(ile] (i)
lEN} (8a)
— pep Of (wip(i — 1))

wr()) = > apty(i)
1EN

(Adaptation)
(Combination) (8b)

CTA [7]: This strategy operates reversely, i.e. the combination
step is performed before adaptation step at each iteration i of the
algorithm. At the first step of CTA strategy, eachnode k = 1,...,N
collects and combines the previous estimates @;(i— 1) of its
neighbours [ € // to generate a local estimate y (i — 1) of vector
wy, i.e.
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where the real non-negative weighting coefficients {ay} satisfy (7).

In the second step of the algorithm, each node k& updates its
local estimate y;(i — 1) by an adaptive algorithm, using aggregated

measurements {d(7),u;(i)} from its neighbours [ € /47, to obtain
the estimate (i) of vector w,, i.e.

(D) =wili = 1)+ e Y cpaiei (i)
1€y (10)
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where again LMS adaptive algorithm is chosen for the adaptation
and the strategy is called LMS-CTA, the scalar value
(i) = di(i) — wi(i — Duy(i) denotes the error corresponding to the
measurement {d;(i),u,(i)} received from neighbour [ € A4, the
small positive coefficient {4} is the step size of LMS algorithm,
and the real non-negative weighting coefficients {c;} satisfy (5).
Thus, the sparse diffusion LMS-CTA strategy is written as

Sparse diffusion LMS-CTA strategy

Start with {w;(—1) =0} foralll=1,...,N
For each iteration ¢ > 0, each node &

performs the update:
Ypli—1) = > age(i—1)
1ENE
wi (i) =9y, = 1)+ Y cpur(i)e] ()
IEN (11b)
—ppp Of (P (i —1))  (Adaptation)

In order to save the space of the paper, instead of writing and
explaining everything for each strategy separately, one general
class of diffusion adaptation is formed which includes both the
ATC and CTA strategies as special cases [1]. Therefore, the general
class of distributed sparse LMS diffusion is written as

(Combination) (11a)

General class of distributed sparse LMS diffusion

Start with {w;(—1) =0} foralll =1,...,N
For each iteration ¢ > 0, each node k

performs the update:
éy(i—1)= > a1 pwi(i — 1) (Combination-T) (122)
lEN
Pi() = ¢ — 1)+ Y cpug(i)er (i)
1EN (12b)
—pepOf (é(i—1))  (Adaptation)

Z ag, 1k, (1), (Combination-II) (12¢)
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wi (i) =

where wy(i) is an estimate of vector @, at iteration i and at node
k, ¢ (i) and y, (i) are M X 1 local estimate vectors, index / indicates
the neighbour node / linked to node %, ¢,(i) = d,(i) — (b,ﬁ' (i — Duy(i)
is the error value corresponding to measurement {dy(7),u;(i)}
received from neighbour [ € /4, the small positive coefficient
{m} is the step size of LMS algorithm, and the real non-negative
weighting coefficients {cy, a, i, a, i} satisfy

k=t p=ap=0 if &N (13a)

1Tc=1%, 174, =17, 174, =17, (13b)
where C, A,, and A, are the N X N matrices with individual entries
{cw ar > @y 1}, Tespectively.

The sparse diffusion LMS-ATC algorithm can be obtained by
substituting A, = Iy. Thus, the combination-I statement 12a
becomes ¢ (i — 1) = (i — 1), i.e. the combination-I statement is
eliminated and only the adaptation 12b and combination-II 12¢
statements will remain. Similarly, the sparse diffusion LMS-CTA

algorithm is obtained by substituting A, = Iy, which eliminates the
combination-II statement 12c, i.e. @wy(i) = w;(i), and only the
combination-I 12a and adaptation 12b steps will be running.

The performance analysis of LMS-ATC and LMS-CTA
algorithms has been well studied in [7]. However, these algorithms
require that every node of the network transmits its measurement
data and its (local) estimate vector at each iteration of the
algorithm. The focus of the next section is on reducing the
communications among the nodes assuming that the vector @, is
sparse.

3 Proposed strategy

In this section, the method to select only the necessary data to be
shared with neighbours at each node is proposed; so the data
transmission cost is reduced in the distributed network. As can be
seen from 12, at each iteration i of the algorithm, each node &
transmits its measurement {d;(i), u;(i)} as well as its local estimate
(i) for the ATC strategy or its estimate wy(i — 1) for the CTA
strategy. When the signal to be estimated is long, use of algorithm
12 demands a great amount of data transmissions among the nodes
to obtain a common and feasible estimation of the desired signal
w,. Furthermore, the communication processes consume a great
deal of time and energy resources in wireless networks. Therefore,
we wish to reduce communication cost of the network. However, if
the desired signal, which should be estimated, is sparse, the burden
of long packet communications at the nodes can be reduced. Many
different strategies can be proposed to reduce the communication
cost. So the focus of this section is on a simple applicable method
which exploits the knowledge about sparsity of the signal.

Inspired by the partial update adaptive filters [16] and
distributed CS [17], a method to reduce the communication cost in
a distributed estimation network is proposed. In partial update
adaptive filters, some important taps of the filters which play an
important role in adapting the elements are selected to be updated.
However, here the most important elements is selected to be
transmitted in both adaptation and combination steps. Therefore,
our goal is reducing communication cost of the algorithm by
transmitting the important taps of both the regression signals and
local estimate vectors at every iteration such that each node k of the
network is able to obtain an estimate vector

(i) = [0 (i), ..., (D))" (14)

of the unknown sparse vector @,.

During running an estimation algorithm, there are two possible
states for the nodes. First one is the uncertainty state when the
distance between wy(i) and w, is high, i.e. the algorithms is in its
initial steps and has not converged yet. At this step there is little
information about the structure of w,, and therefore, it is difficult to
decide which elements are more important than others and should
be selected for transmission. After some iterations, the algorithm
begins to converge to the desired w,, which is called certainty state
in this paper; so, the nodes can find and send the elements which
participate more in the estimation process. This is the basis of our
proposed method. Here, certainty state is explained first.

3.1 Certainty state — partial transmission

As stated above, after some iterations, the algorithm starts to
converge and the errors get smaller. Finally, the errors reach to a
point where it is safe to say that the estimated vector at each node k&
is relatively close to the optimal vector @.

Convergence at node k begins when the error value of estimated
vector is below a predefined error constraint y;. In other words,
convergence starts when the error value corresponding to both the
data value d,(i) and input vector u,(i) from node / as well as the
estimated vector ¢;(i — 1) of node £ becomes smaller than y, i.e.

ldii) — i (i — Duy(i)1 < 7. (15)



In its memory, each node / has only its own ¢,(i — 1), and not its
neighbour's (i — 1). Since the data and estimated vectors are
shared and combined in the network, their values get closer to each
other when convergence occurs. Therefore, in the inequality (15)
the vector ¢ (i — 1) is substituted with ¢,(i — 1) and the error value

is compared with the constraint y; at node / before transmission.
Then, the inequality (15) can be rewritten as

ldi(i) — 1 (i — Duy(i)| < ;. (16)

When the node / is at this state, it interprets that the algorithm is
converged enough and it can concentrate on reducing
communication cost besides getting converged. So, it selects only
" <M specific elements of the input vector u;(i) to be
. . ().
transmitted and sets the rest to zero, i.e. it finds a vector " (i) of
the same size as vector u,(i) with z**’ non-zero elements, and then
transmits values and locations (or indexes) of the non-zero
(). .
elements. The vector uf" (i) should be computed in a way that the

error which it results does not differ much with the error
corresponding to the input vector u, (i), i.e. it is limited to a
constraint value y; =y, + €, where € is a small positive value. Let
us define S; at each node / as a diagonal M x M matrix whose
diagonal elements are 1s or Os and non-diagonal elements are Os.
Therefore, it is possible to find u;”(i) = Su,(i) at each node / such
that the error is limited to the constraint y; = y; + ¢, i.e.

ldi(i) — ¢y (i — DSa()! <7+ €. (17)

A proper S; to satisfy the inequality (17) (with a small € value) is
one such that d)}{(i — 1)Su,(i) contains most of the energy of

' = Dui), i.e.
E[lgi'G — DSm()F| > aiE[lgpi'i — Da(i)F]. (18)
It is possible to rewrite the left hand side of the inequality (18) as

E[lpi' — DSm ()

E[¢1'G — DSm(iyuf'i)Sigpy(i — 1)
(a
E[ (7' — DSm(iyul'i)Sipy(i — 1))

(19)

[
E|tr(w(Duf (DSt — D' — 1)S))]
= uf

wr(E[wul'@)Supii — Vi’ - DS])

(RRE)

)
(b)
c)

where Ry = E[u()uf'()S], Ry =E[¢(i — 1)p)'(i = 1)S}], and =
is the rank (or number of non-zero elements) of diagonal matrix S;.
Furthermore, the following facts are used in (19): (a) the trace of a
scalar value x is equal to x itself, i.e. tr(x) = x; (b) the two matrices
A and B can be switched inside the trace operator, i.e.
tr(AB) = tr(BA); (c) the trace and expectation are linear operators,
hence E(tr(A)) = tr(E(A)). Then, in order to select minimum
number of transmissions, each node / should choose the matrix S;
with minimum rank, i.e.

S}TM’ =arg min  rank(S))
§ (20)
s.t. tr(RDRG)) > antr(RYRyY),

where s.t. stands for the term ‘subject to’, 7**’ is the rank of the
. () ) . . .
matrix S ’, and S ’ is the selected matrix by which the

ol — l)S}T(*))uI(i) contains most of the energy of @} (i — Duy(i).

However, each node / wishes to find an adaptive
implementation for problem (20), i.e. it tries to find the
instantaneous approximation S;(i) to S;. So, let us represent the
input vector (i), and local estimate vector ¢§;(i — 1) as

(i) = [un(), ..., upa ()] (21a)

G — 1) = [l = 1), ..o i = D], (21b)

where u;(i) and ¢;(i — 1) for j=1,...,M are elements of vectors
u,(i) and @i — 1), respectively, and assume the input vectors u;(i)
are zero-mean Gaussian distribution with a diagonal covariance
matrices as

oon 0 o 0
0 2 0

A 22
0 0 - oy

where each variance o;, ; ; corresponds to each element u;;(i); hence,

it is possible to rewrite Ry} in (19) with instantaneous S;(i) as

Ry, = RYS(() . (23)

Therefore, an adaptive implementation can be obtained by
replacing the second-order moments by local instantaneous
approximations, as follows:

Grtj & lu (D) (24)

Hence, the right hand side of constraint in (20) can be rewritten as

M
w(RETREY) = D luy(dpryi = DF . (25)

=

Similar expression can be written for the left hand side of (20) as

w(RERG) = Y lw(i)gpyii = DF, 26)

JjE€J

where J is the set of indexes as J = {j:[S/(i)];; = 1}. Therefore,
problem (20) can be rewritten as

S;r(*))(l') =arg min  rank(S;(i))
Si(i)

s.t Yl — DF

e 7
M
> Yl igii— DF .

J=1

Since at the certainty state the vector ¢;(i — 1) is at the vicinity of
the optimal vector @,, some elements ¢;(i—1) of ¢Gi—1)
corresponding to the zero elements of the vector w, are closer to
zero. Then, the corresponding terms u;;(i)¢;;(i — 1) tend to be closer
to zero. Furthermore, whenever the elements u;(i) are small and
multiplied by elements ¢;;(i — 1), which results in a small value of
w;j(i)gyj(i — 1), then the elements u;;(i) will not have much effect on
the adaptation step. Therefore, the node can refrain from sending
the corresponding elements. However, the elements u;;({)¢;;(i — 1)
have large values only when both elements u;;(7) and ¢;;(i — 1) have
large values. Therefore, to solve problem (27) each node / sorts the
elements lu(i)¢p;;(i — 1)l in a descending manner, i.e.

i, Do, — DI > -+ = Ly, (Deppg, (i — D)1, (28)



where 0; is an index representing the 6;(i)th element of (7). Then,
it solves an equivalent version of the problem (27) as

7,(i) = arg min 7
T

s.t ) lug (D (i — DF 29)

J=1

> o Y luig (o i = DF

J=1

As a result, each node / should transmit the elements which
possibly participates in the energy of product qﬁlH(i— Duy(i) as
stated in the constraint of (20).

By solving for 7j*)(i) in problem (29), node / should select and
broadcast 7j*’(i)) number of elements of wu (i) and their

corresponding locations. At first, each node / computes the
following vectors:

@™ ""(0) = [, (1), wip (i), . g (D))" (30a)
07" "(i) = [0,), 6:(i), ..., O ()] (30b)
0% () = [0, 1), ... Oy (DT, (30¢)

~(*) . .
where @ (i) includes the selected elements of u(i) to be

. (). . . .
transmitted, 8" (i) contains the corresponding (non-zero) location
(%)
data, and 6" (i) indicates the zero location data which is the
. (o) .
complement of non-zero location data " ’(i). Then, it should

. @y @)
transmit data pair {&;” °(i),6, (i)}, where
~(*)) | .
0, (i) =arg min Il x 1l
xe oo o

(€2))

is the location data to be transmitted. In other words, when the size

. Gy
of non-zero location data vector @ ’(i) is smaller than

*)g e . R J D - L. S
77(i) = M/2, the whole size of data pair {@{" '(i),8; (i)} is
27}*(i) and hence communication is reduced. But whenever the

size of non-zero location data 0}1(*))(1') is greater than or equal to
M/2, the size of data pair to be transmitted is M and no reduction
in communication cost is obtained.

After transmitting the selected elements of #(i), node &
constructs an estimation u}’(*)’(i) of u(i) as a vector whose values
at each location 0;(i) are u,g/(i), and rest of the elements are set to
zero.

As sending a fraction of elements from node / causes change in
the corresponding error at the node £, i.e. ¢(i), we try to send

(). . I

measurements dj’ (i) corresponding to reduced vector @y (i)
. ()

and hence corresponding to uj7; "~

rewritten as

. To this end, the error ¢(i) is

el(i) = dii) — (i — Duy(i)
~ dii) — 1 — Dug(i)

= )= A= D - -
= d" ) - '~ Duf )
where
w(i) = uf" ") + uf”() (33a)

df’" ) = diti) = ¢ — Du”). (33b)

Therefore, the node / should send d}r(*))(i) as the new measurement
p ~ ()
value besides the pair {ﬁ}r( ))(i),0(l )(i)}. In other words, the data

to be transmitted is {d}r( ’ ))(i),ﬁ(f(*))(i),éf(*))(i)}. However,
computing this data demands extra processing at node /.

The reduced communication cost method is proposed at
adaptation step of the algorithm. The wireless network can use the
knowledge of sparsity of the signal to reduce communication cost
at the combination step as well. Now we focus on combination step
which occurs either before or after the adaptation step
corresponding to CTA or ATC strategies, respectively.

First, we consider the ATC strategy where each node /, after
performing adaptation step, prepares to send vectors (i) to its

neighbour k. But instead of (i) itself, it finds a vector y{"(i) by
selecting s,(i) largest elements of (i) which contain at least a, per
cent of the energy of vector w;(i) and setting the rest equal to Os,

then puts its non-zero elements in vector i (i) to be transmitted.
Therefore, in order to minimise the number of elements necessary
to transmit to its neighbour nodes it should solve the following
problem:
K;'(i) = argmin || Ky, (i) |,
K (34)
s.t. [ KyO) I” 2 a [y |

where K is a diagonal M X M matrix whose elements are 1s and Os,
and w{"(i) = K{”(i)y,(i). Solving the problem (34) for yw{’(i) is
similar to solving the problem (20). Similar to the former

explanations for reduced regressor vector transmission, each node /

should transmit y{’(i) with the corresponding location data 5}”0’).

So, the data pair {y{"(i), é}ﬁ(i)} is transmitted.

However, if the network is running with CTA strategy, the
problem to reduce the communications at the combination step is
K"() = argmin || Kay(i = 1) |l,
K (35)
st Ko =D 2 llog-1) 17,

where K is a diagonal M X M matrix whose elements are 1s and Os.
Similarly, after solving the problem (35), the vector
0"(i—1) = K’(i()wi — 1) can be obtained and the node !/

transmits the data pair {@}"(i — 1),0~(,s)(i)} to every neighbour & of

node /, where the vector &{"(i — 1) is the non-zero elements of

®”(i— 1), and é;‘g(z’) is the corresponding location data.

3.2 Uncertainty state

We define the uncertainty state as the state when the algorithm is
not converged enough to use the reduced communication method
explained. The uncertainty is generated when the problem (20) is
not solvable, i.e. there is no matrix S; such that the constraint in

(20) hold. Since S; is a diagonal matrix with elements 1s and Os,
this case happens only when the error at node / does not hold, i.e.

\dii) — )i = DayGi)| > ;. (36)

When this happens, node / cannot use the proposed method
explained at the certainty state, but if it wants to reduce
transmission cost, it might use other methods. However, in order to
maintain simplicity of the algorithm in this paper, no reduction in
communications is considered in uncertainty state and 7} (i) = M
is set. Then, the node l transmits data

* * ~(*)
(d™G) = dG), @G = ui), 0 (i) = {}) at adaptation step.
However, when the node [ is in this state it will send



Wi =i, 0,°6) = (1) or
(@G - 1) =wi — 1), ;") = {}} at combination step of ATC or

CTA strategies, respectively.

3.3 General class of diffusion estimations for reduced
communication method

As explained earlier, each node receives data from its neighbours
to do the adaptation or combination operation in the diffusion
mode. We use the methodology similar to [7] to develop the
adaptation and combination steps at the proposed reduced-
communication method. We know from the literature that the term
f(w) in (3) is added to the cost function to attract the elements
towards zero. We eliminate this term in our case since as the
algorithm is converging, the nodes try to share and combine the
data which contain the sparsity knowledge of vector @, in its
structure. Therefore, the proposed cost function with the reduced
communication is

N
ngob(w) A Z [E[ld,(f(m))(l') _ (UHu]‘f(*))(i)lz ) (37)
k=1

As a result, similar to [1], the general class of the proposed
distributed sparse LMS diffusion algorithm with reduced
communication cost can be written as

General class of the proposed distributed sparse

diffusion LMS with reduced communication cost

Start with wy(—1) =0forallk =1,...,N
For each iteration ¢ > 0, each node k&
performs the update:
bp(i—1)= > a1,lkwl<s)(i -1) (38a)

leN
Pi(i) = dp(i — 1)

o)y &y, A\ (38b
+ e Y apuf” ) (el(T )(’)) o
lEN},
w (i) = Z a2,zk¢l(s)(i)’ (38¢)
lEN}

where ¢ (i) = d* (i) — ¢ — Duf” (). As mentioned
earlier, the ATC and CTA sparse diffusion LMS algorithms can be
obtained by substituting A, =Iy or A,=1Iy, respectively.
Furthermore, the performance of our proposed algorithm in
comparison to the conventional LMS diffusion algorithm (3) will
be illustrated in the simulations section. The proposed algorithm
for communication cost reduction is depicted schematically in Figs.
2 and 3 for ATC and CTA strategies, respectively.

4 Computational complexity and communication
cost
In this section, the computational complexity and communication

cost of the proposed method is compared with the sparse diffusion
LMS strategy (3). It should be noted that since each node k£ knows

. . (*) . .
the non-zero locations of received vectors u); (i) (and w{"(i) or

®{”(i— 1)), we propose to use this information to reduce the

processing cost as well. For example, the product dii - l)u}r( H)(i)
in 38 can be calculated only by multiplying the 7;*’(i) non-zero
elements of u}T<*)’(z’) by the corresponding elements of ¢(i — 1)
which requires 7j*'(i) instead of M multiplications as well as
7*)(i) — 1 instead of M — 1 additions.

To calculate the required computations and communications at

each node & with |/ neighbours, where |/l is the cardinality of

neighbour set /'y, let us define the average Ty £(7) and sy (i) as

(%) N 1 (%)y+
ravg‘k(z)—mlgmn @ (39a)

1 .
Savg (i) = et ezmkw)' (39b)

Then, it is possible to compute the number of operations, such as
number of additions, multiplications, divisions, comparisons, and
sorting, and length of data to be transmitted at each node k, as
shown in Table 1.

It will be shown in the simulation section that the proposed
method does not require a large processing cost for the nodes of the
network. On the contrary, when the desired signal has zero
elements, the proposed method might even decrease processing as
well as communication cost after some iterations of the algorithm.

5 Performance analysis

In this section, the convergence condition and theoretical
approximate MSD of the proposed strategy are obtained. The
analyses of current section benefit from the studies on the LMS-
based diffusion algorithm in [1, 7]. To this end, suppose that the
nodes detect s > K locations of a vector @, as the support of vector

,. The matrix K{”(i) is assumed to be equal to K for all the

nodes / in the network. The matrix S}T(*))(i) is dependent on both w,
and the input vector u(i), but for the simplicity of analyses, its

. . - e
dependence on input vector is ignored. Similarly, matrix Si* (i) is

assumed to be equal to K" for all the nodes / in the network. Later
in the simulation section, it will be shown that these assumptions
do not change the convergence condition and will have very little
effect on the theoretical MSD value. To begin the analyses, first the
following error vectors are defined:

bs.400) 2 K (@) — (i), (40a)
Wil 2 KO, — (i), (40b)
@, 1(0) 2 K (@ — ay(i)). (40c)

Next, various quantities across all nodes of the network are
collected into block vectors as

B(D) 2 col{hs (D), ... P, (D)}, (41a)
W(i) £ col{yr ((D), .., W n()}, (41b)
(i) £ col{@y (i), ..., @, y(i)} . (41c)

Also, the extended weighting matrices are defined as

a2 A Q IuKY), (42)
Msz é Az ® (IMK(S))s (43)
G, 2CQ® UuKY). (44)

Furthermore, the following matrices and vectors are defined as

Mg = diag{pIuK®, ..., uyIuK™}, (45)

N

D) £ diag{ Y cn(i)(@)'K®,
= (46)

N
D i) i) 'K,

ceey
I=1
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Fig. 2 Proposed sparse diffusion LMS-ATC estimation with reduced communication cost
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Fig. 3 Proposed sparse diffusion LMS-CTA estimation with reduced communication cost
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Table 1 Number of calculations and communications at each node k with |.#,I neighbours

Traditional sparse diffusion LMS [7] Proposed
RZA ZA Adaptation and combination + Process

additions Gl + DM 31N M QIN L = DM + |Vl 70 1) + M
multiplications  GIA l +2M + 214 1+ 1 Gl L+ DM + 2101 + 1 2|/Vklfflig),k(i)+|/Vklsavg,k(i)+2|/Vk| + 3M +1
divisions M 0 0+ 0
comparisons M M 1+ 2M
sorting 0 0 0+ 2 vectors of size M
broadcast 2M +1 2M +1 22 (D) < M12) + Mz (i) > M/2)

+ 25 (DI (i) < M12) + M(s (i) > M/2) + 1

hy(i) 2 B col{ () K ui),

_ 47)
e VDY K ()}

Moreover, let

Ry 2 E[D,0)]
N N 48
= dlag Z C[]R,(j')[, ceey Z C[NR,(;)[ N ( )
=1 =1
@, £ E[(g,()(g,()]

T . 2 p© 2 (5) (49)

=%E; - diag{o, R}, ..., (7v,NRu,N} <6
where RS, = RK®. Therefore, the recursion formula for
network error vector can easily be obtained as

@i + 1) = oI — M D)) 30 ,(i)

—dL g (i 0
52 .Ygs(l) .

In order to study the performance analysis, a few assumptions are
considered about the measurement noise, regression vectors, and
the step sizes.

Assumption 1: Noise is an i.i.d. random variable and it is
statistically independent of the input regression vectors.

Assumption 2: All the regression vectors u, ; are spatially and
temporally independent.

Assumption 3: It is assumed that the step sizes y;'s are small; so

the high order terms in the analyses will be ignored using this
assumption.

5.1 Mean stability

By Assumption 1, it is inferred that 2(i) and @,(i) are
independent. Hence, by taking the expectation from the recursion
formula (48), the recursion formula for mean of network error
vector can be calculated as

El@yGi + D] = /(I — MR )ALE[(D)] . (51)

Therefore, similar to the methodology used in [1, 7], the condition
for convergence of the algorithm is obtained as

2
0<py < .
max /Ide(Ril\)l)
(52)
I=1,...,.N
s=1,...M

Since there is no prior information about the location of non-zero
elements of the parameter vector w,, one can easily show that

InaxREY) < Amax(RYY) holds for s=1,...,M. Therefore, the
convergence condition becomes

2

D,
max; = 1, N Amax(Ri |

0<m < (53)

which is similar to the convergence condition of the diffusion LMS
algorithm. This was expected since the proposed algorithm at worst
case is equal to the diffusion LMS algorithm when the constraint y;

is not properly selected.

5.2 Steady-state approximate MSD lower bound
The steady-state MSD of the diffusion LMS algorithm is defined as

N
. 1 ~ .
MSDyers 2 lim = > E[ [l @,40) I ] (54)
ndl R =3

By using the methodology similar to [1, 7, 12] and eliminating the
higher order terms according to Assumption 3, the network MSD
of the proposed strategy is calculated as

MSDiye( s = %[veo(gf}z/%szs/ﬁsmz)]T -

x (I = F,) 'vec(),

where
Fon By @ B, (56a)
B2 AL — MR)AT, (56b)

Now let us look at each mean square deviation term
[E[ Il @,:G) |I° ] in (54). As the number of zero elements increases,
less non-zero elements participate in this term, and thus its value
decreases. Therefore, for s > K, the following inequality holds:

MSDnet s = MSDye k - (57)

This means that the lowest steady-state MSD of the network that
the proposed method can obtain is approximately equal to
MSDnet -

6 Simulation results

In this section, simulation results are provided to show the
performance of the proposed method. We consider a connected
network with N =20 nodes. The input vectors u;(i) are of size

M = 100 drawn from zero-mean white Gaussian distribution with
covariance matrices R,%) = o, Iy with o, ; = 1.1. The noise power
o5 affecting each node k is chosen from a uniform distribution

between 0 and 0.01 or between 0 and 0.1. Furthermore, the
constraint y; = 0.5 for lower noise variance and y; = 1.0 for higher

noise variance, o = @, =99.99%, and step size u; =0.05 are
chosen for all the nodes in the experiments. However, since both
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RZA-ATC LMS diffusion algorithms

ATC and CTA strategies have similar results, only the results for
ATC strategy are presented in the experiments.

The aim of first experiment is to show the steady-state
performance of the proposed algorithm to estimate the sparse
signal and compare it with the sparse diffusion LMS algorithm of
[7]. The value p is selected 7.5 x 10~ for ZA and 2 x 107 for RZA
strategy, which are obtained by plotting the MSD versus p and then
selecting the proper p similar to [7]. These methods are denoted by
ZA-ATC and RZA-ATC in the figures, respectively. Furthermore,
the value of ¢ in RZA strategy is selected to be 0.1. The weighting
coefficients for the adaptation step are chosen uniformly as
cy = U1 for all [ € #y; so the nodes exchange data with each
other and participate at the adaptation step [1]. Moreover,
coefficients for the combination step are chosen according to the
relative degree combination rule as a, o = | A1/ Y c 4, | Nl for
alll € # [1].

Fig. 4 depicts the network steady-state MSD with different
sparsity ratios. For each sparsity ratio (e.g. 5/100), the vector @, is
set such that the sparsity per cent (e.g. 5%) of its elements are
randomly selected and set them equal to 1 and set the rest of
elements equal to 0. For each sparsity ratio, 100 simulations are
performed and their average steady-state MSD value is calculated.
As can be seen from Fig. 4, although our purpose is to reduce the
communication cost, the proposed method can outperform the ZA-
ATC LMS and RZA-ATC LMS algorithms considering the steady-
state MSD value. Especially, when the sparsity ratio is small, the
gap between them can increase much more. This shows that the
proposed algorithm can properly perform estimation of a typical
signal with various ranges of zero elements.

In the second experiment, we concentrate on different
capabilities of the proposed method such as flexibility with the
changes of the signal, and communication and processing cost. To
this end, first a vector with sparsity 1% is considered; after 200,
400, 600, 800 iterations, the sparsity of the signal is changed to 10,
20, 50, 100%, respectively. Then, the proposed algorithm is applied
to investigate if it can track the changes of signal quickly and if it
can achieve a low error value when estimating the signal.

Fig. 5 shows the MSD values of the proposed algorithm versus
the iteration. The ZA-ATC and RZA-ATC algorithms are also used
to estimate the signal with various sparsities. As can be seen from
the figure, the proposed method can adapt to the changes of signal
quickly. This is an important criterion which shows the
applicability of the proposed method. Furthermore, comparing it
with the ZA-ATC and RZA-ATC strategies, its MSD value
advantages over them can be seen once again.

Fig. 6 shows the average number of transmissions
corresponding to the plots of Fig. 5, which is one of the main goals
of the paper. It can be seen that as the algorithm converges, average
broadcast length of the transmission data is reduced. If the time
required for the network to perform all the transmissions in each
iteration 7 is considered, it might even be possible to reduce this
required time as well, and hence, speed up the convergence
process. However, the criteria such as battery consumption and
network life time can also be decreased due to shrinking packet
lengths.

Now the payoft that this algorithm poses on the network, i.e.
increasing processing complexity, is investigated. Fig. 7 shows the
average Tyue(i), and s,y,(i) of the whole network that illustrates how
the computed number of non-zero elements are decreased when the
signal is sparse or contains zero elements. However, as explained
earlier Tgééﬁ (D) and s, (i) are used to calculate average of every
individual operation in each node £, as shown in Table 1.

Finally, the average number of each operation for the entire
network is calculated and the results are presented in Fig. 8.
Comparing the processing operations required to implement ZA-
ATC LMS, RZA-ATC LMS, and the proposed algorithms, we
deduce that the only main effective extra processing for the
proposed method is implementing a sorting algorithm, which is
executed at most twice at each node in every iteration. However,
other important operations such as multiplications and divisions are
decreased when the signal to be estimated contains a noticeable
number of zeros. This shows that the proposed algorithm does not
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Fig. 9 Steady-state MSD value versus different maximum noise powers for
the proposed method with different sparsity ratios

pose much processing burden for the network, and in contrary at
some points, it may even reduce the processing complexity. This is
another important feature of the proposed algorithm.

In the third experiment, we evaluate the steady-state MSD value
of the proposed algorithm at different noise powers. To this end,
the maximum noise power of the nodes is changed from 0.001 to
0.2 step by step, and the steady-state MSD value is obtained by
simulations for different sparsities, i.e. K=1, 10, 20, 50, and 100.
Then, for the purpose of comparison, the corresponding theoretical
MSD values are obtained by theoretical formula, i.e. MSDyg x for
different K values. As it can be seen in Fig. 9, the simulations and
theoretical results are very close to each other. Furthermore, it can
be seen that the proposed algorithm uses sparsity to reduce the
estimation error for different values of noise power. Also note that
the theoretical MSD value is an approximation of its exact value
and the simulation MSD values in the plots of Fig. 9 are sometimes
a bit less than the theoretical values. The reason is that Assumption

3 is used to eliminate high order terms in (56a), and also K“ is

used instead of the matrix S}T(*])(i) to obtain the theoretical MSD
value. However, this difference is small enough to be ignored.

In addition, we have also performed the above simulations with
different network sizes, i.e. N = 100 and N = 1000. However, the
results showed little improvement in MSD value for all the
algorithms, but the advantages of the proposed strategy still exist
for these network sizes. Therefore, only the results for network size
N = 20 are included in this paper.

7 Conclusion

In this paper, a method to decrease the communication cost of the
diffusion based estimation algorithm is proposed. The proposed
method relies on the well-known diffusion ATC and CTA strategies
with an extra processing to select important elements and share
them among the network nodes. However, it is seen that by using
the proposed method the estimation accuracy is increased as well.
Later, it is shown that since each node receives only a partial
amount of data from its neighbours, the proposed method does not
pose high processing cost to the network. The simulation results
showed that running a sorting algorithm at most twice is the only
noticeable extra processing operation, where other operations are
reduced. On the other hand, the proposed method relies on the
selection of a constraint which depends on the noise of the
network. Moreover, the LMS-based algorithm is used to implement
the reduced communication method, where other algorithms such
as Affine projection (AP)-based algorithms, which need matrix
inversion, cannot be used directly in the sparse case and should be
altered accordingly. Therefore, selecting appropriate constraints,
developing other adaptive algorithms, and reducing the
communication cost in the uncertainty state, will be covered in
future works.
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