Skip to main content

Advertisement

Log in

Diffuse optical imaging and spectroscopy of the breast: A brief outline of history and perspectives

  • Perspective
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

Breast cancer is the most common cancer among women in industrialized countries. At present, X-ray mammography is the gold standard for breast imaging, but has limitations, especially when dense breasts are imaged, as typically occurs in young women. Optical imaging can non-invasively provide information on tissue composition, structure and physiology that can be beneficially exploited for breast lesion detection and identification. In the last few decades optical breast imaging has been investigated, using different geometries (projection imaging and tomography) and measurement techniques (continuous wave, frequency resolved and time resolved approaches). Also, data analysis and display varies significantly, ranging from intensity images to maps of the optical properties (absorption and scattering), tissue composition, and physiological parameters (typically blood volume and oxygenation). This paper outlines the historical evolution of optical imaging and spectroscopy of the breast, highlighting potentialities and limitations, and presents an overview of the main applications and perspectives of the field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Ferlay, D. M. Parkin, E. Steliarova-Foucher, Estimates of cancer incidence and mortality in Europe in 2008, Eur. J. Cancer, 2010, 46, 765–781.

    Article  CAS  Google Scholar 

  2. L. Tabar, M.-F. Yen, B. Vitak, H.-H. T. Chen, R. A. Smith, S. W. Duffy, Mammography service screening and mortality in breast cancer patients: 20-year follow-up before and after introduction of screening, Lancet, 2003, 361, 1405–1410.

    Article  Google Scholar 

  3. E. Marshall, Brawling over Mammography, Science, 2010, 327, 936–938.

    Article  CAS  Google Scholar 

  4. T. M. Kolb, J. Lichy, J. H. Newhouse, Comparison of the performance of screening mammography, physical examination and breast US and evaluation of factors that influence them: An analysis of 27, 825 patient evaluations, Radiology, 2002, 225, 165–175.

    Article  Google Scholar 

  5. N. Hylton, Magnetic resonance imaging of the breast: opportunities to improve breast cancer management, J. Clin. Oncol., 2005, 23, 1678–1684.

    Article  Google Scholar 

  6. S. J. Lord, W. Lei, P. Craft, J. N. Cawson, I. Morris, S. Walleser, A. Griffiths, S. Parker, N. Houssami, A systematic review of the effectiveness of magnetic resonance imaging (MRI) as an addition to mammography and ultrasound in screening young women at high risk of breast cancer, Eur. J. Cancer, 2007, 43, 1905–1917.

    Article  CAS  Google Scholar 

  7. M. Nothacker, V. Duda, M. Hahn, M. Warm, F. Degenhardt, H. Madjar, S. Weinbrenner, U.-S. Albert, Early detection of breast cancer: benefits and risks of supplemental breast ultrasound in asymptomatic women with mammographically dense breast tissue. A systematic review, BMC Cancer, 2009, 9, 335.

    Article  Google Scholar 

  8. D. Wu, S. S. Gambhir, Positron emission tomography in diagnosis and management of invasive breast cancer: Current status and future perspectives, Clin. Breast Cancer, 2003, 4, S55–S63.

    Article  Google Scholar 

  9. A. Ishimaru, Wave Propagation and Scattering in Random Media, vol. 1, Academic Press, New York, 1978.

    Google Scholar 

  10. F. Martelli, D. Contini, A. Taddeucci, G. Zaccanti, Photon migration through a turbid slab described by a model based on diffusion approximation: II. Comparison, with Monte Carlo results, Appl. Opt., 1997, 36, 4600–4612.

    Article  CAS  Google Scholar 

  11. F. Martelli, S. Del Bianco, A. Pifferi, L. Spinelli, A. Torricelli, G. Zaccanti, Hybrid heuristic time dependent solution of the radiative transfer equation for the slab, Proc. SPIE, 2009, 7369, 73691C.

    Article  Google Scholar 

  12. J. B. Fishkin, E. Gratton, Propagation of photon-density waves in strongly scattering media containing an absorbing semi-infinite plane bounded by a straight edge, J. Opt. Soc. Am. A, 1993, 10, 127–140.

    Article  CAS  Google Scholar 

  13. K. Ogawa, T. Kusaka, K. Tanimoto, T. Nishida, K. Isobe, S. Itoh, Changes in Breast Hemodynamics in Breastfeeding Mothers, J. Hum. Lactation, 2008, 24, 415–421.

    Article  Google Scholar 

  14. R. Cubeddu, C. D’Andrea, A. Pifferi, P. Taroni, A. Torricelli, G. Valentini, Effects of the menstrual cycle on the red and near-infrared optical properties of the human breast, Photochem. Photobiol., 2000, 72, 383–391.

    CAS  Google Scholar 

  15. P. Taroni, A. Bassi, D. Comelli, A. Farina, R. Cubeddu, A. Pifferi, Diffuse optical spectroscopy of breast tissue extended to 1100 nm, J. Biomed. Opt., 2009, 14, 054030.

    Article  Google Scholar 

  16. P. Taroni, G. Danesini, A. Torricelli, A. Pifferi, L. Spinelli, R. Cubeddu, Clinical trial of time-resolved scanning optical mammography at 4 wavelengths between 683 and 975 nm, J. Biomed. Opt., 2004, 9, 464–473.

    Article  Google Scholar 

  17. M. S. Patterson, B. Chance, B. C. Wilson, Time-resolved reflectance and transmittance for the noninvasive measurement of tissue optical properties, Appl. Opt., 1989, 28, 2331–2336.

    Article  CAS  Google Scholar 

  18. R. C. Haskell, L. O. Svasaand, T. T. Tsay, T. C. Feng, M. S. McAdams, B. J. Tromberg, Boundary conditions for the diffusion equation in radiative transfer, J. Opt. Soc. Am. A, 1994, 11, 2727–2741.

    Article  CAS  Google Scholar 

  19. J. R. Mourant, T. Fuselier, J. Boyer, I. J. Bigio, Predictions and measurements of scattering and absorption over broad wavelength ranges in tissue phantoms, Appl. Opt., 1997, 36, 949–957.

    Article  CAS  Google Scholar 

  20. A. M. Nilsson, K. C. Sturesson, D. L. Liu, S. Addersson-Engels, Changes in spectral shape of tissue optical properties in conjuction with laser-induced thermotheraphy, Appl. Opt., 1998, 37, 1256–1267.

    Article  CAS  Google Scholar 

  21. C. D’Andrea, L. Spinelli, A. Bassi, A. Giusto, D. Contini, J. Swartling, A. Torricelli, R. Cubeddu, Time-resolved spectrally constrained method for the quantification of chromophore concentrations and scattering parameters in diffusing media, Opt. Express, 2006, 5, 1888–1898.

    Article  Google Scholar 

  22. J. Wang, S. Jiang, Z. Li, R. M. diFlorio-Alexander, R. J. Barth, P. A. Kaufman, B. W. Pogue, K. D. Paulsen, In vivo quantitative imaging of normal and cancerous breast tissue using broadband diffuse optical tomography, Med. Phys., 2010, 37, 3715–3724.

    Article  CAS  Google Scholar 

  23. M. Cutler, Transillumination of the breast, Surg., Gynecol. Obstet., 1929, 48, 721–727.

    Google Scholar 

  24. A. Alveryd, L. Andersson, K. Aspegren, G. Balldin, N. Bjurstam, G. Edstrom, G. Fagerberg, U. Glas, O. Jarlman, S. A. Larsson, Lightscanning versus mammography for the detection of breast cancer in screening and clinical practice. A Swedish multicenter study, Cancer, 1990, 65, 1671–1677.

    Article  CAS  Google Scholar 

  25. G. E. Geslien, J. R. Fisher, C. De Laney, Transillumination in breast cancer detection: screening failures and potential, AJR, Am. J. Roentgenol., 1985, 144, 619–622.

    Article  CAS  Google Scholar 

  26. J. J. Gisvold, L. R. Brown, R. G. Swee, D. J. Raygor, N. Dickerson, M. K. Ranfranz, Comparison of mammography and transillumination light scanning in the detection of breast lesions, AJR, Am. J. Roentgenol., 1986, 147, 191–194.

    Article  CAS  Google Scholar 

  27. S. Fantini, M. A. Franceschini, G. Gaida, E. Gratton, H. Jess, W. W. Mantulin, K. T. Moesta, P. M. Schlag, M. Kaschke, Frequency-domain optical mammography: Edge effect corrections, Med. Phys., 1996, 23, 149–157.

    Article  CAS  Google Scholar 

  28. L. Götz, S. H. Heywang-Köbrunner, O. Schütz, H. Siebold, Optical mammography on preoperative patients (Optische Mammographie an praoperativen Patientinnen), Aktuel. Radiol., 1998, 8, 31–33.

    Google Scholar 

  29. E. Heffer, V. Pera, O. Schütz, H. Siebold, S. H. Heywang-Köbrunner, L. Götz, A. Heinig, S. Fantini, Near-infrared imaging of the human breast: complementing hemoglobin concentration maps with a with a color-coded display of hypoxic areas, J. Biomed. Opt., 2004, 9, 1152–1160.

    Article  CAS  Google Scholar 

  30. D. Grosenick, K. T. Moesta, M. Möller, J. Mucke, H. Wabnitz, B. Gebauer, C. Stroszczynski, B. Wassermann, P. M. Schlag, H. Rinneberg, Time-domain scanning optical mammography: I. Recording, and assessment of mammograms of 154 patients, Phys. Med. Biol., 2005, 50, 2429–2449.

    Article  Google Scholar 

  31. P. Taroni, A. Torricelli, L. Spinelli, A. Pifferi, F. Arpaia, G. Danesini, R. Cubeddu, Time-resolved optical mammography between 637 and 985 nm: Clinical study on the detection and identification of breast lesions, Phys. Med. Biol., 2005, 50, 2469–2488.

    Article  Google Scholar 

  32. D. Grosenick, H. Wabnitz, K. T. Moesta, J. Mucke, P. M. Schlag, H. Rinneberg, Time-domain scanning optical mammography: II. Optical, properties and tissue parameters of 87 carcinomas, Phys. Med. Biol., 2005, 50, 2451–2468.

    Article  Google Scholar 

  33. L. Spinelli, A. Torricelli, A. Pifferi, P. Taroni, G. Danesini, R. Cubeddu, Characterisation of female breast lesions from multi-wavelength time-resolved optical mammography, Phys. Med. Biol., 2005, 50, 2489–2502.

    Article  Google Scholar 

  34. H. Dehghani, B. W. Pogue, P. P. Poplack, K. D. Paulsen, Multiwavelength three-dimensional near-infrared tomography of the breast: initial simulation, phantom and clinical results, Appl. Opt., 2003, 42, 135–145.

    Article  Google Scholar 

  35. J. P. Culver, R. Choe, M. J. Holboke, L. Zublov, T. Durduran, A. Slemp, V. Ntziachristos, B. Chance, A. G. Yodh, Three-dimensional diffuse optical tomography in the parallel plane transmission geometry: Evaluation of a hybrid frequency domain/continuous wave clinical system for breast imaging, Med. Phys., 2003, 30, 235–247.

    Article  CAS  Google Scholar 

  36. H. Jiang, N. V. Iftimia, Y. Xu, J. A. Eggert, L. L. Fajardo, K. L. Klove, Near-infrared optical imaging of the breast with model-based reconstruction, Acad. Radiol., 2002, 9, 186–194.

    Article  Google Scholar 

  37. J. C. Hebden, T. D. Yates, A. Gibson, N. Everdell, S. R. Arridge, D. W. Chicken, M. Douek, M. R. S. Keshtgar, Monitoring recovery after laser surgery of the breast with optical tomography: a case study, Appl. Opt., 2005, 44, 1898–1904.

    Article  Google Scholar 

  38. X. Intes, Time-domain optical mammography SoftScan: Initial results, Acad. Radiol., 2005, 12, 934–947.

    Article  Google Scholar 

  39. R. X. Xu, D. C. Young, J. J. Mao, S. P. Povoski, A prospective pilot clinical trial evaluating the utility of a dynamic near-infrared imaging device for characterizing suspicious breast lesions, Breast Cancer Res., 2007, 9, R88.

    Article  Google Scholar 

  40. R. Choe, S. D. Konecky, A. Corlu, K. Lee, T. Durduran, D. R. Busch, S. Pathak, B. J. Czerniecki, J. Tchou, D. L. Fraker, A. DeMichele, B. Chance, S. R. Arridge, M. Schweiger, J. P. Culver, M. D. Schnall, M. E. Putt, M. A. Rosen, A. G. Yodh, Differentiation of benign and malignant breast tumors by in vivo three-dimensional parallel-plate diffuse optical tomography, J. Biomed. Opt., 2009, 14, 024020.

    Article  Google Scholar 

  41. F. S. Azar, K. Lee, A. Khamene, R. Choe, A. Corlu, S. D. Konecky, F. Sauer, A. G. Yodh, Standardized platform for coregistration of nonconcurrent diffuse optical and magnetic resonance breast images obtained in different geometries, J. Biomed. Opt., 2007, 12, 051902.

    Article  Google Scholar 

  42. S. Srinivasan, C. M. Carpenter, H. R. Ghadyani, S. J. Taka, P. A. Kaufman, R. M. Diflorio-Alexander, W. A. Wells, B. W. Pogue, K. D. Paulsen, Image guided near-infrared spectroscopy of breast tissue in vivo using boundary element method, J. Biomed. Opt., 2010, 15, 061703.

    Article  Google Scholar 

  43. Q. Fang, J. Selb, S. A. Carp, G. Boverman, E. L. Miller, D. H. Brooks, R. H. Moore, D. B. Kopans, D. A. Boas, Combined optical and X-ray tomosynthesis breast imaging, Radiology, 2011, 258, 89–97.

    Article  Google Scholar 

  44. Q. Zhu, P. U. Hedge, A. Ricci, M. Kane, E. B. Cronin, Y. Ardeshirpour, C. Xu, A. Aguirre, S. H. Kurtzman, P. J. Deckers, S. Tannenbaum, Early-stage invasive breast cancers: Potential role of optical tomography with US localization in assisting diagnosis, Radiology, 2010, 256, 367–378.

    Article  Google Scholar 

  45. C. Li, H. Zhao, B. Anderson, H. Jiang, Multispectral breast imaging using a ten-wavelength, 64 × 64 source/detector channels silicon photodiode-based diffuse optical tomography system, Med. Phys., 2006, 33, 627–636.

    Article  Google Scholar 

  46. S. D. Konecky, R. Choe, A. Corlu, K. Lee, R. Wiener, S. M. Srinivas, J. R. Saffer, R. Freifelder, J. S. Karp, N. Hajjioui, F. Azar, A. G. Yodh, Comparison of diffuse optical tomography of human breast with whole-body and breast-only positron emission tomography, Med. Phys., 2008, 35, 446–455.

    Article  Google Scholar 

  47. A. Corlu, R. Choe, T. Durduran, K. Lee, M. Schweiger, S. R. Arridge, E. M. C. Hillman, A. G. Yodh, Diffuse optical tomography with spectral constraints and wavelength optimization, Appl. Opt., 2005, 44, 2082–2093.

    Article  Google Scholar 

  48. M. E. Eames, J. Wang, B. W. Pogue, H. Dehghani, Wavelength band optimization in spectral near-infrared optical tomography improves accuracy while reducing data acquisition and computational burden, J. Biomed. Opt., 2008, 13, 054037.

    Article  Google Scholar 

  49. S. H. Chung, A. E. Cerussi, C. Klifa, H. M. Baek, O. Birgul, G. Gulsen, S. I. Merritt, D. Hsiang, B. J. Tromberg, In vivo water state measurements in breast cancer using broadband diffuse optical spectroscopy, Phys. Med. Biol., 2008, 53, 6713–6727.

    Article  CAS  Google Scholar 

  50. S. Kukreti, A. Cerussi, B. Tromberg, E. Gratton, Intrinsic tumor biomarkers revealed by novel double differential spectroscopic analysis of near-infrared spectra, J. Biomed. Opt., 2007, 12, 020509.

    Article  Google Scholar 

  51. P. Taroni, A. Pifferi, E. Salvagnini, L. Spinelli, A. Torricelli, R. Cubeddu, Seven-wavelength time-resolved optical mammography extending beyond 1000 nm for breast collagen quantification, Opt. Express, 2009, 17, 15932–15946.

    Article  CAS  Google Scholar 

  52. Y. P. Guo, L. J. Martin, W. Hanna, D. Benerjee, N. Miller, E. Fishell, R. Khokha, N. F. Boyd, Growth factors and stromal matrix protein associated with mammographic densities, Cancer Epidemiol., Biomarkers Prev., 2001, 10, 243–248.

    CAS  Google Scholar 

  53. X. Intes, J. Ripoll, Y. Chen, S. Nioka, A. G. Yodh, B. Chance, In vivo continuous-wave optical breast imaging enhanced with Indocyanine Green, Med. Phys., 2003, 30, 1039–1047.

    Article  Google Scholar 

  54. V. Ntziachristos, A. G. Yodh, M. Schnall, B. Chance, Concurrent MRI and diffuse optical tomography of breast after indocyanine green enhancement, Proc. Natl. Acad. Sci. U. S. A., 2000, 97, 2767–2772.

    Article  CAS  Google Scholar 

  55. A. Poellinger, S. Burock, D. Grosenick, A. Hagen, L. Lüdemann, F. Diekmann, F. Engelken, R. Macdonald, H. Rinneberg, P.-M. Schlag, Breast cancer: Early- and late-fluorescence near-infrared imaging with indocyanine green - A preliminary study, Radiology, 2011, 258, 409–416.

    Article  Google Scholar 

  56. A. Corlu, R. Choe, T. Durduran, M. A. Rosen, M. Schweiger, S. R. Arridge, M. D. Schnall, A. G. Yodh, Three-dimensional in vivo fluorescence diffuse optical tomography of breast cancer in humans, Opt. Express, 2007, 15, 6696–6716.

    Article  Google Scholar 

  57. S. van de Ven, A. Wiethoff, T. Nielsen, B. Brendel, M. von der Voort, R. Nachabe, M. Van der Mark, M. Van Beek, L. Bakker, L. Fels, S. Elias, P. Luijten, W. Mali, A novel fluorescent imaging agent for diffuse optical tomography of the breast: First clinical experience in patients, Mol. Imaging Biol., 2010, 12, 343–348.

    Article  Google Scholar 

  58. D. Roblyer, S. Ueda, A. Cerussi, W. Tanamai, A. Durkin, R. Mehta, D. Hsiang, J. A. Butler, C. McLaren, W.-P. Chen, B. Tromberg, Optical imaging of breast cancer oxyhemoglobin flare correlates with neoadjuvant chemotherapy response one day after starting treatment, Proc. Natl. Acad. Sci. U. S. A., 2011, 108, 14626–14631.

    Article  CAS  Google Scholar 

  59. M. G. Pakalniskis, W. A. Wells, M. C. Schwab, H. M. Froehlich, S. Jiang, Z. Li, T. D. Tosteson, S. P. Poplack, P. A. Kaufman, B. W. Pogue, K. D. Paulsen, Tumor angiogenesis change estimated by using diffuse optical spectroscopic tomography: demonstrated correlation in women undergoing neoadjuvant chemotherapy for invasive breast cancer?, Radiology, 2011, 259, 365–374.

    Article  Google Scholar 

  60. H. Soliman, A. Gunasekara, M. Rycroft, J. Zubovits, R. Dent, J. Spayne, M. J. Yaffe, G. J. Czarnota, Functional imaging using diffuse optical spectroscopy of neoadjuvant chemotherapy response in women with locally advanced breast cancer, Clin. Cancer Res., 2010, 16, 2605–2614.

    Article  CAS  Google Scholar 

  61. Q. Zhu, S. Tannenbaum, P. Hegde, M. Kane, C. Xu, S. H. Kurtzman, Noninvasive Monitoring of Breast Cancer during Neoadjuvant Chemotherapy Using Optical Tomography with Ultrasound Localization, Neoplasia, 2008, 10, 1028–1040.

    Article  CAS  Google Scholar 

  62. N. F. Boyd, L. J. Martin, J. Stone, C. Greenberg, S. Minkin, M. J. Yaffe, Mammographic densities as a marker of human breast cancer risk and their use in chemoprevention, Curr. Oncol. Rep., 2001, 3, 314–321.

    Article  CAS  Google Scholar 

  63. K. M. Blackmore, J. A. Knight, L. Lilge, Association between transillumination breast spectroscopy and quantitative mammographic features of the breast, Cancer Epidemiol., Biomarkers Prev., 2008, 17, 1043–1050.

    Article  Google Scholar 

  64. S. Alowami, S. Troup, S. Al-Haddad, I. Kirkpatrick, P. H. Watson, Mammographic density is related to stroma and stromal proteoglycan expression, Breast Cancer Res., 2003, 5, R129–R135.

    Article  CAS  Google Scholar 

  65. P. Taroni, A. Pifferi, G. Quarto, L. Spinelli, A. Torricelli, F. Abbate, A. Villa, N. Balestreri, S. Menna, E. Cassano, R. Cubeddu, Non-invasive assessment of breast cancer risk using time-resolved diffuse optical spectroscopy, J. Biomed. Opt., 2010, 15, 060501.

    Article  Google Scholar 

  66. D. R. Leff, O. J. Warren, L. C. Enfield, A. Gibson, T. Athanasiou, D. K. Patten, J. Hebden, G. Z. Yang, A. Darzi, Diffuse optical imaging of the healthy and diseased breast: A systematic review, Breast Cancer Res. Treat., 2008, 108, 9–22.

    Article  Google Scholar 

  67. T. Durduran, R. Choe, W. B. Baker, A. G. Yodh, Diffuse optics for tissue monitoring and tomography, Rep. Prog. Phys., 2010, 73, 076701.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paola Taroni.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Taroni, P. Diffuse optical imaging and spectroscopy of the breast: A brief outline of history and perspectives. Photochem Photobiol Sci 11, 241–250 (2012). https://doi.org/10.1039/c1pp05230f

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1039/c1pp05230f

Navigation