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By means of density-functional calculations, we systematically investigated 24 transition metals
for possible metastable phases in body-centered tetragonal structure (bct), including face-centered
cubic (fcc) and body-centered cubic (bcc) geometries. A total of 36 structures not coinciding with
equilibrium phases were found to minimize the total energy for the bct degrees of freedom. Among
these, the fcc structures of Sc, Ti, Co, Y, Zr, Tc, Ru, Hf, Re, and Os, and bct Zr with c/a = 0.82
were found to be metastable according to their computed phonon spectra. Eight of these predicted
phases are not known from the respective pressure-temperature phase diagrams. Possible ways to
stabilize the predicted metastable phases are illustrated.

PACS numbers: 63.20.-e,64.60.My,71.15.Mb

I. INTRODUCTION

A metastable configuration of an element, alloy, or
compound possesses different, perhaps superior, proper-
ties than its stable counterpart. The most spectacular
demonstration of such behavior is probably embodied in
carbon whose mechanical, thermal, and optical proper-
ties vary greatly with the allotropic form [1].
The pressure-temperature phase diagrams of metal-

lic elements, including the technologically important
transition metals, are also rich in structural modifica-
tions [2, 3]. The properties of these high-pressure or
high-temperature bulk phases can, however, not be ex-
ploited under equilibrium conditions because the reverse
phase transition takes place upon unloading or cool-
ing. Surprisingly, the transition from a high-temperature
phase to a low-temperature phase can be suppressed in
nanometer-sized materials if the particle size or grain size
is smaller than a specific critical value [4–6]. An intrigu-
ing example are tens of nanometers large Co nanopar-
ticles stabilized in the fcc phase at ambient conditions
while bulk Co crystallizes in hexagonal close-packed
(hcp) structure [4, 7]. Besides cooling, other prepara-
tion routes like high-pressure torsion, milling, epitax-
ial growth, chemical reduction, and microwave irradia-
tion have been proven fruitful to stabilize pure metals
in non-equilibrium crystalline phases of their phase dia-
gram (e.g., fcc Fe nanoparticles [8–10], fcc Co films [11])
or to reveal unique crystalline phases, i.e., phases not
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known from their pressure-temperature phase diagram
(e.g., nanoparticles of fcc Ru [12], fcc Zr [13], tetragonal
Ag [14], fcc Hf [15], and bcc Co films [16]). The common
interest that drives current research on such nanostruc-
tured materials is related to their potentially shape- or
size-enhanced mechanical, magnetic, optical, electronic,
or catalytic properties [17].

Up to a scale of tens of nanometers, the phase sta-
bility of nano-particles is to a large extend dictated by
thermodynamic surface properties, in particular by the
surface energy [4, 18, 19]. The dependence of phase sta-
bility on particle-size was demonstrated for fcc Co [4, 7],
but recently theory even predicted that bulk fcc Co is dy-
namically stable at 0K and, consequently, corresponds to
a metastable bulk phase of Co [20]. Fcc La was found to
be metastable down to very low temperatures in crystals
large enough to permit the experimental determination
of its phonon dispersion relations [21], which were later
confirmed by theory [22]. These examples suggests a con-
nection between non-equilibrium crystal structures ob-
servable in nanostructures and a potential isostructural
metastable bulk phase.

Here, we present the results of a systematic investiga-
tion on 24 transition metal elements, that we screened for
possible metastable phases by density-functional calcula-
tions. We chose to consider the bct structure space which
includes fcc and bcc structures, common to many tran-
sition metals, as special cases of higher symmetry. The
findings of this work may encourage experimentalists to
prepare metastable phases of the considered elements,
e.g., as thick epitaxial films or as small particles.

The paper is structured as follows: Sec. II elaborates
on our methodological and computational approaches. In
particular, we briefly describe the concept of the epitax-
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ial Bain path (EBP) [23, 24], which we use to indentify
possible metastable structures. Criteria for elastic and
dynamical stability are briefly reviewed for the sake of a
self-contained presentation. Results of the computations
are presented in Sec. III and discussed in Sec. IV, which
is followed by a short summary.

II. METHODOLOGY

A. Tetragonal minima on the epitaxial Bain path

The bct structure with lattice parameters a and c coin-
cides with the bcc (fcc) structure if c/a = 1 (c/a =

√
2).

This allows to construct homogeneous lattice transforma-
tions, referred to as Bain transformations, in the space
of bct structures passing through the fcc and bcc high
symmetry points [25, 26]. In general, infinitely many
Bain transformations can be distinguished embodied in
the freedom to define the functional relationship between
c and a. The corresponding path traversing the space
spanned by a and c is referred to as Bain path.
The EBP is one possible realization of a Bain path, the

principles of which were discussed by Alippi et al. [23] and
Marcus et al. [24]. The EBP assumes those bct structures
for which the lattice parameter cmin is relaxed for every
lattice parameter a. Hence, the EBP cmin(a) is defined
by the minimization of the total energy E(a, c) at fixed
a [27, 28],

E(a, cmin) = min
c

E(a, c). (1)

For the total energy along the EBP we define EEBP(a)
def
=

E(a, cmin(a)). The EBP conditions, i.e., structural re-
laxation in the out-of plane direction parallel to c and an
isotropic distortion of the quadratic basal plane along the
in-plane directions, describe the situation met in coher-
ently grown bct films on substrates with four-fold surface
symmetry. More specifically, the EBPmodels the interior
of the film (i.e., the bulk part) neglecting surface and in-
terface effects except the determination of a by coherency
with the substrate. For the present purpose, the EBP is
a merely technical tool, as a substrate is not necessarily
needed to stabilize a phase. One can imagine to grow the
predicted metastable phases by epitaxy, though.
The first important symmetry-dictated demand on

the total energy along the EBP arises from the fact
that E(a, c) is stationary at points of cubic symme-
try [24, 29, 30]. Thus, provided that the two points of
cubic symmetry belong to the EBP, EEBP(a) is not only
extremal at these two points but there is at least one
additional extremal point with noncubic (bct) symme-
try [24, 26]. In some cases, one of the cubic points does
not belong to the EBP but EEBP(a) assumes a maxi-
mum close to this point [28]. In the absence of spin-orbit
coupling, the symmetry property also holds for ferromag-
netically ordered states since the magnetization density
preserves the full symmetry of the lattice.

TABLE I. Relation between elastic constants and sound waves
along high-symmetry branches for the bct structure obtained
by solving the Christoffel equation [31]. The polarization vec-
tor is given in parentheses for nontrivial cases. The four-fold
rotation axis of the bct lattice is oriented along [001].

mode [0ξ0] [00ξ] [ξξ0]

longitudinal (L) c11 c33
c11+c12+2c44

2

transverse (T) c66 ([100]) c44 c44 ([001])
c44 ([001]) c11−c12

2
([11̄0])

Second, the EBP is a Bain path that passes through
global or local minima of the energy E(a, c) by virtue of
its definition [Eq. (1)]. The minima of E(a, c) are the
minima of the EBP and referred to as tetragonal min-
ima [24]. These minima possess vanishing normal stresses
σii ∝ ∂E/∂ǫii, where σii and ǫii, i = {1, 2, 3}, are the
normal components of the stress tensor and the strain
tensor, respectively. Although these special unstressed
bct states are minima of E(a, c) they are not necessar-
ily stable. We consider bct states as stable phases, if
EEBP(a) assumes a global minimum and the phase is
known to be the experimental ground state (e.g., bcc
vanadium or fcc palladium). Metastable phases are char-
acterized by EEBP(a) at a local minimum and stability
against arbitrary small homogeneous lattice distortions
and lattice vibrations. Unstable bct states are local min-
ima of EEBP(a) which are stable only against homoge-
neous distortions preserving the bct symmetry.
The present task is to identify those bct minima of

EEBP(a) which do not coincide with an equilibrium phase
and to characterize their vibrational properties. The con-
ditions for dynamical and elastic stability are discussed
in the next section.

B. Dynamical and elastic stability of tetragonal

minima

The criterion for dynamical lattice stability (DS) in
the harmonic approximation and at zero external load
reads [31]

ν2(q, s) > 0, (2)

where ν denotes the frequency, q the wave vector, and
the index s the polarization and branch of the phonon
modes. A lattice instability associated with an unstable
acoustic long-wavelength phonon mode is called elastic
instability. In this case, the lattice instability is often re-
lated to negative values of an elastic constant (or combi-
nations thereof), see Table I for different high-symmetry
branches in the bct structure.
There are six independent elastic constants for the bct

structure, c11, c12, c33, c13, c44, and c66, while cubic
systems possess three, c11 (= c33), c12 (= c13), and c44
(= c66) [32]. Elastic stability in the absence of external
forces is defined by a positive definite total energy for
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any small homogeneous deformation, which implies re-
strictions on the elastic constants expressed by the Born
stability criteria (SCs) [31, 33]. The four SCs in systems
with bct symmetry are

c66 > 0 (3a)

c44 > 0 (3b)

c11 − |c12| > 0 (3c)

c33(c11 + c12)− 2c213 > 0. (3d)

which reduce to three SCs in the case of cubic symmetry,

c44 > 0 (4a)

c11 − |c12| > 0 (4b)

c11 + 2c12 > 0. (4c)

Elastic stability requires the fulfillment of all SCs. Note
that the elastic constants of the fcc structure are given
with respect to the cubic axes, which are related to the
elastic constants in the bct axes by a coordinate trans-
formation, see Appendix A. The same coordinate trans-
formation (Appendix A) needs to be applied to obtain
relations between the elastic constants and sound waves
in the fcc axes.
The bulk modulus (B) of cubic structures is related to

the elastic constants by B = (c11+2c12)/3, implying that
SC (4c) is always fulfilled for cubic minima of the EBP. In
the actual calculations for tetragonal minima (Sec. III),
we find that an elastic instability never occurred due to
violation of SC (3d). As pointed out by Marcus et al.,
the left hand side of SC (3d) is related to the (positive)
curvature of EEBP at tetragonal minima [24].

C. Total-energy and elastic-property calculations

High-precision density-functional theory calculations
were carried out with the full-potential local-orbital
scheme FPLO-7.00-28 [34]. Using the local-density ap-
proximation according to Ref. 35 (PW92) and a scalar-
relativistic mode for elements with atomic number < 49,
a full-relativistic mode otherwise, we scanned the EBPs
of 24 elements with the atomic numbers 21-23, 27-30,
39-47, 72-79, in a wide range of parameters a [36].
We omitted the elements Cr and Mn, which are anti-
ferromagnetic with a complicated ground state structure,
and Fe, which bcc ground state is known to be not ob-
tained in PW92. Fe is, however, known to be elastically
unstable at the bct local minimum of its EBP, see below.
The convergence of numerical parameters and the basis

set were carefully checked [36]. In order to converge the
total energy per atom at a level smaller than 0.3meV,
linear-tetrahedron integrations with Blöchl corrections
were performed on a 24 × 24 × 24 mesh in the full Bril-
louin zone, apart from the elements Cu, Ru, Ir, and Pt,
for which a denser 48 × 48 × 48 mesh was required. To
account for the possibility of ferromagnetic order in the
evaluation of the EBP, total energy minimization was

done with respect to both c and the magnetic moment.
The bct states of the EBP were modeled by the space
group I4/mmm. All reported energies and moments are
given per atom.

The six elastic constants of bct states were derived
from fitting a square polynomial to computed total en-
ergy changes for small strain deformations applied to the
bct reference cell (tetragonal axes) following Ref. 37. The
elastic constants c11, c12, and c13 were modeled by space
group I/mmm, c33 by space group I4/mmm, c44 by
space group C2/m, and c66 by space group F/mmm.
The largest imposed moduli of the strains were 0.5%
(c11, c12, c33, c13, and c66) and 0.75◦ (c44). All elas-
tic constants were found to be stable within 5% change
against a doubling of the strain interval. The doubling of
the strain interval did not affect the conclusion on elastic
stability.

All here reported elastic constants of the fcc structure
and of the bct (bcc) structure are given with respect to
the cubic axes and with respect to the bct (bcc) axes,
respectively. We verified numerically that deformations
applied to both coordinate systems yield virtually iden-
tical elastic constants for all investigated fcc structures.

D. Phonon calculations

The force-constant matrix was obtained within the
framework of density-functional perturbation theory [38]
as implemented in the Vienna ab initio simulation pack-
age [39] based on the in the projector-augmented wave
formalism [40, 41]. The software “Phonopy” [42] was
employed to determine the phonon dispersion relation
from the force-constant matrix and the phonon density
of states (DOS) by linear-tetrahedron integration.

Convergence of all numerical parameters was carefully
checked. We used a plane wave cut-off of 400 eV for the
elements Sc and Y, and a larger cut-off (500 eV) oth-
erwise. Brillouin zone integrations were performed on a
k-point mesh equivalent to a 36×36×36 Monkhorst-Pack
mesh of the primitive unit cell smeared by a first order
Methfessel-Paxton scheme [43] with small smearing pa-
rameter (0.1 eV). The lattice parameters of the bct states
(cubic states) in question were relaxed until the residual
stress along the tetragonal axes (cubic axes) was smaller
than ∼ 3 bar prior to computing the force-constant ma-
trix. The phonon properties were sampled on a 4× 4× 4
Γ-centered mesh and convergence was checked against a
denser 6 × 6 × 6 q-mesh. In the singular case of bct Zr,
the computation of the phonon properties required the
denser q-mesh.

To verify the accuracy of our approach, we first re-
produced the experimental phonon dispersion curves and
DOSs for fcc Au and bcc Fe for which reliable experimen-
tal data are available (results not shown) [44].
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TABLE II. Stability analysis of minima on the EBP for hcp
stable elements (first column, sorted by atomic number). The
next four columns classify the symmetry (sym) of the mini-
mum (C is cubic, N is noncubic), if ferromagnetic (fm) order
is present, the lattice parameter (a), the lattice parameter ra-
tio (c/a), and the energy difference with respect to the ground
state (∆E). Columns 6 - 8 and columns 9 - 10 give the signs
of the right hand side of the tetragonal SCs (3a) - (3c) and
the cubic SCs (4a) and (4b), respectively. SC (3d) or (4c) is
fulfilled for all minima and omitted. If the signs of all SCs
are positive, the last column indicates if the minimum is dy-
namically stable at 0K (× stable, − unstable).

element sym a c/a ∆E SC DS
(Å) (meV) (3a)(3b)(3c)(4a)(4b)

Sc C 3.17
√
2 35 + + ×

N 3.70 0.90 116 + + −
Ti C

√
2 54 + + ×

N 3.33 0.86 72 + + + −
Co C (fm) 2.42

√
2 25 + + ×

N (fm) 2.81 0.92 137 + + −
Zn C 2.68

√
2 27 − +

N 3.30 0.77 29 + + −
Y C 3.47

√
2 10 + + ×

N 4.07 0.88 113 + + −
Zr C 3.14

√
2 33 + + ×

C 3.49 1 47 + + −
N 3.74 0.82 32 + + + ×

Tc C 2.71
√
2 87 + + ×

N 3.14 0.90 287 + + −
Ru C 2.66

√
2 125 + + ×

N (fm) 3.18 0.85 598 + + −
Hf C 3.09

√
2 62 + + ×

N 3.64 0.85 115 + + + −
Re C 2.74

√
2 95 + + ×

N 3.18 0.90 381 + + −
Os C 2.70

√
2 136 + + ×

N 3.24 0.84 751 + + −

III. RESULTS

Elements with stable hcp ground state structure and
elements with stable cubic ground state structure are dis-
cussed separately in the following to appropriately reflect
the similarities found in the structure of their EBPs and
in their stability behaviors. The elastic constants and
SCs for the determined cubic and tetragonal minima of
the EBP were investigated in all cases, but dynamical
stability was analyzed only for elastically stable struc-
tures.

A. Elements with stable hcp structure

The analysis of the EBPs for eleven investigated ele-
ments with hexagonal ground state revealed that all but
one possess two minima on the EBP, see Table II. The
notable exception is Zr, which possesses one additional

minimum [45]. Common to all investigated elements ex-

cept Zr is that the fcc structure (c/a =
√
2) coincides

with the global minimum of EEBP(a) and that the sec-
ond, bct minimum has c/a < 1. It follows from the gen-
eral arguments provided in Sec. II A that bcc is a saddle
point of the total energy E(a, c). In the case of Zr, the
bct minimum with c/a = 0.82 is marginally more stable
than the fcc structure and the bcc structure coincides
with the third minimum of EEBP(a), Table II.

Both the hcp phase and the fcc phase (stable above
696K) of Co are known to order ferromagnetically which
is also the magnetic ground state reproduced by the
present calculations. We find that the bct minimum of
Co exhibits ferromagnetic order with a spin magnetic mo-
ment equal to 1.63µB, which is slightly larger than the
calculated spin magnetic moments for hcp Co (1.51µB)
and for fcc Co (1.54µB) and the corresponding experi-
mental values, 1.52µB for hcp Co [46] and 1.51µB for
quenched fcc Co [47]. The pronounced insensitivity of
the magnetic moment of Co on details of the structure
expresses its strong ferromagnetic character. Bulk hcp
Ru does not order magnetically, but the bct minimum of
Ru is ferromagnetic as shown by some of us recently [27].

The computed elastic constants allow the examination
of the elastic SCs for all identified minima, see Table II.
We find that the fcc structures of all investigated ele-
ments except Zn and bcc Zr are elastically stable, while
most bct minima are unstable except those of the fourth
group elements, bct Ti (c/a = 0.86), bct Zr (c/a = 0.82),
and bct Hf (c/a = 0.85). The elastic stability of the
fcc structures of Sc, Ti, Co, Y, Zr, Tc, Ru, Hf, Re,
and Os [45, 48–53], the elastic stability of bct Zr [45]
as well as the elastic instability of bct Co, fcc and bct
Zn [24] was reported previously in accordance with the
findings of the present work. There is, however, a dis-
crepancy on the elastic stability of bcc Zr and bct Ti.
Bcc Zr was was found to be stable in Ref. [45] and in this
work and was reported to be unstable in Refs. [54, 55].
The point at issue is related to the long-wavelength part
of the transverse phonon branch along [ξξ0] polarized
along [11̄0], T[11̄0][ξξ0], i.e., the sign of the shear constant
C′ ≡ (c11 − c12)/2 (Table I). An important difference
in the two sets of results is that the former two works
were obtained using the local-density approximation to
exchange and correlation while the latter two employed
a gradient-corrected functional (PBE96) [56]. We com-
puted C′ of bcc Zr choosing PBE96 and indeed obtained
a negative value. Bct Ti is a similar case as Marcus et

al. [24] reported C′ < 0 using PBE96, which we were
able to reproduce, but PW92 gives C′ > 0. Thus, elas-
tic stability of bcc Zr and bct Ti depends on the chosen
exchange-correlation functional. All three unclear cases
turn out to be dynamically unstable. Thus, the unde-
cided elastic instability does not pose any practical issue.

Elastic stability is a necessary, but not a sufficient
criterion for structural (meta)stability of a phase. The
phonon dispersion curves and derived phonon DOS allow
to investigate dynamical stability as a sufficient criterion.
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Both phononic properties are plotted in Fig. 1 for the ten
elastically stable fcc structures revealing that all struc-
tures (Sc, Ti, Co, Y, Zr, Tc, Ru, Hf, Re, and Os) are in
fact dynamically stable. We note that dynamical stabil-
ity of fcc Co and fcc Re at 0K was reported in previous
studies of their lattice dynamical properties [20, 57].

Among the four elastically stable structures bct Ti, Zr,
Hf, and bcc Zr, only bct Zr is found to be dynamically
stable, see Fig. 2 for the corresponding phonon dispersion
curves and DOSs. Bcc Zr has imaginary phonon frequen-
cies around the N point. Bct Ti and Hf exhibit imaginary
phonon frequencies around the X and N points. These
two zone-boundary phonons are softened in bct Zr which
may indicate marginal stability of this phase.

The elastic parameters and Debye temperatures of all
metastable fcc phases (Sc, Ti, Co, Y, Zr, Tc, Ru, Hf, Re,
and Os) and bct Zr are tabulated for completeness in Ap-
pendix B. The knowledge of elastic constants is essential,
e.g., for predicting the phase stability of fine particles,
and is required as input for higher order linear-elasticity
continuum approaches and phase-field simulations [4, 58].

B. Elements with stable cubic structure

Focusing first on the investigated elements with stable
fcc phase, we find that all EBPs possess two minima in
total energy. The global minimum coincides with the fcc
structure and the second minimum is bct with c/a < 1,
see Table III. We note that the c/a ratio of the second
minimum increases as the transition metal series are tra-
versed from left (low d-band occupation) to right (high
d-band occupation). Ferromagnetic order is present for
the bct state of Ni with a spin magnetic moment equal
to 0.55µB which is only slightly larger than the experi-
mental spin magnetic moment of fcc Ni, 0.52µB [47].

All bct minima are found to be elastically unstable
with respect to the same orthorhombic deformation of
the bct cell caused by a violation of SC (3c), see Table III,
corresponding to an unstable mode T[11̄0][ξξ0] (Table I).
This elastic instability was reported previously for all in-
vestigated elements except Ni and Pt [37, 59, 60].

TABLE III. Stability analysis of local minima on the EBP for
fcc stable elements. Notation of columns 1 - 8 as in Table II.
SC (3d) is fulfilled for all minima and omitted.

element sym a c/a ∆E SC
(Å) (meV) (3a) (3b) (3c)

Ni N (fm) 2.86 0.87 87 + + −
Cu N 2.85 0.95 38 + + −
Rh N 3.22 0.82 252 + + −
Pd N 3.20 0.88 59 + + −
Ag N 3.31 0.90 36 + + −
Ir N 3.30 0.80 378 + + −
Pt N 3.34 0.81 40 + + −
Au N 3.39 0.86 25 + + −

The investigated elements with stable bcc phase show
two common features of their EBPs, a global total energy
minimum at the bcc structure and a second minimum
with c/a >

√
2, see Table IV. In contrast to the fcc

stable elements, the c/a ratio of the second minimum
decreases as the transition metal series are traversed from
left to right (with increasing d-band occupation). All
bct minima are elastically unstable due to a negative c66
[violation of SC (3a)]. A negative c66 corresponds to an
unstable long-wavelength part of the transverse phonon
mode T[100][0ξ0]. Apart from Ta, this elastic instability
was reported before [24, 60]. To complete the picture of
the bcc transition metals, we note that Fe was predicted
to order antiferromagnetically and to be unstable due to
c66 < 0 at the bct local minimum of its EBP [61].
The lattice instability related to c66 < 0 corresponds

to a monoclinic lattice distortion of the bct unit cell.
The highest symmetry of the distorted lattice is, how-
ever, face-centered orthorhombic. The orthorhombic
axes are related to the bct reference frame through a ro-
tation around [001] by π/4. In the rotated, orthorhombic
frame (primed notation), c66 equals (c′11−c′12)/2 (cf. Ap-
pendix A).

TABLE IV. Stability analysis of local minima on the EBP for
bcc stable elements. Notation of columns 1 - 8 as in Table II.
SC (3d) is fulfilled for all minima and omitted.

element sym a c/a ∆E SC
(Å) (meV) (3a) (3b) (3c)

V N 2.40 1.84 111 − + +
Nb N 2.70 1.79 183 − + +
Mo N 2.61 1.75 382 − + +
Ta N 2.75 1.71 196 − + +
W N 2.68 1.66 403 − + +

IV. DISCUSSION

The results of the previous section indicate clear sim-
ilarities among the transition metals elements crystalliz-
ing either in the hcp structure or in a cubic (fcc, bcc)
structure. The EBPs of all investigated elements but Zr
possess two tetragonal minima each irrespective of their
ground state phase. Apart from Zr, only the 5f -element
uranium is known to exhibit more than two minima on
the EBP [27]. This corroborates the earlier finding that
an EBP with two minima is indeed the standard case for
most metallic elements [24].
Considering the general structure of their EBPs, all el-

ements with stable hcp phase, except Zr, and all elements
with stable fcc phase show two common characteristics:
(i) their standard EBPs exhibit the global energy mini-
mum at the fcc structure and (ii) the local minimum is
bct with c/a < 1. On the other hand, the local bct mini-

mum of bcc stable elements has an axial ratio c/a >
√
2,

while the global minimum coincides with the bcc phase.
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FIG. 1. (Color online) Phonon dispersion curves and DOSs for the elastically stable fcc structures of hcp stable elements
according to Table II. Note that Co should be in the rightmost position according to its group in the periodic system of
elements (indicated by an arrow). The DOSs are normalized to the number of normal modes per atom (3). The high-symmetry
branches denoted only for the dispersion curves of Sc apply to all panels.

These findings imply that none of the investigated el-
ements with standard EBP has both minima at cubic
structures. It is worth noting that there exist exceptions
to this rule in the alkali and alkaline metal series [24].
The metastable fcc structures of the investigated hcp

elements lie very close in energy to the respective ground
states, see Table II. Much higher energies are found for
the related bct minima of the EBP or for the bcc struc-
tures, with Zr and Zn as the only exceptions. This be-
havior is universal for all non-magnetic transition metals
with d-band occupations ≈ 1.5 - 2.5 electrons (Sc and Ti
groups) or ≈ 5.5 - 6.5 electrons (Tc, Re, and Ru, Os) [62]
as well as for Co which has an hcp ground state due to
magnetism [63]. The low energy of the metastable fcc
structures can be simply understood from the same pack-
ing density of fcc and hcp. It is certainly advantageous
for the preparation of thick epitaxial films.
None of the minima with bct symmetry except bct Zr

with c/a = 0.82 was found to be dynamically stable, i.e.,
these bct minima do not correspond to metastable bct
bulk phases. In most cases, structural instability is al-
ready signaled by a single negative elastic constant or a
violated stability condition composed of a combination
of elastic constants. All elastic instabilities at bct min-
ima of the investigated hcp and fcc stable elements arises

in all cases due to a negative shear elastic constant C′,
while elastic instability of the bct minima of all inves-
tigated bcc stable elements consistently occurs due to a
negative c66. Both instabilities embody a shear of the
quadratic basal plane [(001) plane] of the bct structure.
Although our findings show that these bct structures are
unstable in bulk form, an appropriate external constraint
may impede the shear deformation related to the insta-
bility from happening, at least on a nanometer length
scale. A possible realization of such a constraint is a
substrate with four-fold rotation symmetry on which the
bct structure is coherently grown assuming the epitaxial
relationship substrate (001) ‖ film (001). Examples of
coherent heteroepitaxial growth of metallic overlayers in
bct structures are given in Table V.
The predictions on metastability for Sc, Ti, Co, Y,

Zr, Tc, Ru, Hf, Re, and Os made in this work call for
experimental verification. In the following we briefly
address possible preparation routes. Under the circum-
stance that there exists a high-temperature fcc (or, bct)
phase, appropriately cooling this phase may impede the
allotropic structural transition to the stable hcp phase,
and the fcc (or, bct) structure may coexist as metastable
form at ambient temperatures as realized for example
for fcc La [21]. With the exceptions of fcc Co and Y,
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FIG. 2. (Color online) Phonon dispersion curves and DOSs
for the elastically stable bcc and bct structures for elements
with stable hcp ground state according to Table II. The DOS
are normalized to the number of normal modes per atom (3).
-|ν| is plotted when ν2 < 0. The high-symmetry branches for
bct structures denoted only for the dispersion curves of Hf
also apply to bct Ti and Zr.

TABLE V. Coherent heteroepitaxial growth of metallic over-
layers in bct structures. The (001)-oriented substrate material
is specified, and the measured thickness [in monolayers (ML)]
of the coherent bct film and its c/a ratio are denoted. In each
case, coherency of the film with the substrate was verified by
low-energy electron diffraction.

substrate film thickness (ML) c/a Ref.
Al Ti 12 1.495 [64]
W Zr 17 1.48 [45]
W Zr 50 1.46 [65]
Ni Co 30 1.45 [66]
Cu Co 10 1.36 [67]
Pd Co 30 1.13 [68]
Pt Co 12 1.07 [69]
Pd Ni 12 1.11 [70]

GaAs Ni 25 1.00 [71]
W Pd 13 0.92 [72]
Pd Cu 10 1.18 [73]
Pt Cu 15 1.17 [74]

an fcc (or, bct) phase is, however, not observed in the
pressure-temperature phase diagrams of the investigated
elements [2, 3]. Of the two, only fcc Co is stable at high
temperatures, while fcc Y was stabilized under high pres-
sure. A combination of pressure and shear stress has
proven to induce a phase transition and to stabilize non-
equilibrium phases at ambient conditions, e.g., for bcc
Zr [75]. As a similar route to metastability, materials can
undergo a phase transition during indentation [76]. Pos-
sible other approaches to stabilize metastable structures
involve epitaxial growth or the fabrication of nanoparti-

TABLE VI. Overview over the predicted metastable phases
(left column). References on previous theoretical predictions
(at zero pressure and temperature) of elastic or dynamical
stability (ES and DS, respectively) and available experimental
information (exp.) are given in the inner columns. The last
column shows predicted lattice parameters (PL), obtained by
multiplication of the lattice parameters evaluated in PW92
with (V hcp

exp /V hcp

PW92)
1/3. Here, V hcp

exp and V hcp

PW92 denote the
experimental and PW92 volume in the hcp structure, respec-
tively. The predicted lattice parameters refer to the cubic
axes for fcc phases and denote abct for the bct structure. Ex-
perimental lattice parameters were taken from Ref. [77].

phase ES DS exp. PL
fcc Sc [50] - - 4.628
fcc Ti [24, 48, 50, 52] - [78] 4.116
fcc Co [53] [20] [2, 3, 16, 79, 80] 3.541
fcc Y [50] - [2, 3] 5.071
fcc Zr [24, 45, 50] - [13] 4.517
bct Zr [45, 48] - - 3.815a

fcc Tc [50] - - 3.863
fcc Ru [50] - [12] 3.793
fcc Hf [48–50] - [15] 4.471
fcc Re [49, 50] [57] - 3.895
fcc Os [49, 50] - - 3.828

a c/a = 0.82

cles. As pointed out in Sec. I, the fcc structures of Zr,
Co, Fe, and recently Ru and Hf were already discovered
in synthesized nanometer-sized particles or films at ambi-
ent conditions. This experimental evidence supports the
present finding on the metastability of a corresponding
isostructural bulk phase.

V. SUMMARY

We screened, by means of density-functional calcula-
tions, the bct epitaxial Bain paths of 24 metallic ele-
ments and found 11 metastable phases, see Table VI.
Elastic stability of these phases had been predicted in
earlier publications, but dynamical stability had previ-
ously been verified for only two of these phases. On the
experimental side, six phases are either known from the
pressure-temperature phase diagram or were stabilized
in nanoscale particles or films. Experimental evidence is
still lacking for five of the predicted phases: fcc Sc, Tc,
Re, Os, and bct Zr.
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M.R. likes to thank M. Löser and P. Paufler for discus-
sions.

Appendix A: Elastic constants of the fcc structure

The elastic constants of the fcc structure given with re-
spect to the cubic axes are related to the elastic constants
in the bct axes through a rotation around the tetrago-
nal axis ([001]) by π/4. The components of the elasticity
tensor with respect to the bct axes are denoted by cijkl
and with respect to the cubic axes by c′ijkl . Both are re-

lated through tensor transformations rules [81] (Einstein
summation convention),

c′ijkl = LimLjnLkqLlpcmnqp, (A1)

where the matrix [L] describing the present rotation is

[L] =
1√
2





1 −1 0
1 1 0

0 0
√
2



 .

Performing the summations in Eqs. (A1), one derives for
the six independent elastic constants of the bct struc-
ture in the rotated coordinate system (Voigt notation
applied [82]),

c′11 =
1

2
(c11 + c12 + 2c66)

c′12 =
1

2
(c11 + c12 − 2c66)

c′66 =
1

2
(c11 − c12)

c′33 = c33
c′13 = c13
c′44 = c44,

with the usual symmetries of c′ijkl for cubic structures.

Appendix B: Elastic constants and Debye

temperatures of metastable fcc phases and bct Zr

The elastic parameters of the metastable fcc phases
(see Table II in Sec. III A) are listed in Table VII. The

corresponding Debye temperatures, derived on the one
hand from the elastic constants (θeD) and on the other
hand from a fit of a harmonic function to the low-
frequency part of the phonon DOS (θpD), are also tab-
ulated. For the computation of θeD, we closely followed
the formalism and procedure elaborated in Ref. [83]. In
order to obtain θpD, the DOS was fitted from 0 to 1/7 of
the maximum phonon frequencies in the cases of Ti, Y,
Zr, and Hf, and from 0 to 1/4 of the maximum phonon
frequencies in all other cases. The two choices for the
cut-off ensured a fit to a Debye-like behavior (∝ ν2) of
the low-frequency part of the DOS.
The elastic parameters of metastable bct Zr (see Ta-

ble II in Sec. III A, PW92 lattice parameter a = 3.74 Å,
c/a = 0.82) are (in units of GPa) c11 = 130, c12 = 92,
c66 = 24, c33 = 134, c13 = 78, and c44 = 40, and
θpD = 274K (θeD was not determined).

TABLE VII. Elastic constants, bulk moduli, and Debye tem-
peratures for metastable fcc structures with equilibrium lat-
tice parameter cfcc (cubic axes) obtained with PW92. Ferro-
magnetic order is indicated (fm).

element cfcc B c11 c12 c44 θeD θpD
(Å) (GPa) (GPa) (GPa) (GPa) (K) (K)

Sc 4.477 59 81 47 42 348 314
Ti 4.006 123 147 109 60 367 346
Co (fm) 3.429 273 382 216 194 578 590
Y 4.912 46 67 35 40 251 257
Zr 4.429 103 124 91 46 251 224
Tc 3.828 338 495 261 213 520 519
Ru 3.762 360 560 261 304 592 621
Hf 4.363 119 158 95 70 228 202
Re 3.875 395 610 286 252 427 424
Os 3.817 432 685 291 367 486 510
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[27] S. Schönecker, M. Richter, K. Koepernik, and H. Es-

chrig, Phys. Rev. B 85, 024407 (2012).
[28] S. Schönecker, M. Richter, K. Koepernik, and H. Es-

chrig, New J. Phys. 17, 023005 (2015).
[29] T. Kraft, P. M. Marcus, M. Methfessel, and M. Scheffler,

Phys. Rev. B 48, 5886 (1993).
[30] P. J. Craievich, M. Weinert, J. M. Sanchez, and R. E.

Watson, Phys. Rev. Lett. 72, 3076 (1994).
[31] G. Grimvall, Thermophysical properties of materials, 1st

ed. (Elsevier Science B. V., Amsterdam, 1999).
[32] J. F. Nye, Physical properties of crystals: their represen-

tation by tensors and matrices (Oxford University Press,
Oxford, 1960).

[33] M. Born and K. Huang, Dynamical theory of crystal lat-

tices (Oxford University Press, Oxford, 1954).
[34] K. Koepernik and H. Eschrig, Phys. Rev. B 59, 1743

(1999), http://www.fplo.de.
[35] J. P. Perdew and Y. Wang, Phys. Rev. B 45, 13244

(1992).
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