
Chapter 11

Energy-efficient methods for cloud
radio access networks

Kien-Giang Nguyen1,2, Quang-Doanh Vu2,
Le-Nam Tran3 and Markku Juntti2

Cloud radio access network (C-RAN) is an evolutionary radio network architecture
in which a cloud-computing-based baseband (BB) signal-processing unit is shared
among distributed low-cost wireless access points. This architecture offers a number
of significant improvements over the traditional RANs, including better network scal-
ability, spectral, and energy efficiency. As such C-RAN has been identified as one
of the enabling technologies for the next-generation mobile networks. This chapter
focuses on examining the energy-efficient transmission strategies of the C-RAN for
cellular systems. In particular, we present optimization algorithms for the problem
of transmit beamforming designs maximizing the network energy efficiency. In gen-
eral, the energy efficiency maximization in C-RANs inherits the difficulty of resource
allocation optimizations in interference-limited networks, i.e., it is an intractable non-
convex optimization problem. We first introduce a globally optimal method based
on monotonic optimization (MO) to illustrate the optimal energy efficiency perfor-
mance of the considered system. While the global optimization method requires
extremely high computational effort and, thus, is not suitable for practical imple-
mentation, efficient optimization techniques achieving near-optimal performance are
desirable in practice. To fulfill this gap, we present three low-complexity approaches
based on the state-of-the-art local optimization framework, namely, successive convex
approximation (SCA).

11.1 Introduction

Recent years witness the rapid evolution of wireless technologies toward the fifth-
generation (5G) mobile networks to adapt the ever-growing demand of mobile data
volumes [1,2]. From the perspective of RAN, novel network architecture, namely,
C-RAN, has been emerging as a powerful candidate to be implemented in 5G and
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beyond [3–5]. In fact, C-RAN has been named by 5G-PPP initiative as a key
technology for the 5G network architecture [6]. Moreover, the first C-RAN solutions
for commercial 5G have already been developed and released by several companies,
such as Nokia (with Nokia AirScale C-RAN) [7] or Ericsson [8]. Unlike the conven-
tional RAN where both BB signal-processing and radio frequency (RF) functionalities
are installed at base stations (BSs), BB units (BBUs) in the C-RAN are reintegrated
at a central cloud-computing-based platform, referred to as BBU pool. The BSs only
need to carry the radio interfaces that can be replaced by low-cost low-power access
points called remote radio heads (RRHs). The BBU pools are connected to RRHs by
high-speed fronthaul links that are used to exchange the BB and control signals. The
data is conveyed through the fronthaul links mainly following either data-sharing or
compression-based strategies. For the former, users’ messages are directly forwarded
from the BBU to a set of cooperative RRHs, where they are precoded/beamformed
before being transmitted [9,10]. Alternatively, the users’ messages are centrally pre-
coded/beamformed at the BBU in the latter strategy; the processed signals are then
compressed before being forwarded to RRHs [11,12].

The innovative architecture of the C-RAN brings a number of advantages over the
conventional distributed RAN architecture. The centralized signal-processing mech-
anism at the cloud across the connected RRHs can provide an efficient allocation
of radio and computing resources. This feature also leverages the advanced interfer-
ence management techniques, such as multicell cooperative transmission, to improve
the system capacity. In addition to spectrum efficiency, the C-RAN also provides
substantial gain in the energy efficiency of mobile networks. In particular, RRHs
with simplified architecture require much reduced amount of power consumption
compared to the traditional BSs. Moreover, centralized resource management allows
BBU pool controlling the connected RRHs for power-saving purposes, i.e., some
RRHs can be switched off if needed to save power consumption, while others remain
active to guarantee required users’ quality-of-service (QoS). However, one of the
critical bottlenecks for the deployment of the C-RAN in practice is the requirement
of high-speed fronthaul links. Regardless of the recent development in fronthauling
technologies, the capacity of fronthaul links is physically limited [13].

With the mentioned advantages, the C-RAN is currently identified as one of the
key enablers to the deployment of essential technologies in 5G to deal with the increas-
ing capacity demand, such as small-cell and/or heterogeneous dense networks [14].
In fact the use of low-power RRHs reduces the size of the cells. This allows to deploy
more cells in the same covering geographic area of the traditional BSs. In addi-
tion, intercell interference, which constitutes the main limiting factor to the dense
deployment, can be efficiently managed at the cloud by means of the centralized
signal processing. Nevertheless, such scenarios raise a concern over the huge amount
of power consumption required to operate a large number of electronic circuit ele-
ments involved. As a result, developing energy-efficient transmission strategies for the
C-RAN is deemed important. This chapter presents optimization algorithms for the
energy efficiency maximization problems in the C-RANs.

This chapter is organized as follows. In Section 11.2, we provide mathematical
preliminaries of optimization techniques that lay the foundations for the development



Energy-efficient methods for cloud radio access networks 297

of solutions for energy efficiency optimization in C-RANs. In Section 11.3, the system
model of a C-RAN and the formulation of the energy efficiency maximization problem
are described, followed by the application of the introduced optimization approaches
in Section 11.2 to the design problem.

11.2 Energy efficiency optimization: mathematical
preliminaries

A general energy efficiency maximization problem for wireless networks with data
rate as the desired QoS metric can be expressed as

maximize
x

f (x)

g(x)
(11.1a)

subject to hi(x) ≤ 0, i = 1, . . . , m, (11.1b)

where f (x) : R
n → R represents the data rate of the system, g(x) : R

n → R is the
corresponding total power consumption, and hi(x) : R

n → R (i = 1, . . . , m) defines
the design constrains, i.e., it can be a function of transmit power of a transmit-
ter or an antenna, user-specific QoS, fronthaul capacity, etc. Function hi(x) can
be either convex or nonconvex. In either case, (11.1) is a nonconvex program due
to the fractional structure of the objective [15]. In the special case where f (x),
g(x), and hi(x) (i = 1, . . . , m) are convex, (11.1) is quasi-concave program of which
globally optimum solutions can be derived by linearly (or even superlinearly) conver-
gent optimization methods such as Dinkelbach’s algorithms or Charnes–Cooper’s
transformations [15]. In wireless communications, this likely corresponds to the
noise-limited scenarios [16]. However, this is not the case of the C-RANs where multi-
ple RRHs serve multiple users using the same sources of time and frequency, creating
interference-limited channels. To be specific, the rate function in the C-RAN is non-
convex with respect to power or beamforming variables. In such scenarios, globally
optimal solutions of nonconvex program (11.1) can be found by the non-polynomial
time global optimization frameworks such as MO [16]. Nevertheless, such methods
are suitable for benchmarking purposes only as it often requires prohibitively high
computational complexity. In practice, efficient optimization approaches that tend to
yield near-optimal solutions using lower computational resources are more desirable.
In the following, we discuss global and local optimization frameworks that can be
used to solve (11.1).

11.2.1 Global optimization method: monotonic optimization

Numerous nonconvex optimization problems in wireless communications fall to the
class of MO [17]. These can be solved globally by a powerful algorithm in the frame-
work of MO, namely, branch-reduce-and-bound (BRnB). In this section, we provide
some backgrounds of the MO and describe the BRnB method. To proceed, some basic
concepts of MO are first introduced [18].
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Definition 11.1. For any two vectors x, y ∈ R
n, writing y ≥ x (y > x, resp.) means

yi ≥ xi (yi > xi, resp.) for every i = 1, 2, . . . , n. If a ≤ b, then the box [a, b] ((a, b],
resp.) is the set of all x ∈ R

n satisfying a ≤ x ≤ b (a < x ≤ b, resp.).

Definition 11.2. (Increasing function)A function f :Rn
+ → R is said to be increasing

on R
n
+ if f (x′) ≥ f (x) when x′ ≥ x.

Definition 11.3. (Normal set) A set S ⊂ [a, b] is said to be normal in [a, b] (or
briefly, normal) if x ∈ S ⇒ [a, x] ⊂ S . For a closed normal set S in [a, b], a point
x̄ is called an upper boundary point if the cone K x̄ � {x | x > x̄} contains no point
of x ∈ S .

The standard form of an MO problem is generally written as [18]

maximize
x

f (x) (11.2a)

subject to hi(x) − h̃i(x) ≤ 0, i = 1, . . . , m (11.2b)

x ⊆ B � [a; b], (11.2c)

where f (x), hi(x), and h̃i(x) (i = 1, . . . , m) are increasing functions of variable x ,
and B is the box containing the feasible set of (11.2) i.e., {x|hi(x) − h̃i(x) ≤ 0, i =
1, . . . , m} ⊆ B. Vectors a and b are the lower and upper vertices of B, respectively. We
consider here a mixed-variable vector x of size N containing binary and continuous
variables, i.e., xj ∈ {0, 1} for j = 1, . . . , s and xj ∈ R for j = s + 1, . . .N . The MO
problem can be solved by the BRnB method introduced in [18,19]. The following
presents the main steps of the BRnB.

Branch–reduce-and-bound algorithm
BRnB algorithm is an iterative procedure executing three basic operations at each
iteration: branching, reduction, and bounding. Starting from initial box [a; b], the
algorithm (i) iteratively divides it into smaller and smaller ones; (ii) removes boxes
that do not contain an optimal solution; and (iii) searches the remaining boxes for an
improved solution until an error tolerance is met. An example of the BRnB procedure
is illustrated in Figure 11.1.

It is worth mentioning that the BRnB algorithm was first developed for contin-
uous MO problems [19]. As a result, when applying to problems containing discrete
variables/feasible set as in (11.2), the algorithm may not return exact solutions of the
discrete variables, but approximated ones [18]. To avoid such drawback, a modifi-
cation of the BRnB was later developed for the discrete optimization programs in
which an adjustment step is additionally applied to the discrete variables to map them
into the corresponding discrete set. The details of BRnB method solving (11.2) are
provided next.

For the ease of exposition, we introduce the following denotations that are used
throughout this section: ej is a unit vector such that [ej] = 1 and [ei] = 0 if i 
= j; n
counts the iteration index; Bn denotes the set of candidate boxes at the nth iteration and
V = [p; q] ∈ Bn denotes an arbitrary box in Bn; fUpB(V ) denotes the upper bound of
V , i.e., fUpB(V ) ≥ max{f (x) | hi(x) − h̃i(x) ≤ 0, i = 1, . . . , m, x ∈ [p; q]}; the current
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Kx̄ Optimal point
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Figure 11.1 Example of the BRnB procedure for branching and reduction
operations over two iterations: (a) Iteration 1 and (b) Iteration 2

best objective (CBO) stands for the known point in the feasible set that offers the best
objective value at the current iteration. Note that at the very first iteration, we have
B1 ≡ B, [p; q] ≡ [a; b], fUpB(V ) = f (b).

Branching
At iteration n, one box in Bn is picked to be branched into two new boxes. In partic-
ular, the candidate box, denoted as Vc, is bisected along the longest edge, which is
determined as l = arg max

1≤j≤N
(qj − pj). This results in two new smaller boxes of equal

size given by

V 1 = [p; q′] where q′
j =

⎧
⎪⎨

⎪⎩

qj if j 
= l,

0 if j = l ≤ s,

qj − (qj − pj)/2 if j = l > s,

(11.3)

V 2 = [p′; q] where p′
j =

⎧
⎪⎨

⎪⎩

pj if j 
= l,

1 if j = l ≤ s,

pj + (qj − pj)/2 if j = l > s.

(11.4)

We note that Vc in general should be selected such that it has the largest upper bound
among boxes in Bn, i.e., Vc = arg max

V∈Bn
fUpB(V ) [19]. This is to ensure the monotonic

decrease (increase, respectively) of the upper bound (lower bound, respectively) of
the resulting boxes.
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Reduction
The newly created boxes may contain some portions of no interest, i.e., those have no
feasible solution, or if they do, their feasible points give objective values smaller than
the CBO. Thus, efficiently cutting such regions out of the box shall limit the feasible
space, thereby accelerating the convergence. The reduction step is developed for this
purpose. In particular, given a box V = [p; q], we use reduction cut to find a smaller
box, denoted as r(V ) � [p′; q′] ⊂ V , such that an optimal solution (if it exists in V )
must be contained in r(V ). In other words, we eliminate the portions [p; p′) and (q′; q]
that are checked to not contain an optimal solution. To do so, we replace p by p′ ≥ p
where p′ = q −∑N

j=1ρ
(1)
j (qj − pj)ej and

ρ
(1)
j = sup{ρ(1)|0 ≤ ρ(1) ≤ 1, hi(p) − h̃i(q − ρ(1)(qj − pj)ej) ≤ 0,

f (q − ρ(1)(qj − pj)ej) ≥ CBO}, for j = 1, . . . , N . (11.5)

To find q′, we replace q by q′ ≤ q where q′ = p′ +∑N
j=1ρ

(2)
j (qj − p′

j)ej and

ρ
(2)
j = sup{ρ(2)|0 ≤ ρ(2) ≤ 1, h(p′ + ρ(2)(qj − p′

j)ej) − h̃i(q) ≤ 0}. (11.6)

The values of ρ(1)
j and ρ(2)

j can be found easily using the bisection method.
Remark that for j = 1, . . . , s (i.e., binary variables), we have qj − pj = 1, and

thus, p′
j can be quickly obtained by

p′
j =

{
0 if hi(p) − h̃i(q − ej) ≤ 0

1 otherwise.

If p′
j = 0, then qj − p′

j = 1, and thus q′
j is computed as

q′
j =

{
1 if h(p′ + ej) − h̃i(q) ≤ 0

0 otherwise.

Bounding
Bounding is the most crucial operation to ensure the convergence of the branch-and-
bound-type methods in general and the BRnB method in particular. In this step, we
update the upper and lower bounds of the boxes after reduction (i.e., r(V ) � [p′; q′]).
Due to the monotonicity, i.e., p′ ≤ x ≤ q′ for any x ∈ r(V ), the upper and lower bounds
of box r(V ) can be simply found as fLoB(V ) = f (p′) and fUpB(V ) = f (q′), respectively.
The convergence is declared when fUpB(V ) − fLoB(V ) ≤ ε for small threshold ε > 0.

It is worth mentioning that if the newly updated upper bound of a box is smaller
than the CBO, we can remove that box to save the computational complexity. Thus,
together with bounding, efficiently updating the CBO is beneficial for improving the
algorithm’s efficiency.



Energy-efficient methods for cloud radio access networks 301

Algorithm 11.1: The SCA procedure solving (11.7)

1: Initialization: Set n := 0, choose an initial feasible point x(n)

2: repeat {n := n + 1}
3: Solve (11.9) and obtain optimal value x∗

4: Update x(n) := x∗

5: until Convergence
6: Output: x(n)

11.2.2 Local optimization method: successive convex
approximation

For a general nonconvex program, optimal solutions could be found applying
the branch-and-bound-type methods but with the price of extremely high com-
putational complexity. Instead, using local optimization approaches to arrive at
near-optimal solutions is more appealing in practice [20]. Among the local optimiza-
tion approaches, the SCA method is increasingly applied for nonconvex problems in
wireless communications and also other fields.

SCA is an iterative method that aims at locating a Karush–Kuhn–Tucker (KKT)
solution to a nonconvex program. The central idea is to iteratively approximate the
nonconvex parts by the proper convex ones [21,22]. The general procedure of the
SCA is outlined in Algorithm 11.1, and the details are discussed next. Let us consider
a general optimization program given by

minimize
x

f0(x) subject to {fi(x) ≤ 0, i = 1, ..., m}, (11.7)

where fi(x) (i = 0, . . . , l) are all continuously differentiable functions over R
N .

The feasible set is denoted as S (x) � {x ∈ R
N | fi(x) ≤ 0, i = 1, . . . , m}, which is

assumed to be a compact set. In S (x), we also assume that fi(x) (i = 0, . . . , l) are
convex functions and fi(x) (i = l + 1, . . . , m) are nonconvex ones. Clearly the problem
is nonconvex due to the last l − m constraints. The central idea of the SCA is to itera-
tively approximate fi(x) (i = l + 1, . . . , m) by its convex upper bounds [21,22]. More
specifically, given a feasible point x′ ∈ S (x), fi(x) (i = l + 1, . . . , m) is replaced by
a convex function f̃i(x, g(x′)) satisfying the following properties:

(a) fi(x) ≤ f̃i(x; gi(x′))

(b) fi(x′) = f̃i(x′; gi(x′)) (11.8)

(c) ∇xfi(x′) = ∇x f̃i(x′, gi(x′)),

for all S̃ (x; x′) � {x ∈ R
N |fi(x) ≤ 0, i = 1, . . . , l; f̃i(x, g(x′)) 
= 0, i = l +

1, . . . , m}, where gi(x′): R
N → R

K is a parameter vector. We remark that S̃ (x; x′)
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needs to satisfy Slater’s constraint qualification [21]. The replacement leads to the
following convex subproblem:

minimize
x

f0(x) subject to {x ∈ S̃ (x; x′)}. (11.9)

Since the optimal solution of (11.9), denoted as x∗, belongs to S̃ (x; x′) due to the
conditions (a) and (b), it is relevant to use x∗ to form subproblem (11.9) for the next
iteration. To be specific, let x(n) denote the optimal solution at iteration n, then the
feasible set of the subproblem at iteration n + 1 is S̃ (x; x(n)) (see Step 4 in Algorithm
11.1). The process is iteratively carried out until the convergence is established.

The update rule and the conditions (a) and (b) guarantee the convergence of
Algorithm 11.1. In particular, recall that S̃ (x; x(n)) is the feasible set of the subprob-
lem at iteration n + 1. Thus, as x(n+1) is the optimal solution obtained by solving
(11.9) with S̃ (x; x(n)), we immediately have f0(x(n+1)) ≤ f0(x(n)) since x(n) is a point
in S̃ (x; x(n)) due to (11.8)(a) and (b). This implies the monotonic decrease of the
sequence of objective values. As a result, the convergence is ensured given that the
feasible set S (x) is bounded. On the other hand, the convergence points satisfy
the KKT optimality conditions due to the properties (b) and (c) as shown in [21,22].

It is worth noting that if fi(x) (i = l + 1, . . . , m) are not differentiable but subdif-
ferentiable at x′, the algorithm can still produce a monotonically decreasing sequence
of objective because (11.8)(a) and (b) remain satisfied in this case. However, the
approximation function here may not hold (11.8)(c), and thus achieved solutions at
the convergence may not satisfy the KKT optimality conditions. Another remark is
that the objective f0(x) might be nonconvex in some applications. In such problems,
we can apply the SCA principle for f0(x), i.e., f0(x) is replaced by f̃0(x; g0(x′)) satisfy-
ing the conditions in (11.8) in the approximate problem (11.9). For more convergence
results of the SCA, we refer the interested readers to references [21–23].

Obviously, it is important to find the convex approximations that hold the
conditions in (11.8). We provide next some SCA-applicable functions and their
approximated formulations that hold conditions in (11.8). Those are useful to derive
SCA-based algorithms for the energy efficiency maximization problems.

Useful approximate formulations
● Fractional-linear function: φ(x, y) � x

y where (x, y) ∈ R
2
++. Its convex approxi-

mation is given by

φfrac(x, y; λ) � 0.5
(

λx2 + 1

λy2

)

, where λ = 1

x′y′ . (11.10)

● Quadratic-over-linear function: φ(x, y; H) � xHHx
y where x ∈ C

n, y ∈ R++, and
H � 0. The approximation of φ(x, y; H) can be achieved by means of the first-
order Taylor series, i.e.,

φqol(x, y;x′, y′;H) � φ(x′, y′;H) + 〈
[∇xφ(x′, y′;H),∇yφ(x′, y′;H)]T, [x − x′, y − y′]T

〉

= (x′)HHx′

(y′)2
y − 2�((x′)HHx)

y′ . (11.11)
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● Power function: φ(x; p) � xp where x ∈ R++. An approximation of φ(x; p) is

φpo(x; x′; p) � (p − 1)(x′)p − p(x′)p−1x. (11.12)

11.3 Cloud radio access networks: system model and energy
efficiency optimization formulation

We focus on examining the problem of beamformer design maximizing the network
energy efficiency of a downlink C-RAN taking into account the impact of capacity-
finite fronthaul links. To address the fronthaul limitation, the idea is to reduce the
amount of BB signals exchanged through the fronthaul links. This is done by selecting
a properly small subset of users associated with an RRH, giving rise to the RRH-
user association problem that is jointly designed with the transmit beamforming. In
addition, to exploit the potential energy efficiency gain of the C-RAN, RRH selection
scheme is used in which some RRHs are properly switched into a sleep mode for
power-saving purposes. Noticeably, RRH-user association and RRH selection are
commonly adopted in the resource allocation for the C-RAN to cope with the fronthaul
constraints and/or to improve the energy efficiency.

The energy-efficient designs for the C-RAN employing RRH-user association
and RRH selection have been addressed in some recent works [24,25]. Therein,
however, energy efficiency is improved by minimizing the total power consump-
tion [24,26]. Since the data rate is not jointly optimized in the objective, energy
efficiency performance achieved by such methods may be far from the optimal one.
Very recently, approaches addressing the energy efficiency objective in C-RAN have
been developed in [10,12,27], which are summarized herein.

We present a global optimization method to the joint design problem based on
the BRnB. For practical applications, we provide three suboptimal solutions based on
the SCA that aim at achieving near-optimal solutions but with remarkably reduced
complexity compared to the globally optimal method.

11.3.1 System model

We consider the downlink of a C-RAN in which R RRHs, each equipped with M
antennas,∗ cooperatively serve K single-antenna users following joint transmission
scheme [28]. In particular, data information for each user is transmitted from multiple
RRHs. In this section, we focus on the data-sharing-based fronthauling strategy.
Energy-efficient transmission designs for compression-based CRANs can be referred
to [12,27]. For notational convenience, we denote by R � {1, . . . , R} the set of RRHs,
and K � {1, . . . , K} the set of users. The transmit signals are processed at a common
BBU pool, which are then forwarded to the RRHs via finite-capacity fronthaul links.
A simplified model of the considered system is illustrated in Figure 11.2. The BBU
pool is assumed to perfectly know the channel state information associated with all
the users in the network. We denote by hi,k ∈ C

1×M the channel vector between RRH

∗The assumption on the number of equipped antennas for all RRHs is merely for notational simplicity.
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Figure 11.2 A simplified system model of the downlink of a multiuser C-RAN

i and user k . We also assume that linear beamforming scheme is adopted to form the
RF transmit signals at the RRHs. Let dk denote the unit-energy data symbol intended
for user k , i.e., E[|dk |2] = 1, and wi,k ∈ C

M×1 be the transmit beamformer for dk at
RRH i. The received signal at user k can be written as

yk =
(∑

i∈R

hi,kwi,k

)
dk

︸ ︷︷ ︸
desired signal

+
∑

j∈K \k

(∑

i∈R

hi,kwi,j

)
dj

︸ ︷︷ ︸
interference

+ nk

= hkwkdk +
∑

j∈K \k

hkwi,jdj + nk , (11.13)

where nk ∼ CN (0, σ 2
k ) is the additive white Gaussian noise at user k . In (11.13), we

have denoted hk � [h1,k , h2,k , . . . , hR,k ] ∈ C
1×MR and wk � [wT

1,k , wT
2,k , . . . , wT

R,k ]T ∈
C

MR×1 that are the aggregate vectors of all channels and beamformers from all RRHs
to user k , for notational simplicity. Assuming that each user decodes its own data
symbol while treating interference symbol as noise. Then the signal-to-interference-
plus-noise can be written as

γk (w) � |hkwk |2
∑

j∈K \k |hkwj|2 + σ 2
k

. (11.14)

Let rk be the achievable data rate transmitted to user k . To guarantee reliable com-
munication, the rate must be below the instantaneous mutual information between
channel input and output or the constraint

rk ≤ W log(1 + γk (w)), ∀k ∈ K ,

where W is the transmission bandwidth, must hold.



Energy-efficient methods for cloud radio access networks 305

11.3.2 Power constraints

The power used for transmission at RRH i should not exceed its available power
budget, denoted as Pi. The power constraint for RRH i can be expressed as

∑

k∈K

‖wi,k‖2
2 ≤ Pi, ∀i ∈ R.

In addition, the power amplifier (PA) of each antenna chain has the maximum RF
output power. Let [wi,k ]m denote the beamforming coefficient in vector wi,k corre-
sponding to antenna m, and w̃i,m � [[wi,1]m; [wi,2]m; . . . ; [wi,K ]m] ∈ C

K×1 stack all
[wi,k ]m. The RF power radiated at antenna m should satisfy:

∑

k∈K

|[wi,k ]m|2 = ‖w̃i,m‖2
2 ≤ Pant

i,m,

where Pant
i,m is the maximum RF output power at the antenna m of RRH i. Without loss

of generality, we assume that Pi = P̄, ∀i; and Pant
i,m = Pant, ∀i, m.

11.3.3 Fronthaul constraint

We assume that the maximum capacity of a fronthaul link is C̄. For feasible trans-
mission, the total data rate of the wireless physical layer of RRH i should not be
larger than C̄. It is noted that the fronthaul rate in each link is proportional to the
number of users served by the corresponding RRH. As a result, under the fronthaul-
constrained scenario, each RRH might not need to serve all users in the network, but
a smaller group of selected users to which it can potentially provide the best network
performance [9,25]. In such cases, the RRH-user association method is needed.

For the formulation purpose, let us define the following indicator function:

I(x) =
{

1 if x 
= 0

0 if x = 0
. (11.15)

Now we can present by the indicator function on the beamforming vector wi,k , whether
RRH i sends information to user k as

I(‖wi,k‖2
2) =

{
1 if ‖wi,k‖2

2 > 0

0 if ‖wi,k‖2
2 = 0

.

Accordingly, the aggregate data rate, which can be reliably transmitted by the wireless
interface of RRH i, is calculated as

∑
k∈K I(‖wi,k‖2

2)rk . Thus, the fronthaul constraint
can be expressed as

∑

k∈K

I(‖wi,k‖2
2)rk ≤ C̄, ∀i ∈ R.
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In practice, the values of C̄ range from tens of Mbits/s to tens of Gbits/s, depending on
fronthaul transport solutions (e.g., passive optical networks, fiber, microwave, Eth-
ernet cables, and wireless communications) and deployments/network requirements
(e.g., indoor, outdoor, and urban or rural environments) [14,29,30].

11.3.4 Power consumption

The power consumption is the crucial element to quantify the energy efficiency mea-
sure. In this section, we model the network power consumption following those
in [31–34] which includes three main components: power for operating electronic
circuits, power for signal processing and fronthauling, and power dissipated on PAs.

11.3.4.1 Circuit power consumption
A significant amount of power is required for operating the RF chain of RRHs (e.g.,
analog-to-digital or digital-to-analog converters, filters, and mixers) as well as the
elements of network infrastructure. Assuming that RRHs and the associated network
units are configured to be switchable between sleeping and active modes, each of them
consumes a dedicated power Pact and Psl, respectively, with Pact � Psl. For power-
saving purposes, an RRH should be put into a sleep mode when it does not transmit
to any user, and otherwise it is active when having data to transmit. To represent the
operation modes of the RRH, we can use the indicator function introduced in (11.15).
By noting that

∑
k∈K ‖wi,k‖2

2 is the total radiated power at RRH i, the operation modes
of the RRH can be interpreted as I(

∑
k∈K ‖wi,k‖2

2). The circuit power consumption
can be then modeled as [32,33]

Pcir(w) �
∑

i∈R

I

(
∑

k∈K

‖wi,k‖2
2

)

Pact +
∑

i∈R

(

1 − I

(
∑

k∈K

‖wi,k‖2
2

))

Psl + P0, (11.16)

where P0 includes the fixed power consumption to keep the network operating, e.g.,
power supply for the network infrastructures [32].

11.3.4.2 Signal processing and fronthauling power
The data needs to be encoded/decoded and modulated/demodulated. In general, a
higher data rate generally requires a larger codebook, and the larger number of bits
incurs higher power for encoding and decoding on the BB circuit boards. Moreover,
the fronthaul network transports the data signals, and, thus, also consumes power. In
fact, the power consumption for fronthauling varies with the data rate. For example,
in wireless fronthaul networks, higher fronthaul rate requires higher power consump-
tion. From this standpoint, the amount of power consumed for signal processing and
fronthauling is rate dependent. Assuming that this amount of power is linearly scaled
with the total fronthaul rate [31], the signal processing and fronthauling power can
be written as

PSP-FH(w, r) � δ
∑

i∈R

∑

k∈K

I(‖wi,k‖2
2)rk , (11.17)

where δ is a constant coefficient with unit W/(Gbits/s) and r � [r1, . . . , rK ]T.
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11.3.4.3 Dissipated power on PA
The amount of power dissipated on the PAs strongly depends on the PA’s efficiency
which is defined as the ratio between the total RF output power and the direct current
input power. Conventionally, PA’s efficiency is assumed to be a constant over the
operating range. However, this assumption may hold true for only some transceiver
types, in which advanced PA architectures can be implemented to make the PA’s
transfer function operating in its linear region (e.g., macro and micro BSs in LTE
systems). For smaller size and/or low-cost transmitter such as RRHs, such techniques
are expensive to employ [32]. Therefore, for this scenario, PA’s efficiency is highly
dependent on the output power region. To account for this, we consider the nonlinear
power consumption model of the PA, in which the PA’s efficiency is a function of its
radiated power [34,35], i.e.:

εi,m(w) �
√

Pant

εmax

√
∑

k∈K

|[wi,k ]i|2 = ε‖w̃i,m‖2, (11.18)

where ε �
√

Pant

εmax
and Pant and εmax ∈ [0, 1] are the maximum power of the PA and the

maximum PA’s efficiency, respectively. Following the definition of the PA’s efficiency,
the power consumed at the PA m of RRH i for radiating the signals outward the
antenna is

PPA,(i,m)(w) � ‖w̃i,m‖2
2

εi,m(w)
= 1

ε
‖w̃i,m‖2, (11.19)

which is clearly a function of the beamforming vector. From (11.19), the total power
dissipated on all the PAs is calculated as

PPA(w) � 1

ε

∑

i∈R

M∑

m=1

‖w̃i,m‖2. (11.20)

11.3.4.4 Total power consumption
To summarize, the total consumed power in the considered system, denoted as P(w, r),
can be expressed as

P(w, r) � Pcir(w) + PSP-FH(w, r) + PPA(w)

= 1

ε

∑

i∈R

M∑

m=1

‖w̃i,m‖2 + (Pact − Psl)
∑

i∈R

I

(
∑

k∈K

‖wi,k‖2
2

)

+ δ
∑

i∈R

∑

k∈K

I

(
∑

k∈K

‖wi,k‖2
2

)

rk + RPsl + P0︸ ︷︷ ︸

�Pc

. (11.21)
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11.3.5 Problem formulation

We focus on maximizing the overall network energy efficiency of the C-RAN
while satisfying the user-specific QoS constraints, fronthaul constraints, and power
constraints. In particular, the joint design problem of beamforming, data rate, and
RRH-user association and RRH selection design is expressed as

maximize
w,r

∑
k∈K rk

P(w, r)
(11.22a)

subject to rk ≤ log(1 + γk (w)), ∀k ∈ K (11.22b)

rk ≥ r0, ∀k ∈ K (11.22c)

∑

k∈K

I(‖wi,k‖2)rk ≤ C̄, ∀i ∈ R (11.22d)

∑

k∈K

‖wi,k‖2
2 ≤ P̄, ∀i ∈ R (11.22e)

‖w̃i,m‖2
2 ≤ Pant, ∀i ∈ R, m = 1, . . . , M . (11.22f )

where r0 is the predefined data rate threshold of a user. Problem (11.22) is a general
nonsmooth nonconvex optimization problem due to the nonconvex objective (11.22a)
and the constraints (11.22b) and (11.22d). In fact, by means of the RRH-user associ-
ation, the joint beamforming optimization in (11.22) can be viewed as finding group
sparse solutions of w. Hence we can apply some sort of sparse optimization algorithms
to solve (11.22) [25,36].

Nevertheless, (11.22) can be alternatively cast as a mixed integer program to
which a wider class of optimization tools are available. In particular, for beamforming
designs in wireless communications, indicator function (11.15) can be simplified by
the following constraints:

‖wi,k‖2 ≤ xi,k

√
P̄, xi,k ∈ {0, 1}, ∀i ∈ R, k ∈ K , (11.23a)

si ≥ xi,k , ∀k ∈ K ; si ≤
∑

k∈K

xi,k , si ∈ {0, 1}, ∀i ∈ R, (11.23b)

where xi,k can be seen as a preference variable representing the association between
RRH i and user k , i.e., RRH i does not transmit to user k if xi,k = 0, and it does if
xi,k = 1. Clearly we can see by (11.23a) that ‖wi,k‖2 = 0 if xi,k = 0, and ‖wi,k‖2 > 0
otherwise. Similarly, si is the preference variable representing the operating state of
RRH i, i.e., si = 0 if RRH i is in sleep mode, and si = 1 if RRH i is active. Constraint
(11.23b) is to tighten the relationship between si and xi,k , i.e., si = 1 if there exists
(i, k) such that xi,k = 1, and si = 0 otherwise. In other words, RRH i is active if it
transmits information to at least one user and sleeps if having no data to transmit.
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Based on the previous discussion, we can replace indicator I(·) by binary variables
xi,k and si and recast the considered problem as

maximize
w,x,s,r

∑
k∈K rk

P(w, r, s, x)
(11.24a)

subject to rk ≤ log(1 + γk (w)), ∀k ∈ K (11.24b)

rk ≥ r0, ∀k ∈ K (11.24c)

∑

k∈K

xi,k rk ≤ C̄, ∀i ∈ R (11.24d)

‖wi,k‖2 ≤ xi,k

√
P̄, xi,k ∈ {0, 1}, ∀k ∈ K , ∀i ∈ R (11.24e)

∑

i∈R

‖wi,k‖2
2 ≤ P̄, ∀i ∈ R (11.24f )

‖w̃i,m‖2
2 ≤ Pant, ∀i ∈ R (11.24g)

si ≥ xi,k , ∀k ∈ K ; si ≤
∑

k∈K

xi,k , si ∈ {0, 1}, (11.24h)

where x � [x1,1, . . . , xi,k , . . . , xR,K ]T, s = [s1, . . . , sR]T, and

P(w, r, s, x) � 1

ε

∑

i∈R

M∑

i=1

‖w̃i,m‖2 + (Pact − Psl)
∑

i∈R

si + δ
∑

i∈R

∑

k∈K

xi,k rk + Pc.

The new formulation is still a nonconvex optimization problem. However, (11.24)
allows the application of global optimization framework such as the ones in Section
11.2. In the following sections, we first introduce an optimal algorithm based on the
BRnB procedure to solve (11.24). Then efficient algorithms achieving near-optimal
performance are presented; two of which are derived based on(11.24) and the other
is based on (11.22).

11.4 Energy-efficient methods for cloud radio access networks

11.4.1 Globally optimal solution via BRnB algorithm

The BRnB algorithm cannot be applied to (11.24) since the optimization problem is not
in a standard monotonic form. In particular, we can quickly observe that the fractional
objective in (11.24a) is not an increasing function of the involved variables. Thus, the
idea is to apply the BRnB on an alternative problem, which admits a monotonic
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formulation while sharing the same optimal solution set with (11.24). To this end, we
consider the following formulation:

maximize
η,w,x,s,r,t

η (11.25a)

subject to ηP(s, x, r, t) −
∑

k∈K

rk ≤ 0 (11.25b)

M∑

m=1

||w̃i,m||2 ≤ ti, ∀i ∈ R (11.25c)

(11.24b)–(11.24h), (11.25d)

where η and t � [t1, . . . , tR]T are newly introduced variables and Ptotal(w, r, s, x)
is redefined as P(s, x, r, t) � 1

ε

∑
i∈R ti + (Pact − Psl)

∑
i∈R si + δ

∑
i∈R

∑
k∈K

xi,k rk + Pc. We can easily justify that (11.25b) and (11.25c) hold equality at the
optimality that guarantees the equivalence between (11.24) and (11.25) in terms of
optimal solution set. The application of the BRnB to (11.25) is inspired by the fol-
lowing key observations: (i) objective (11.25a) and constraints (11.24c), (11.24d),
(11.24h), and (11.25b) are monotone with respect to η, x, s, r, and t; (ii) given feasi-
ble values of (s, x, r, t), we can determine the corresponding beamforming vector w
by the following lemma.

Lemma 11.1. Let (x̂, ŝ, r̂, t̂, ŵ) be a feasible point of (11.25). Given the values of
(x̂, ŝ, r̂, t̂), then ŵ can be computed as

ŵ = find{w|(11.24b), (11.24e)–(11.24g), (11.25c)}, (11.26)

in which we replace (s, x, r, t) by (ŝ, x̂, r̂, t̂).

The proof of Lemma 11.1 can be found in [10]. Based on these observations, we
can develop a BRnB procedure to find optimal solution (x, s, r, t, η) of (11.25). The
optimal beamforming w can be derived accordingly by means of Lemma 11.1. This
is the central idea of the proposed algorithm as described next.

To apply the BRnB method introduced in Section 11.2.1, we first determine the
monotonic problem with respect to (s, x, r, t, η), i.e.,

maximize
η,x,s,r,t

η (11.27a)

subject to (11.24c), (11.24d), (11.24h), (11.25b) (11.27b)

[s, x, r, t, η] ∈ [a, b], (11.27c)

in which a � [s, x, r, t, η] and b � [s, x, r, t, η] define the lower and upper bounds of
the initial box. Vertices in a and b are calculated as follows. Since s and x are binary
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variables, hence sb = 0, sb = 1, xb,k = 0, xb,k = 1. By (11.22c), we have rk ≥ rk = r0,
and by (11.22b)

rk ≤ rk = min
{
C̄, log

(
1 + |hkwk |2/σ 2

k

)} ≤ min
{
C̄, log

(
1 + RP̄‖hk‖2

2/σ
2
k

)}
,

as |hkwk |2 ≤ ‖hk‖2
2‖wk‖2

2 by the Cauchy–Schwarz inequality, and ‖wk‖2
2 ≤ RP̄. We

also have ti ≥ ti = 0 and ti ≤ ti = M
√

Pant; and by (11.25b)

η �
∑

k∈K rk

P(s, x, r, t)
and η �

∑
k∈K rk

P(s, x, r, t)
. (11.28)

Since feasible set of (11.27) is upper bounded by the power and fronthaul constraints,
it satisfies the normal and finite properties required by the BRnB algorithm (see
Definition 11.3), thus, (11.27) is now in standard form of MO problem and can be
solved by the BRnB method.

Remark that our aim is to find optimal solutions of (11.25) through solving
(11.27). Therefore, we need to ensure that optimal solutions obtained by the BRnB
method are feasible to (11.25), thereby the desired optimal solutions can be found by
Lemma 11.1. To this end, every newly created box needs to be checked if potentially
containing feasible solutions to (11.25), otherwise that box should be eliminated. This
can be done by solving the following feasibility problem for a box V :

minimize
w

∑

i∈R

M∑

m=1

‖w̃i,m‖2 (11.29a)

subject to hkwk ≥
√

(erk − 1)
(∑K

j 
=k |hkwj|2 + σ 2
k

)
(11.29b)

siti ≤
M∑

m=1

||w̃i,m‖2 ≤ siti, i ∈ R (11.29c)

‖w̃i,m‖2
2 ≤ siP

ant, ‖wi,k‖2 ≤ xi,k

√
P̄, i ∈ R (11.29d)

∑

k∈K

‖wi,k‖2
2 ≤ siP̄ ∀i ∈ R. (11.29e)

Specifically, (11.29) can be viewed as minimizing the power consumption subject to
minimum users’rate requirement r given the power budget t and RRH-user association
x̄ and s. Obviously, if there does not exist any beamformer set making r achievable,
then V is infeasible to (11.25) and needs to be immediately discarded.

To summarize, the globally optimal method solving (11.25) is described in Algo-
rithm 11.2. Noticeably, we have made modifications to the standard BRnB procedure
in the algorithm so as to accelerate the convergence rate of Algorithm 11.2. These
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Algorithm 11.2: The BRnB algorithm solving (11.25)

1: Initialization: Compute a, b and apply box reduction to box [a; b]. Let n := 1,
B1 = r([a; b]) and fUpB(B) = η

2: repeat {n := n + 1}
3: Branching: select a box Vc = [p; q] ⊂ Bn−1 and branch Vc into two smaller

ones V 1
c and V 2

c , then remove Vc from Bn−1.
4: Reduction: apply box reduction to each box V l

c (l = {1, 2}) and obtain reduced
box r(V l

c ).
5: Bounding: for each box r(V l

c )
6: if solving (11.29) is feasible then
7: Achieve w∗, calculate t∗ and extract x∗.
8: Update t := t∗ and calculate fUpB(r(V l

c )) by (11.31).
9: Check x∗ with (11.33), if true, compute feasible objective η̂ as (11.32), and

update new CBO, i.e., CBO := max{η̂, CBO}.
10: Update Bn := Bn−1 ∪ {r(V l

c )|fUpB(r(V l
c )) ≥ CBO}.

11: end if
12: until Convergence
13: Output: With (x∗, s∗, r∗, t∗), recover w∗ by (11.26) to achieve the globally optimal

solution of (11.24), i.e., (w∗, x∗, s∗, r∗).

changes exploit some useful properties of the energy efficiency maximization in the
C-RAN. The modifications (compared to the generic framework) made in Algorithm
11.2 are presented next.

Improved branching dimension
Normally, one entry of [s, x, r, t, η] is branched at each iteration, and, thus, the total
number of iterations may increase exponentially with the problem size. Intuitively,
we can lower the computational complexity by minimizing the branching dimen-
sions while still guaranteeing convergence. For (11.25), it turns out that we can skip
branching on η and t. In particular, recall that lower and upper bounds of η can be
determined via those of [s, x, r, t] as (11.28). Thus, branching on η is not essential.
On the other hand, consider problem (11.29) and denote by w∗ the optimal solution
if solving (11.29) is successful, and t∗ � {t∗i }i with t∗i = ∑M

m=1 ‖w̃∗
i,m‖2. Obviously, t∗

is the minimum power required to achieve r, and it holds t ≤ t∗. Also, t∗ is unique
solution because of the structure of the objective in (11.29) [37, Chapter 3]. At this
point, we can replace t by t∗ to yield a tighter lower bound on t. Thus, it is sufficient to
only branch (x, s, r) as the lower bound on t is always improved with r. The presented
properties significantly accelerate the convergence of the BRnB.

Improved branching order
In principle, we can randomly select a variable to perform branching in each iteration
of the BRnB algorithm, because this operation does not delete any feasible solution.
For the considered problem, we can potentially reduce the computational complexity
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if we start the algorithm by first branching on s due to its dependency on other
factors. Intuitively, the number of active RRHs provides the degrees of freedom that
can make the desired data rate r achievable. Moreover, we can immediately obtain
xi,k = 0, ∀k ∈ K whenever si = 0, implying that the effective dimension in V is
reduced by K times. Therefore, by first keeping branching on s until s = s, we can
quickly determine that the combinations of {si}i make (11.25) infeasible. This is
done by solving (11.29) with given s and target rate r0 for all users. Moreover, since
the length of s is much smaller than that of x in most of wireless communications
applications, it is expected that branching on s may take a relatively small number of
iterations and, thus, may create a relatively small number of new boxes.

Improved upper bound
Upper bounding as in (11.28) is not tight enough and thus is inefficient for the
considered problem. To be specific, let us recall the lower bound of P(s, x, r, t), i.e.:

P(s, x, r, t) = 1

ε

∑

i∈R

ti + (Pact − Psl)
∑

i∈R

si + δ
∑

i∈R

∑

k∈K

xi,k rk + Pc, (11.30)

and observe that P(s, x, r, t) = ∑
i∈R ti/ε + Pc if x = 0 and s = 0. However, it

holds that
∑

i∈R si ≥ 1, since at least one RRH is active for transmission, and∑
i∈R

∑
k∈K xi,k rk ≥ ∑

k∈K rk because the fronthaul networks must at least con-
vey the minimum required data rate for all users. In other words, the second and third
terms in (11.30) are always nonzero. Moreover, from the result of solving (11.29)
feasible, we have t ≤ t∗. Thus, we can upper tighten the bound of P(s, x, r, t) as

P(s, x, r, t) ≤ P(s, x, r, t∗) �
∑

i∈R

1

ε
t∗i + (Pact − Psl) max

{

1,
∑

i∈R

si

}

+ δmax

⎧
⎨

⎩

∑

k∈K

rk ,
∑

i∈R,k∈K

xi,k rk

⎫
⎬

⎭
+ Pc.

One can see that replacing P(s, x, r, t) by P(s, x, r, t∗) does not remove any feasible
solution. As such a tighter upper bound on η over V can be recalculated as

η =
∑

k∈K rk

P(s, x, r, t∗)
. (11.31)

Updating the best current objective
As mentioned earlier in Section 11.2.1, boxes, the upper bounds of which are smaller
than the CBO, can be removed out of set Bn to reduce the complexity. Thus, efficiently
updating the CBO is deemed important for improving the algorithm’s efficiency. To
do so, we need to find a feasible point within each box in order to calculate the
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feasible objective value. In particular, let [ŝ, x̂, r̂, t̂] be some feasible point in box V .
The feasible objective is

η̂ =
∑

k∈K r̂k

P(ŝ, x̂, r̂, t̂)
. (11.32)

If η̂ > CBO, η̂ is updated to be the new CBO. We now present a heuristic method to
obtain a feasible point within box V . We first recall the feasibility problem (11.29)
and note that r is feasible if solving (11.29) is so. Thus, our idea is to set r̂ = r and
determine the values of the other variables (x̂, ŝ, t̂) corresponding to r. Particularly
for x̂, we can simply compute x̂ by setting x̂i,k = 0 if ‖w∗

i,k‖2 = 0 and vice versa
x̂i,k = 1 if ‖w∗

i,k‖2 > 0 where w∗ is an optimal solution obtained by solving (11.29).
The obtained solution is verified feasible if it stays in the feasible set of (11.27), i.e.,

x̂ ∈
{

x |
∑

i∈R

xi,k ≥ 1, k ∈ K ,
∑

k∈K

xi,k rk ≤ C̄, i ∈ R

}

. (11.33)

The value of ŝ is found based on x̂ according to (11.24h), while the value of t̂ is
t̂i = ∑M

m=1 ‖w̃∗
i,m‖2, ∀i ∈ R.

We can easily check that these modifications made in Algorithm 11.2 do not drop
off any feasible solution. As a result, Algorithm 11.2 is still guaranteed to converge
and its output is the globally optimal solutions of (11.24).

11.4.2 Suboptimal solutions via successive convex approximation

In general, a global optimization algorithm often takes enormous complexity to output
a solution that is in fact not practically preferable. Instead, it often serves as the perfor-
mance benchmark to evaluate the quality of other methods used in practice. Toward
more efficient algorithms, we next present three iterative suboptimal approaches that
aim at achieving near-optimal solutions but using much reduced computation. These
approaches apply different techniques to deal the binary variables, before employing
the SCA framework in Section 11.2.2 to find a stationary solution of the design prob-
lem. Noticeably, the first two methods are developed in accordance with formulation
(11.24), while the third method is based on (11.22).

11.4.2.1 SCA-based mixed integer programming
In the first method, we keep the binary variables unchanged while using the SCA
framework to convexify the nonconvex parts of problem (11.24) then solved using
modern mixed integer convex solvers. We shall refer this algorithm as SCA-MI in the
sequel.

To apply the SCA, recall that the nonconvexity must have a convex bound that
satisfies the conditions in (11.8). However, this is not the case of (11.24). Thus, we
first need to transform the problem into an equivalent form suitable for application of
the SCA. To be simple, we shall consider the following transformation of (11.24) of
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which the nonconvex parts have similar formulations with those introduced in Section
11.2.2, i.e.:

maximize
t,w,s,x,
r,g,q,v

∑
k∈K rk

t + δ
∑

i∈R

∑
k∈K v2

i

(11.34a)

subject to t ≥ 1

ε

∑

i∈R

M∑

m=1

‖w̃i,m‖2 +
∑

i∈R

(Pact − Psl)si + Pc (11.34b)

log(1 + gk ) ≥ rk ∀k ∈ K (11.34c)
K∑

j 
=k

|hkwj|2 + σ 2
k ≤ |hkwk |2

gk
, ∀k ∈ K (11.34d)

xi,k ≤ v2
i,k

rk
, ∀k ∈ K , ∀i ∈ R (11.34e)

∑

k∈K

v2
i,k ≤ C̄, ∀i ∈ R (11.34f )

(11.24c), (11.24e)–(11.24h), (11.34g)

where t, g � [g1, . . . , gK ]T, q � [q1, . . . , qK ]T, v � [v1, . . . , vR]T are newly intro-
duced slack variables. Specifically, the objective (11.24a) is equivalently rewritten by
(11.34a) and (11.34b) with t; (11.24b) is rewritten by (11.34c) and (11.34d) using g;
(11.24d) is replaced by (11.34e) and (11.34f) using v. It is easily checked that (11.24)
and (11.34) are equivalent in terms of the optimal set. We keep rewriting (11.34) as

minimize
θ∈S

f (θ ) � t
∑

k∈K rk
+ δ

∑
i∈R

∑
k∈K v2

i∑
k∈K rk

(11.35a)

subject to (11.34d), (11.34e), (11.35b)

where θ � {t, w, s, x, r, g, q, v} denotes the involved optimization variables and

S � {θ |(11.24c), (11.24e)–(11.24h), (11.34b), (11.34c), (11.34f)},
is the set of convex constraints of (11.34). The nonconvexity of (11.35a) and (11.35b)
is obvious due to the first term of objective and the right side of (11.34d) and (11.34e).
These are the SCA-applicable functions (cf. Section 11.2.2). The application of the
SCA to (11.35a) and (11.35b) is now straightforward. In particular, the nonconvex
constraints can be replaced by the following convex ones:

K∑

j 
=k

|hkwj|2 + σ 2
k ≤ φqol

(
wk , gk ; w(n)

k , g(n)
k ; h

H
k hk

)
(11.36)

xi,k ≤ φqol
(

vi,k , rk ; v(n)
i,k , r(n)

k

)
, ∀i ∈ R, k ∈ K , (11.37)
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in which the right side of (11.34d) and (11.34e) have been approximated using (11.11).
For the objective, the nonconvexity can be approximated by the function in (11.10).
As a result, we have the following approximate objective:

f (θ ; θ (n)) � φfrac

(

t;
∑

k∈K

rk ; λ(n)

)

+ δ
∑

i∈R

∑
k∈K v2

i,k
∑

k∈K rk
, (11.38)

where λ(n) = 1

t(n) ∑
k∈K r(n)

k

.

In summary, we solve the following approximate convex program of (11.35a)
and (11.35b) at every iteration of the SCA procedure outlined in Algorithm 11.3

minimize
θ∈S

f (θ ; θ (n)) subject to {(11.36), (11.37)}. (11.39)

The convergence of Algorithm 11.3 can be proved following the arguments in
Section 11.2.2 and those in the related references. Problem (11.39) is a mixed integer
convex program that can be solved effectively by off-the-shelf convex solvers such as
MOSEK [38].

It is interesting to see that most of constraints in (11.39) are second-order-
cone (SOC) representable except the logarithmic constraint in (11.34c) (cf. [39]
for SOC-presentable formulations). Thus, the complexity of solving (11.39) would
remarkably be reduced if (11.34c) can be approximated by SOC ones. For this pur-
pose, we can use approaches presented in [40]. By applying such method, the resulting
problem becomes SOC programming (SOCP) that allows more available off-the-
shelf convex solvers, such as CPLEX, GUROBI, applicable to solve it with lower
complexity.

The SCA-MI uses a significantly smaller number of iterations to find the solu-
tions compared to the BRnB method. In addition, it can achieve exact binary
solutions. However, since the SCA-MI method deals directly with binary variables
in each iteration, the per-iteration complexity is still relatively high, and so is the
total run time, as we shall see via numerical demonstrations. In the following,
we present the second and third approaches that have further lower per-iteration
complexity.

Algorithm 11.3: Proposed method for solving (11.34)

1: Initialization: Set n := 0, choose initial values for θ (0)

2: repeat {n := n + 1}
3: Solve (11.39) and achieve θ∗

4: Update θ (n) := θ∗

5: until Convergence
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11.4.2.2 SCA-based regularization method
The second method also aims at using the SCA framework to solve (11.24), achieving
exact binary solutions. Unlike the SCA-MI method, the binary variables here are
equivalently represented by a constraint of continuous variables. A regularization
technique is then applied to make the resulting problem to be SCA applicable. More
specifically, we first use the well-known polynomial constraint of binary variables
for x which is given by

xi,k ∈ {0, 1}, ∀i, k ⇔
∑

i∈R

∑

k∈K

x2
i,k − xi,k ≥ 0, xi,k ∈ [0, 1]. (11.40)

We can adjust the previous representation by the fact that x2
i,k − xi,k < 0 for xb,k ∈

(0, 1). For s, we simply relax it as si ∈ [0, 1] because si is automatically binary when
xb,k is so, which is due to (11.24h). In the sequel of this subsection, xi,k and si are
seen as continuous over [0, 1], ∀i, k . Now, to apply the SCA method, we can utilize
the transformation presented in the previous subsection which leads to the following
equivalent problem of (11.24):

minimize
θ∈S

f (θ ) subject to {xi,k , si ∈ [0, 1], (11.40), (11.34d), (11.34e)},
(11.41)

while two nonconvex constrains (11.34d) and (11.34e) can be handled by the same way
as done in Section 11.4.2.1. Unfortunately, (11.40) is not suitable for the use of the
SCA. This is because its convex approximation does not satisfy Slater’s constraint
qualification, which is the necessary condition for the SCA. To understand this,
let us apply the SCA principle to (11.40) resulting in the following approximate
constraint:

φpo(x; x′; 2) �
∑

i∈R

∑

k∈K

(
2xi,kx′

i,k − (x′
i,k )2

)−
∑

i∈R

∑

k∈K

xi,k ≥ 0, (11.42)

where x′
i,k ∈ [0, 1] is a feasible point in (11.41). It is not difficult to check that

the set {xi,k ∈ (0, 1)|φpo(x; x′; 2) > 0} is empty violating Slater’s condition. To cope
with this issue, we can apply the regularization technique [41,42]. In particular,
auxiliary variable q ≥ 0 is added to (11.41) to arrive at the following regularized
problem:

minimize
θ∈S

f (θ ) + αq (11.43a)

subject to
∑

i∈R

∑

k∈K

x2
i,k − xi,k ≥ q, xi,k , si ∈ [0, 1] (11.43b)

(11.34d), (11.34e). (11.43c)

In (11.43), the last term in the objective stands for the cost that (11.43b) is violated
when xi,k 
= {0, 1}, which is the objective to be minimized; α > 0 is the penalty
parameter. We can justify that the use of q allows (11.43b) to be satisfied for any
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xi,k ∈ [0, 1], and (11.43) is identical with (11.41) when q = 0. At this point, the
SCA algorithm can be applied to (11.43) similarly to Section 11.4.2.1, leading to the
following convex approximation problem solved at each iteration:

minimize
θ∈S ,q

f (θ ; θ (n)) + αq (11.44a)

subject to
∑

i∈R

∑

k∈K

(
2xi,kx(n)

i,k − (x(n)
i,k )2

)
−
∑

i∈R

∑

k∈K

xi,k ≥ q, xi,k , si ∈ [0, 1] (11.44b)

(11.36), (11.37). (11.44c)

We outline the procedure solving (11.43) in Algorithm 11.4. The convergence of the
method can be justified following the discussion in Section 11.2.2. An important
point in Algorithm 11.4 is that the value of penalty parameter α is increased at each
iteration, i.e., Step 5. We note that a high value of α will encourage q to be zero which
means that xi,k ∀i, k are binary values. Thus, the idea is to start Algorithm 11.4 with
a small value of α to prioritize minimizing the original objective and then increase α
in subsequent iterations to force q to be zero.

Remark: For Algorithm 11.4, our expectation is that the obtained solutions at the
convergence shall eventually be exact binary values. To ensure this, we can replace
(11.24e) by

‖wi,k‖2 ≤ xp
i,k

√
P̄, (11.45)

where p is a constant. This maneuver is inspired by two observations. First, for all
value p > 1, (11.45) is equivalent to (11.24e) if xb,k ∈ {0, 1}. Second, xp

i,k ≥ xp+1
i,k for

xi,k ∈ [0, 1] with p > 0 which means that:

‖wi,k‖2 ≤ xp+1
i,k

√
P̄ ≤ xp

i,k

√
P̄ ≤ · · · ≤ xi,k

√
P̄. (11.46)

Thus, this replacement is nothing but to tighten the feasible set of (11.41) such that
a tighter continuous relaxation can be obtained with higher values of p. Remark that
(11.45) for p > 1 is nonconvex constraints and its right side is the power function.

Algorithm 11.4: Proposed method for solving (11.43)

1: Initialization: Set n := 0, choose initial values for θ (0) and set α(0) small
2: repeat {n := n + 1}
3: Solve (11.44) and achieve θ∗

4: Update θ (n) := θ∗

5: Update α(n) := min{αmax;α(n−1) + ε} for small ε
6: until Convergence
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In light of the SCA principle, we can replace (11.45) by the following approximate
constraint when solving (11.44) (Step 3 in Algorithm 11.4), i.e.,

‖wi,k‖2 ≤ φpo
(

xi,k ; x(n)
i,k ; p

)√
P̄. (11.47)

We note that (11.45) has not been used in the development of the global optimization
algorithm and the SCA-MI method, since these methods do not work on the continuous
relaxation of the binary variables.

11.4.2.3 SCA-based �0-approximation method
In the third method, we use the formulation (11.22) to derive solutions for the joint
design problem. By viewing the joint design as finding sparse solutions of the beam-
formers, we can leverage the sparsity-based approach combining with SCA method
to solve the considered problem. In particular, the nonsmooth function I(·) is first
approximated by a continuous one using �0/�2 norm method [25,43]. As such the
SCA for the continuous optimization problem can be applied.

To proceed, we consider the simplified expression of (11.15)

I
(‖wi,k‖2

2

)⇔ I(ui,k ); I

(
∑

k∈K

‖wi,k‖2
2

)

⇔ I

(
∑

k∈K

ui,k

)

, where ‖wi,k‖2 ≤ ui,k ,

(11.48)

and ui,k is the slack variable associated with the power of wi,k . We justify (11.48)
by the fact that ui,k = 0 if ‖wi,k‖ = 0 and otherwise. We note that ui,k is addition-
ally introduced merely to make the presentation of the algorithm easier to follow,
as one can directly apply the method presented next on I(‖wi,k‖2

2) to find the solu-
tions. Following �0/�2 norm method, I(ui,k ) can be continuously approximated by
some (concave) functions. For example, Table 11.1 lists continuous approximations
of the indicator function that have often been used in sparse optimization problems in
wireless communications. We can see that I(ui,k ) � ψβ(ui,k ) when approximation

Table 11.1 �0-Approximation function ψβ(y) and the corresponding subgradient
∂ψβ(y) and first-order approximations ψ̄β(y;y(n)) [23]

Function ψβ (y) Subgradient ∂ψβ (y) Approximation ψ̄β (y; y(n))

Exp 1 − exp(−βy) βe−βy 1 − e−βy(n)
(1 − β(y − y(n)))

Capped-�1 min{1,βy}
{

0 if y ≥ 1
β

β if otherwise

{
1 if y(n) ≥ 1

β

βy otherwise
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parameter β is sufficiently large. Replacing I(ui,k ) by ψβ(ui,k ), we arrive at the
following continuously approximated problem (11.22):

maximize
w,r,u

∑
k∈K rk

P(w, r, u)
(11.49a)

subject to ‖wi,k‖2 ≤ ui,k ,
∑

k∈K

u2
i,k ≤ P̄, ∀b ∈ B (11.49b)

∑

k∈K

ψβ(ui,k )rk ≤ C̄ (11.49c)

(11.22b), (11.22c), (11.22f), (11.49d)

where P(w, r, u) = ∑
i∈R(

1
ε

∑M
i=1 ‖w̃i,m‖2 + (Pact − Psl)ψβ(

∑
k∈K ui,k ) + δ

∑
k∈K

ψβ(ui,k )rk)+ Pc. We note that (11.49) is still nonconvex but can be solved following
the same manner with those in the previous subsections. In particular, we first recall
the transformation:

minimize
t,w,r,g,u,v,x̃,s̃

t
∑

k∈K rk
+ pSP

∑
i∈R

∑
k∈K v2

i∑
k∈K rk

(11.50a)

subject to x̃i,k ≥ ψβ(ui,k ), ∀i ∈ R, k ∈ K (11.50b)

s̃i ≥ ψβ(
∑

k∈K ui,k ), ∀i ∈ R (11.50c)

t ≥ 1

ε

∑

i∈R

∑

k∈K

‖w̃i,m‖2 +
∑

i∈R

(Pact − Psl)s̃i + Pc (11.50d)

x̃i,k ≤ v2
i,k

rk
, ∀i ∈ R, k ∈ K (11.50e)

∑

k∈K

v2
i,k ≤ C̄, ∀i ∈ R (11.50f )

(11.22c), (11.22f), (11.34c), (11.34d), (11.49b). (11.50g)

In (11.50), x̃ � [x̃1,1, . . . , x̃i,k , . . . , x̃R,K ]T, s = [s̃1, . . . , s̃R]T are additionally introduced
to facilitate the transformation such that (11.50) has similar form with those noncon-
vex programs in Sections 11.4.2.1 and 11.4.2.2. Second, we apply the SCA to solve
the continuous problem (11.50). Observing that the nonconvexity of (11.50) is due to
the constraints (11.50b), (11.50c), (11.34d), (11.50e), and the objective. For the first
two constraints, they can be convexified as

x̃i,k ≥ ψ̄β

(∑
k∈K ui,k ;

∑
k∈K u(n)

i,k

)
(11.51)

s̃i ≥ ψ̄β

(∑
k∈K ui,k ;

∑
k∈K u(n)

i,k

)
, (11.52)

respectively, where ψ̄β(·) is the first-order approximation provided in Table 11.1. The
remaining parts of the nonconvexity are approximated as done in (11.36), (11.37),

ginguyen
Cross-Out

ginguyen
Cross-Out
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and (11.38), respectively. Finally, we arrive at the approximate convex program of
problem (11.50), i.e.:

minimize
θ̃∈S̃ f (θ̃ ; θ̃

(n)
) subject to {(11.36), (11.37), (11.51), (11.52)},

(11.53)

where θ̃ � {t, w, r, v, g, u, x̃, s̃} includes involved optimization variables and

S̃ � {θ̃ |(11.22c), (11.22f), (11.50d), (11.34c), (11.50f), (11.49b)},
defines the convex parts of (11.50). We describe the third suboptimal method in
Algorithm 11.5. Similarly to Algorithm 11.4, parameter β is also updated after each
iteration. The idea is the same as β is viewed to provide the tightness of the binary
approximation ψβ(·).

Convergence of Algorithm 11.5 is guaranteed following the discussion in Section
11.2.2. We remark that if the Capped-�1 function is adopted in the algorithm, the
achieved stationary point is not ensured to hold the first-order optimality of (11.50)
since the Capped-�1 function is not smooth.

11.4.3 Complexity analysis of the presented optimization algorithms

We now estimate the computational complexity of the optimization algorithms pre-
sented in this section. In particular, Table 11.2 provides the worst case per-iteration
complexity of Algorithms 11.2–11.5. Here, we remark that the complexity of

Algorithm 11.5: Proposed method for solving (11.50)

1: Initialization: Set n := 0, choose initial values for θ̃
(0)

and set β (0) small
2: repeat {n := n + 1}
3: Solve (11.53) and achieve θ̃

∗

4: Update θ̃
(n)

:= θ̃
∗

5: Update β (n) := min{βmax;β (n−1) + ε} for small ε
6: until Convergence and output θ̃

∗

Table 11.2 Estimated worst case per-iteration complexity of the optimization
algorithms presented in Section 11.2

Solved optimization program Per-iteration complexity

Algorithm 11.2 SOCP O(
√

R(K + M )R3K3M 3)
Algorithm 11.3 MI-SOCP O(2RK+R

√
R(K + M )R3K3M 3)

Algorithm 11.4 SOCP O(
√

R(K + M )R3K3M 3)
Algorithm 11.5 SOCP O(

√
R(K + M )R3K3M 3)
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Algorithm 11.2 is dominated by the step of solving the feasibility problem (11.29). For
suboptimal methods, the approximated programs solved at each iteration are general
convex programs but can be represented as SOCPs as discussed in [10,40]. Recall
that an SOCP can be solved by path-following interior-point method in most of the
available off-the-shelf convex solvers. Therefore, the complexity of the presented
optimization procedures can be estimated following [44, Lecture 6.6]. It is worth
noting that Algorithm 11.3 deals with the MI-SOCP (11.39) in each iteration. Indeed,
MI-SOCP is a combinatorial optimization problem. In some powerful convex solvers
such as MOSEK, the MI-SOCP can be solved by implementing conic branch-and-cut
and conic outer approximation frameworks [38]. Thus, its complexity is scaled expo-
nentially with the length of the involved Boolean variables and the size of the solved
SOCP.

We can see that Algorithms 11.2, 11.4, and 11.5 have similar computational cost
for each iteration. This is because they all deal with beamforming variables. This oper-
ation dominates the size of solved problems, i.e., the length of w is significantly larger
than the size of the other optimization variables. However, the use of Algorithm 11.2
is prohibited in practice due to the extremely high number of iterations required as will
be demonstrated in the numerical experiments. For Algorithm 11.3, its complexity
is higher than that of the other two suboptimal methods, because it needs to handle
the Boolean variables. Thus, Algorithm 11.3 is more suitable for problems of small
and moderate sizes. On the other hand, Algorithms 11.4 and 11.5 can be applied for
solving large-scale problems.

11.5 Numerical examples

We consider a network with R = 3 RRHs, each is equipped with M = 2 antennas,
and K = 4 single-antenna users. The RRHs are placed at the coordinates (−100, 0),
(100, 0), and (0, 100

√
3) m. Users are randomly distributed in the area covered by all

RRHs. We use the path loss model for the small-cell BS, i.e., 30 log10(Di,k ) + 38 +
N (0, 8) in dB where Di,k is the distance in meters between RRH i and user k . The
operating bandwidth is 10 MHz and the noise power density is −143 dBW. We set
P̄ = MPant, εmax = 0.55 [34] and δ = 0.5 (W/Mbits/s). The minimum required data
rate for each user is r0 = 1 bit/s/Hz. For the penalty parameters, we take αmax = 103,
βmax = 106 and initialize α(0) = 10−3 and β (0) = 0.1. All the convex programs in this
chapter are solved by MOSEK solver in MATLAB® environment [38].

11.5.1 Convergence results

The first set of experiments demonstrates the convergence behavior of the presented
optimization algorithms. We first show the convergence of the globally optimal
method, i.e., Algorithm 11.2, for one channel realization in Figure 11.3. In particular,
the figure plots the upper bound returned when Algorithm 11.2 proceeds for a random
channel realization. It is seen that the upper bound monotonically converges to the
optimal value. In the figure, we also illustrate the convergence of the BRnB procedure
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without applying the presented modifications in Algorithm 11.2. As expected, the
result clearly shows that the modifications provide remarkable improvement to the
convergence speed of the BRnB.

The convergences of the SCA-based suboptimal methods are illustrated in
Figure 11.4, where we plot the sequence of energy efficiency objectives obtained by
Algorithms 11.3, 11.4, and 11.5 over iterations for two random channel realizations.
For comparison purposes, the optimal objective value from the BRnB method for
each case of considered channel is also provided. As can be seen, the three suboptimal
approaches are able to converge to a very close optimal performance while requiring
much smaller number of iterations compared to the globally optimal method. We also
note that the SCA procedure in Algorithms 11.4 and 11.5 does not show monotonic
convergence behavior as first few iterations. This is because the impact of the updat-
ing the parameters in Algorithms 11.4 and 11.5, which is specifically discussed in the
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Figure 11.3 Convergence behavior of Algorithm 11.2 for one channel realization
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context of the next figure. In fact, when the parameters are fixed after some number
of iterations (i.e., α(n) = αmax for Algorithm 11.4 and β (n) = βmax for Algorithm 11.5),
these approaches perform the monotonic convergence.

Figure 11.5 illustrates the convergence of Algorithms 11.4 and 11.5 when the
parameters are fixed, i.e., α(n) = αmax and β (n) = βmax ∀n, respectively. Note that the
result is plotted using Channel realization 2 in Figure 11.4 for the ease of compar-
ison. We can see that the considered methods converge quickly and monotonically
(compared to the result in Figure 11.4), but the achieved performances are far from
the optimal values. On the other hand, increasing the value of the parameters over the
iterations uses more iterations. However, doing so provides a better performance.

To compare the suboptimal methods in terms of time complexity, we provide in
Table 11.3 the average per-iteration and total run time of Algorithms 11.3, 11.4, and
11.5. As expected, the SCA-MI requires significantly higher per-iteration run time
compared to the other methods and so does the total run time. This is because the
SCA-MI in fact still deals with the combinatorial optimization problem and, thus, has
high computational complexity, whereas the other two approaches only need to solve
the continuous one. We can also see thatAlgorithms 11.4 and 11.5 have approximately
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Figure 11.5 Convergence of Algorithms 11.4 and 11.5, when the parameters are
fixed, for one random channel realization with P̄ = 27 dBm,
C̄ = 200 Mbits/s

Table 11.3 Comparison on average per-iteration and total run time (s) of the
SCA-based suboptimal methods with P̄ = 27 dBm, C̄ = 200 Mbits/s

Run time (s) Algorithm 11.3 Algorithm 11.4 Algorithm 11.5

Per-iteration 0.9 0.03 0.02
Total 25 2 1.5
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similar run time complexity. This result is understandable since they solve the problem
with the similar size of involved variables.

11.5.2 Energy efficiency performance

The second set of experiments illustrates the energy efficiency performance of the
C-RAN. For comparison purposes, we provide the achieved energy efficiency of
the existing design that is the sum rate maximization for C-RAN in [9], dubbed
as maxSR. In addition, the optimal energy efficiency of the design without apply-
ing RRH-user association and RRH selection (i.e., full cooperation scenario) is also
plotted to demonstrate the significance of these selection schemes.†

Figure 11.6 shows the average energy efficiency versus the different setting of
transmit power P̄. Our first observation is that, in the average sense, the performances
achieved by the suboptimal algorithms are relatively close to that of the optimal one
in all cases of P̄. We can also see that the energy efficiency performances achieved
by the introduced methods first increase and then, after some point, decrease. The
result can be explained as follows. In an energy efficiency maximization problem,
when we increase the transmit power in the small value region of P̄, the increase in the
data rate often outweighs the increase of the power consumption. On the other hand,
when P̄ is large enough, the energy efficiency optimization mechanism tends not to
use all available transmit power. For the linear model of PA’s efficiency, the optimized
transmit power and data rate would remain unchanged as P̄ increases beyond a certain
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Figure 11.6 Average energy efficiency performances of the considered schemes
versus the maximum transmit power with C̄ = 200 Mbits/s

†In the full cooperation scenario, we solve problem (11.24) but with variables x and s being fixed as x = 1
and s = 1. In this regard, the fronthaul constraints in (11.24d) are replaced by the following one:

∑

k∈K

rk ≤ C̄.

The performance of this scheme is found by applying the BRnB algorithm to the resulting problem.
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value [45,46]. However, for the considered nonlinear model, a larger value of P̄
reduces the PA’s efficiency due to the nonlinear behavior of the PA as can been seen
by (11.18). This leads to the significant increase in the power consumption on PA,
and, thus, downgrades the energy efficiency. For the maxSR scheme in [9], the energy
efficiency performance monotonically decreases versus P̄. This is understandable,
since the sum rate performance of the maxSR is constrained by the fronthaul capacity
C̄. Thus, increasing P̄ does not result in the sum rate improvement when C̄ is fixed
but leads to the increase of the power consumption on the PAs, as discussed earlier.
On the other hand, the performance of the full cooperation scheme is inferior to
the others. To explain this, we recall that the optimized sum data rate for the full
cooperation transmission scheme is less than or equal to C̄. As a result, the achieved
sum rate is small when C̄ is so, and thus the optimized transmit power is small and
far from the maximum RF output power of the PAs. This implies the low efficiency
of the PAs resulting in high power dissipated on the RF chains. We shall see via
the next experiment that energy efficiency of the full cooperation scheme increases
significantly when C̄ grows sufficiently large.

In Figure 11.7, we plot the average energy efficiency performances versus the
maximum fronthaul capacity C̄. Similarly to Figure 11.6, we can observe a small gap
between the performance of the optimal and suboptimal schemes. Another important
observation is that the energy efficiency increases as C̄ increases for all considered
schemes and becomes saturated when C̄ is sufficiently large. The result can be under-
stood as follows. Recall that the capacity-finite fronthaul links restrict the number
of users that can be served by an RRH. In the small value region of C̄, increasing C̄
allows each RRH serving a larger set of users, which improves the cooperation among
the RRHs, i.e., more users can be served by multiple RRHs. This increases the system
cooperation gain and so does the system performance. When the fronthaul capacity
is large enough such that the additional cooperation gain provides no improvement
in the achieved performance, increasing C̄ does not change the performance. For the
full cooperation scheme, the energy efficiency increases proportionally with C̄ as
expected. However, in all cases of C̄, its achieved performance is far from that of the
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introduced methods. This result shows the benefit of the RRH-user association and
RRH selection in the fronthaul-constrained C-RAN designs.

11.6 Conclusion

In the C-RANs, the energy-efficient transmission strategies necessarily involve the
RRH-user association and RRH selection schemes to deal with the constraints of the
limited fronthaul capacity and to boost the energy efficiency. As such, the energy effi-
ciency optimization needs to deal with mixed integer nonconvex programs of which
optimal solutions are generally difficult to find. We have introduced a globally opti-
mal method via MO framework to access the optimal energy efficiency performances
of the considered C-RAN design. We have also discussed the possible modifications
on the generic global optimization framework to improve the optimal algorithm’s
efficiency, which are based on exploiting the specific properties of the C-RAN. The
presented global optimization methods can serve as benchmarks for the energy effi-
ciency optimization approaches in the C-RANs. For practically appealing methods,
we have discussed three suboptimal approaches via the SCA procedure. The presented
methods have been numerically shown to achieve very close to optimal performance
with much reduced complexity.

The introduced optimization algorithms in this chapter provide the design guide-
lines for not only the energy efficiency maximization, but also other resource
allocation problems in the C-RANs. Beyond the C-RAN architectures, many of the
presented methods are readily applicable to other wireless communications design
problems as well.

Some major challenges in the C-RAN need to be addressed in future research
[6,7,47]. One of the main practical issues is the requirement on strict phase-
synchronization among cooperative RRHs for coherent transmission. This poses a
barrier for practical C-RAN designs, especially in ultradense C-RANs where a very
large number of RRHs are co-deployed. A promising solution for this issue is to adopt
noncoherent transmission to C-RAN [48]. Another challenge for practical implemen-
tation of C-RAN is to meet the requirement of latency. In particular, the limited
capacity of the fronthaul links may cause a high latency as 5G RAN is expected to
transport a huge amount of data. Therefore, the BB signal rate requirement on the
fronthaul should be reduced. This could be done, e.g., by functional splitting such
that parts of BB signal-processing functionalities can be done at the RRHs and only
the really needed ones at the BBU [6,47].
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