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Prediction of low-field nuclear singlet lifetimes with
molecular dynamics and quantum-chemical property
surface†

Pär Håkansson∗a‡

Molecular dynamics and quantum chemistry methods are implemented to quantify nuclear spin-
1/2 pair singlet-state relaxation rates for three molecular systems at low magnetic field and room
temperature. Computational methodology is developed for weak interactions, particularly impor-
tant for singlet states at low field. These include spin-rotation and spin-internal-motion effects,
which describe the coupling of the spin-carrying nuclei to fluctuating local magnetic fields induced
by the overall and internal molecular fluctuations, respectively. A high-dimensional tensor property
surface using Kriging interpolation is developed to circumvent costly quantum-chemical calcula-
tions. Together with the intramolecular dipolar relaxation, all the simulated relaxation mechanisms
are accounted for with a common theoretical framework. Comparison with experiment indicates
that quantitative accuracy is obtained, sufficient to enable guidance in the molecular design of
molecules with long-lived singlet order.

1 Introduction
Long-lived states (LLS) are configurations of nuclear spin sys-
tems that have decay time constants much longer than the con-
ventional spin-lattice relaxation time (T1) under ambient condi-
tions1–11. The existence of such states creates many new possi-
bilities in nuclear magnetic resonance (NMR) and magnetic res-
onance imaging (MRI) experiments, including the study of slow
transport processes such as slow flow and diffusion12, as well
as the storage of hyperpolarized nuclear spin order for relatively
long times13,14.

Symmetry properties for the spin system provide a protection
for long-lived states against common relaxation mechanisms7.
For example, in systems of spin-1/2 pairs, the LLS known as
singlet order is protected against motional fluctuations in the in-
tramolecular dipole-dipole coupling between the members of the
spin pair, which is often the dominant mechanism for T1

15. In
favourable cases, this allows the lifetime of singlet order, denoted
TS, to exceed T1 by a large factor. Recently, a molecular system
was designed which displays singlet relaxation time TS exceeding
1 hour in a room-temperature solution, which is approximately 50
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times longer than the conventional T1 relaxation time15,16. This
design15 was in part guided by the type of calculation procedures
detailed in this work.

The relaxation of LLS is caused by spin-symmetry breaking
mechanisms and the most common ones are at least qualitatively
well-understood. In cases of rigid molecular geometry, standard
techniques based on Abragam-Redfield relaxation theory may be
used to analyze nuclear dipole-dipole (DD) interactions and to
predict molecular geometries that support LLS with long life-
times17–20. In strong magnetic fields, chemical shift anisotropy
(CSA) often dominates the relaxation of nuclear singlet order.
Fast molecular tumbling, compared to both the CSA interaction
and the nuclear Larmor frequency, gives rise to a quadratic de-
pendence of T−1

S on the magnetic field strength19,21,22. One un-
usual feature of the CSA mechanism of singlet relaxation is that
the antisymmetric (rank-1) components of the CSA tensor often
dominate19.

In many cases the longest nuclear singlet relaxation times are
encountered at low magnetic field, where the CSA mechanism
is absent. The low-field regime is also of practical importance for
the possibility of transport of the hyperpolarized medium finished
with spin order from the polarization equipment to the site of
use (an NMR spectrometer or MRI instrument). Plausible mecha-
nisms to relax nuclear spin systems at low magnetic fields are the
intramolecular dipole-dipole and spin-rotation (SR) mechanisms,
as well as through intermolecular interactions with nuclear spins
on solvent molecules, and paramagnetic species. When inter-
molecular interactions are minimized by suitable sample prepa-
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ration (solvent deuteration and elimination of paramagnetic im-
purities) the intramolecular mechanisms dominate. With the as-
sumption of perfectly rigid molecules, the intramolecular contri-
butions to nuclear singlet relaxation from out-of-pair DD cou-
plings and spin-rotation couplings are readily estimated. How-
ever, in most cases, such treatments predict nuclear singlet life-
times that are orders of magnitude longer than experimental mea-
surements of TS. The discrepancies are too large to be accounted
for by uncertainties in the theory, or by small intermolecular in-
teractions.

Spin-rotation interactions involve the coupling of nuclear spins
with small fluctuating magnetic fields generated by the rotation
of molecules in solution. Since the positive and negative electrical
charges are not located at the same places in a molecule, molec-
ular rotation generates local currents that are associated with
local magnetic fields and these couple to the magnetic nuclei.
In the SR context one typically considers the overall (end-over-
end) rotation of a rigid molecules subjected to frequent collisions.
There is much early literature on the spin-rotation mechanism for
small molecules, especially in the gas phase23–27, where in most
cases, the molecules are approximated as rigid rotating bodies,
subject to collisions and hydrodynamic forces25. This approach
has also been used for singlet relaxation21,28,29. Unfortunately
the rigid-body approach greatly underestimates nuclear singlet
relaxation rate in most realistic cases. This is unsurprising since
most molecules are highly flexible; even if the overall rotation
of a medium-sized molecule in solution is sluggish, the internal
motion may be considerable, and may include torsions and twists
that have much in common with rotational motion.

The effect of internal motion on nuclear spin relaxation has
been examined for the special case of rotating methyl (CH3)
groups30–34. However, we find that also other types of inter-
nal molecular flexibility have a significant effect on nuclear spin
relaxation, even when the molecule contains no obvious rotat-
ing parts such as methyl groups. An important part of this work
is a method for calculating the effect of local internal molecu-
lar motion on nuclear singlet relaxation. We call this the spin-
internal-motion (SIM) mechanism of nuclear singlet relaxation,
distinct from the spin-rotation mechanism (SR), which only refers
to the effect of overall molecular rotation, and which is usually
negligible, except for very small molecules. It is shown in the
present and previous work15 that the SIM mechanism, on the
other hand, can dominate TS at low field, especially for large,
flexible molecules.

To arrive at a valid general discussion of SIM and SR TS relax-
ation, the time dependence of the interaction tensors are needed,
based on atomistic molecular dynamics (MD) simulations. Typi-
cally this leads to a massive computational bottleneck in quantum
chemistry (QC) calculations since QC information is required at
sub-picosecond resolution for the nanosecond long MD trajecto-
ries. The current paper has two main ambitions, first, to provide a
general computational framework to address the costly quantum
chemistry calculations required for NMR relaxation and, secondly,
to describe the details required in predicting intramolecular nu-
clear singlet relaxation mechanisms at low magnetic field.

The method described here for the computation of the singlet

relaxation time TS combines (MD) simulations with a QC-property
surface (QCPS), allowing for calculation of the simulated snap-
shots in a cost-efficient way. This provides the first framework
for MD-QC singlet-state calculations without adjustable parame-
ters. The work also sets the foundation for forthcoming work on
additional mechanisms.

The combination of MD and QC calculations has been used be-
fore for T1 studies of paramagnetic agents35–38 and quadrupole
relaxation39 using various approaches. For instance, for para-
magnetic agents, the relevant (zero-field splitting) QC tensor is
modelled within a truncated normal mode expansion, limiting
the model to small spatial deviations of the nuclei35. Different
possibility is seen for is a low-density Xe gas, where the approxi-
mate pairwise additive approximation reduces the computational
cost of QC-tensors as the instanteneous interactions are computed
with a parameterized one-dimensional "NMR-force field"36 and
thus not restricted to small-amplitude spatial motion. The lim-
itation of a normal mode expansion as well as restriction to a
low dimensional parameterization is overcome in the Refs.37–40,
where the QC-tensors are explicitly calculated for each MD snap-
shot, thus allowing for all the motional modes of the system to
be incorporated. However, a limitation is the computational bot-
tleneck discussed above or, alternatively, the large statistical error
(see for instance Figure 2 in Ref.39).

To progress in the area of modelling LLS systems, we address
in this work two main complexities, 1) the computational chal-
lenges in the QC-computed tensors of the spin Hamiltonian that
need to be sampled from a MD trajectory snapshots and 2) in-
troduce the SIM concept and adapt it to MD simulations. The
latter addresses, in particular, the question of how to progress
from an approach where, for instance, CH3 is postulated as caus-
ing spin-internal relaxation30,31 towards a procedure where the
most relevant internal region is predicted from the MD simulation.

In the present work, the QC-tensor computational cost bottle-
neck is overcome by using a spatial interpolation scheme. In par-
ticular, we explore the powerful Kriging model41 (also referred
to as Gaussian Process or DACE: design and analysis of computer
experiments), widely used in the computational engineering com-
munity41–43, and recently also for computational chemistry. The
Kriging interpolation scheme was found to be the most efficient
in a comparison of polarisable water models44. A Kriging model
is used in the global line-shape fitting procedure for an electron
spin resonance spectrum, for achieving a necessary reduction of
the number of function evaluations45. In this work we precent,
for the first time, Kriging MD/QC NMR relaxation studies. Briefly,
a training set of instantaneous molecular configurations are se-
lected and the QC-tensors are computed; subsequently, a Krig-
ing model is parameterized from the QC outputs41. The model
achieved in this way provides a QCPS that replaces the costly QC
snapshot calculations in the analysis of the MD simulation. QCPS
is analogous to the MD-force field that can be thought of circum-
venting the costly QC force calculations when performing con-
ventional MD-simulations. The underlying Bayesian assumption
behind the Kriging model is particularly valuable since, in addi-
tion to providing the QCPS, it also provides a model estimate of
the error41. This may be used for a cost-efficient update of the
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training set.
Before any useful estimates can be made from the Kriging

model, a reasonable first training set of configurations is required.
Setting up the first small training set poses a challenge due to
the complicated parameter space in MD simulations, with gen-
erally very many, both intra-and intermolecular degrees of free-
dom, which cause that the commonly used efficient space-filling
method developed in computational engineering41 for this pur-
pose cannot be directly applied. To overcome this, a space-filling
method that is new to the quantum chemistry community is pro-
vided, which works directly with the available set of MD snap-
shots. Hence, presented is a QCPS methodology, which is ex-
pected to find a wide set of applications well beyond NMR relax-
ation.

The paper is organised as follows. After a review of the molec-
ular systems studied in section 2, the section 3 provides the back-
ground for the relaxation rate calculations. The derivation of SR,
SIM and DD Hamiltonians is given in section 4, and in section 5,
the specific form of the time correlation functions (TCFs) are dis-
cussed, followed by, in section 6, a survey of the implementation
of the Kriging model in the context of NMR relaxation. The results
are discussed in section 7 and conclusions drawn in section 8.

2 Molecular systems
Three molecular systems with relaxation parameters measured in
previous works are considered, two 13C-labeled molecules19 and
15N-nitrous oxide28. Singlet relaxation in these systems has a
long decay constant (TS), for which a complete theoretical under-
standing is lacking, making these interesting test molecules. To
access the low-field (approximate) singlet state for these systems,
pulse-sequence and field-cycling are, respectively, employed, de-
tailed in Refs.19,28. A small chemical shift difference is needed
to access the singlet state at high field (> 1 Tesla), and a suit-
able pulse sequence depends on the degree of strong coupling
(relating spin-spin coupling to chemical shift), making these pa-
rameters interesting to present. The molecular structures and re-
laxation rates are provided in Figure 1.

D DD

OCH2CH3CH3O
DD DD

D

Denotes 13C

I

II

III

Molecule   Solvent                  Structure                          T1          TS

OO

OCD2CD3D3CO

15N 15N+ O-

CD3OD

CD3OD

DMSO-D6

51.5s 10.2min

42s 15.9min

197s 26min

Fig. 1 The molecular structures and the experimental room tempera-
ture relaxation parameters of the three LLS-candidates studied at 2.2 mT
magnetic field.

Sample I: (Figure 1,I) 1-Ethoxy-6-methoxyhex-3-yne-3,4-13C2-
1,1,2,2,5,5,6,6-d8 is a molecule synthesized with the aim at at the

stability of the singlet state at high magnetic field. The synthesis
steps are given in the ESI of Ref.19, the difference in the isotropic
chemical shift of the nuclei carrying the singlet state is ∼0.13
ppm, and the intra-pair JCC-coupling is 180 Hz. All samples were
degassed to remove molecular oxygen. Sample I dissolved in
deuteromethanol has a singlet order decay time of TS =10.2 min
measured at 2.2 mT, approximately 12 times greater than T1

19.
The singlet order decay time is of similar magnitude at high mag-
netic field (7 T)19.

Sample II: (Figure 1,II) 1-Ethyl-4-methylbut-2-ynedioate-2,3-
13C2-d8 was synthesized as described in the Supporting Informa-
tion of Ref.19. Sample II, dissolved in deuteromethanol, and de-
gassed, has a singlet-order decay time of TS =15.9 min (nearly
23 times T1) at low magnetic field (2 mT)19. The difference in
the isotropic chemical shift is ∼0.62 ppm and the JCC-coupling
equals 185 Hz. Sample II has a singlet-order life time similar to
T1 at high magnetic field (7 T)19. Hence, to observe a signifi-
cantly prolonged singlet-order lifetime, a lower magnetic field is
required.

Sample III: (Figure 1,III) 15N2O gas is dissolved in the de-
gassed DMSO-d6 solvent to a concentration of about 0.3 M in
Ref.28. The difference in the isotropic chemical shift is circa 82
ppm and the JNN-coupling 8.1 Hz. The singlet-order decay time
TS =26 min is reported at 2.2 mT field Ref.28 (eight times T1). The
inequivalent nuclei require a low-field relaxation measurement.

3 Relaxation theory
The relaxation of singlet order and magnetisation is studied for a
quantum spin system (I) coupled to a classical "lattice" (L) (also
denoted thermal bath), where the lattice degrees of freedom are
explicitly obtained through MD simulations. The relaxation rates
are treated within a perturbative form of the Liouville-von Neu-
mann equation46,47. A perturbative form is motivated by the fact
that the molecular lattice degrees of freedom have much faster
modulation than the spin-lattice (IL) coupling strength, hence
the studied systems are in the motional narrowing or Redfield
regime. In this context, the spin dynamics is governed by the
Bloch-Wangsness-Redfield (BWR) master equation:

dρ(t)
dt

= [−iĤI + Γ̂
IL]ρ(t), (1)

where ρ(t) is the density matrix of the spin degrees of freedom
(trace taken over the lattice degrees), ĤI and Γ̂IL are the coher-
ent and relaxation superoperators, respectively47. The relaxation
superoperator accounts for the modulation of the spin system by
the lattice degrees of freedom, causing the relaxation of the spin
states, and is given by

Γ̂
IL = ∑

λ ,λ ′
Γ̂

λ ,λ ′ , (2)

where λ ∈ {SR,SIM,CSA,DD, iDD,sDD,SR2K, pDD, . . .} and the
individual relaxation mechanisms (with λ = λ ′), as well as cross-
correlations (λ 6= λ ′) may be included. Some of the plausi-
ble relaxation mechanisms48 are, besides the already mentioned
SR and SIM, chemical shift anisotropy (CSA), in-pair (DD), the
remaining intramolecular (iDD) and the solvent (intermolec-
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ular, sDD) dipole-dipole coupling, scalar relaxation of second
kind (SR2K), and hyperfine coupling to paramagnetic impurities
(pDD). The relaxation supermatrix elements are formed by47

Γ
λ ,λ ′
rsuv =

1
2
[Jλ ,λ ′

rusv (ωru)+ Jλ ,λ ′
rusv (ωvs)−δsv ∑

γ

Jλ ,λ ′

rγvγ (ωγu)−δru ∑
γ

Jλ ,λ ′

vγsγ (ωvγ )],

(3)

where

Jλ ,λ ′
rsuv (ω) =

∫
∞

0
Gλ ,λ ′

rsuv (τ)exp(−iωτ)dτ, (4)

Gλ ,λ ′
rsuv (τ) =

(
|r〉〈s|Hλ (t)Hλ ′(t + τ)|u〉〈v|

)
. (5)

Here the states {|r〉, |s〉, . . .} are the eigenstates of the spin-lattice
Hamiltonian Hλ (t), the Liouville bracket46 for superoperator A is
defined as (X |A|Y ) = TrI{X†AY,ρ}/TrI{X†Y,ρ}, the overbar ({·})
denotes an ensemble average over the lattice degrees of freedom,
and Jλ ,λ ′

rsuv (ω) is a spectral density. Eqn (5) introduces the spin-
lattice TCF, which is central to this work. In particular the spin-
Hamiltonian trajectories are computed from MD simulations. The
main aim of this paper is to provide an efficient methodology for
the ensemble average in eqn (5) to be estimated from first princi-
ples.

The study focuses on low magnetic-field experiments and the
corresponding, important relaxation mechanisms, SIM,SR,DD
and iDD. Considering the specific sample preparation proce-
dures (see sec. 2), the solvent effects (sDD and pDD) have mi-
nor influence and will be discussed in forthcoming work. Due
to a timescale separation of the molecular reorientation (mod-
ulating DD and iDD at pico- to nanosecond timescale in this
work) and collisions (modulating SIM,SR at a femto- to sub-
picosecond timescale), motivates omitting the cross-correlations
between these two mechanisms.

The relevant TCFs [cf. eqn (5)] are compactly represented as
the zero-quantum block of the Liouville matrix (thus excluding
the non-secular terms):

Gλ
S0S0

(τ) =
(

S0|Hλ (t)Hλ (t + τ)|S0

)
(6)

Gλ
I jzI jz

(τ) =
(

I jz|Hλ
j (t)H

λ
j (t + τ)|I jz

)
, (7)

where the population superoperators8 S0 ∝ III j · IIIk (also denoted
T jk

00 , IIIk is the nuclear spin operator for spin k) and I jz are intro-
duced for the singlet and longitudinal relaxation of spin j, re-
spectively. Next, the specific form of SR and SIM Hamiltonians
is discussed, after which the form of the TCFs of eqs (6,7) are
discussed, in sections 5 and 6.

4 Spin-rotation (SR) and Spin-Internal-
Motion (SIM) Hamiltonian

In 1967, Dubin and Chan30 extended the concept of spin-rotation
interaction and considered the additional relaxation mechanism
caused by the internal rotation of a CF3 group. The theory for this
process has been discussed for instance by Bull31 and Lee32 con-
sidering a symmetric internal top49. In this work, we generalise

this concept and consider not only the internal rotation but all the
motions that may induce a local magnetic field, for instance inter-
nal torsional motion, in an important relaxation pathway denoted
spin-internal-motion (SIM).

The SR Hamiltonian accounts for the magnetic field induced by
the overall rotation of nuclei and electrons around the nucleus of
interest. This magnetic field is expected to arise from from two
main effects32: (i) electrons do not perfectly follow the nuclear
framework, for instance they lag behind, causing a net current
and (ii), even with electrons following the nuclear framework ex-
actly, the nuclear and electronic charge distributions do not cancel
out, thus they give rise to net atomic charges ("partial charges").
The SR interaction Hamiltonian25 has the form

HSR(t) =
K

∑
k=1

IIIk ·CCCSR
k · JJJ(t), (8)

where CCCSR
k is the spin-rotation tensor per unit angular momentum

and JJJ(t) is the overall (molecular) angular momentum. For SR,
the molecule is considered (approximately) rigid. To compute
CCCSR

k , the first effect (i) requires a quantum chemistry treatment
where the deviation from the Born-Oppenheimer approximation
is accounted for at perturbation level of theory (see Ref.50, p
337). The necessary details of SR tensor calculation are noted
in sec. 6.2. In this work, we restrict the discussion to ambient-
temperature liquids and dense gases, where a classical treatment
of JJJ(t) is sufficient, allowing classical MD simulations to be used
(see sec. 6.1). With classical angular momentum, eqn (8) repre-
sents a hermitian operator and a symmetrized SR-Hamiltonian51

is not required.
The SR interaction is concerned with a rigid molecular geom-

etry and the presence of internal dynamics is not explicitly ac-
counted for. In particular for a large molecule, the overall SR
interaction has only a minor contribution to relaxation. On the
other hand, fluctuations of a region of atoms in the vicinity of
the spin of interest may provide a significant relaxation mech-
anism. Working with angular velocity is more convenient than
with angular momentum in the following discussion, as well as in
the final numerical implementation. We work with one internal
region in close proximity to each spin, as discussed below. The
local nuclear fluctuations [∆rrr(t)] require that the basic effects (i)
and (ii) are accounted for with a time dependent tensor CCCk[∆rrr(t)],
defined per unit angular velocity, and the local angular velocity
θ̇θθ(t) (bending, torsions etc. with the dot denoting time deriva-
tive) for the internal region (cf., Figure 2). The combined SR and
SIM interactions assume in this work a form similar to eqn (54)
in Ref.31, except with a time-dependent tensor

HSR(t)+HSIM(t) =
K

∑
k=1

IIIk · {CCCe
k ·ωωω

e(t)+CCCk[∆rrr(t)] · θ̇θθ k(t)}, (9)

where the SR interaction of eqn (8) is accounted for with interac-
tion CCCe

k (per unit angular velocity) and the overall angular velocity
ωωωe of the rigid equilibrium frame, denoted by superscript e.

Clearly more than one region associated with each spin may
be flexible and eqn (9) is thus an approximation that may be
generalised to several internal regions. The final result will be
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presented for one region per spin, to avoid increased computa-
tional complexity. This is motivated by noting that additional in-
ternal regions, by necessity located further away from the spin
k, have a drastically reduced relaxation contribution. Hence, the
additional remote regions behaves as rapidly fluctuating magnetic
dipoles with r−6 relaxation rate dependence on the distance r be-
tween the region and NMR nucleus. To motivate this approxi-
mation, order-of-magnitude estimates with additional regions are
discussed in sec 6.4.

4.1 Angular velocity for flexible molecules
To discuss the angular velocity, the classical kinetic energy is a
useful starting point. The instantaneous position of nucleus l may,
on one hand, be expressed relative to a space-fixed system of axes
(that we will call the laboratory frame), as well as in the molecu-
lar centre-of-mass (MCM) frame, which is shown in Figure 2(A).
This position vector is denoted

rl = xlex + yley + zlez, (10)

where the unit vectors {ei} are along the cartesian axes of the
molecule-fixed frame. It is useful to relate the instantaneous po-

e

j
k

e

rl

e (A)

t.

r

x

x

y
e

(B)

rl
k

j

Fig. 2 Illustrations of molecule (dashed line) with a singlet spin pair ( j,k)
and internal region (red nuclei). In panels A and B, centers of mass of the
molecule and the region are displaced (rθ ) and coincide, respectively.

sition vector to the equilibrium position {re
l } via

∆rl = ∆xlex +∆yley +∆zlez,

where ∆xl = xl−xe
l , etc. The velocity in the laboratory frame of the

nucleus l, written in terms of the angular velocity of the molecule-
fixed frame (ωωω), is52

vl = ωωω× rl +ul (11)

where the internal velocity is ul = ∆̇rl = ṙl , and the last equality
follows from {ṙe

l ≡ 0}.
The kinetic energy (T = 1

2 ∑l mlv2
l ) relative to the MCM is given

in52

2T =
N

∑
l=1

ml(ωωω× rl) · (ωωω× rl)+
N

∑
l=1

mlu
2
l +2ωωω ·

N

∑
l=1

mlrl ×ul , (12)

where the contributions from the left are: the overall molecular
tumbling, internal dynamics (vibrations, torsions), and the cou-
pling between the two processes, for a molecule containing N
nuclei. The last term may be written as ∑l rl× (mlul) to represent
the total internal (vibrational) angular momentum. The degree
by which this is coupled to the overall molecular tumbling (i.e.,

ωωω) may be minimized by our choice of the molecular frame.

4.1.1 Eckart frame

We choose the molecular frame {ei} as the Eckart frame53,54 (EF)
that is determined, for a polyatomic molecule, by three quanti-
ties: the nuclear masses ml , as well as their instantaneous and
equilibrium positions, {rl(t)} and {re

l }, respectively. Although the
initial orientation of the EF (the choice of {re

l }) can be chosen at
random relative to the laboratory frame, the Eckart conditions54

are needed to construct the subsequent frames. The Eckart con-
ditions find the molecule-fixed frame that minimizes the coupling
between the total molecular vibration and rotation, and read as

∑
l

mlre
l × rl(t) = 0. (13)

The EF is an orthonormal right-handed triad of three Cartesian
vectors constructed such that eqn (13) is fulfilled54. Briefly,
first a set of Eckart vectors Ei = ∑

N
l=1 mlre

l,irl are computed for
i = x,y,x. Secondly, the EEE i are orthonormalized by [ex,ey,ez] =

[Ex,Ey,Ez]E−1/2, employing the (3×3) Gram matrix E (elements
Exy = Ex ·Ey, etc.). Effectively, the Eckart conditions ensure that
the angular momentum contribution of the molecule-fixed system
{re

l } is zero if {rl(t)}→{re
l } for vectors expressed in the EF, and in

this particular case, the molecule rotation is decoupled from the
internal motion. In the general case, a perfect decoupling cannot
be achieved54. Since the molecular moment of inertial axis frame
may deviate from the EF (see sec 10.2.1 in Bunker and Jensen55

for an illustrative example), the EF is a suitable choice for flexible
molecules.

The kinetic energy using the Eckard condition (eqn (13)) is
obtained from

2T = ωωω
T (t) · I(t) ·ωωω(t)+

N

∑
l=1

mlu
2
l (t)+2ωωω(t) ·

N

∑
l=1

ml∆rl(t)×ul(t),

(14)
where T denotes transpose and the first term in eqn (12) is rewrit-
ten in terms of the components of the instantaneous moment of
inertia52 [I(t)],

Iab =
N

∑
l=1

ml

(
δabr2

l − rl,arl,b

)
, a,b ∈ {x,y,z}. (15)

4.1.2 Overall and internal angular velocity

We are interested in the coupling between the overall motion and
one flexible region per spin required in eqn (9), leading to the
(simplified) kinetic energy expression of eqn (14), where the re-
gion consists of K nuclei. We will return to the topic of defining
an internal region for each nucleus, in sec. 6.4.

To define an internal angular velocity it is assumed that, during
a (possibly very short) time interval, the nuclei in the internal
region move in concert and, if for simplicity the center of mass
coincides with the MCM (Figure 2B), the kinetic energy is

2T = ωωω
T (t) · I(t) ·ωωω(t)+ θ̇θθ

T
(t) · Iθ (t) · θ̇θθ(t)+2ωωω

T (t) · Iθ (t) · θ̇θθ(t),
(16)

where θ̇θθ(t) is the angular velocity of the region relative to the
molecular frame, and Iθ is the corresponding moment of inertia
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(computed with eqn (15) for the relevant K nuclei). The overall
and internal angular momenta relative to the MCM are given by
Ja = ∂T/∂ωa and jα = ∂T/∂ θ̇α respectively52:

J(t) =I(t) ·ωωω(t)+ Iθ (t) · θ̇θθ(t) (17)

j(t) =Iθ (t) ·ωωω(t)+ Iθ (t) · θ̇θθ(t). (18)

For the more general case in which the center-of-mass of the in-
ternal region is displaced relative to the MCM (non-vanishing rθ

in Figure 2A), the angular momenta are

J(t) =I(t) ·ωωω(t)+ [Iθ (t)+ Irθ
(t)] · θ̇θθ(t) (19)

j(t) =[Iθ (t)+ Irθ
(t)] ·ωωω(t)+ [Iθ (t)+ Irθ

(t)] · θ̇θθ(t), (20)

where the additional Irθ
(t) is given by the parallel axis theorem52

and denotes the moment of inertia of the center-of-mass of the
region (eqn (15) computed with the single mass mθ = ∑

K
l ml and

rθ ). From eqn (20) we obtain

ωωω(t)+ θ̇θθ(t) = [Iθ (t)+ Irθ
(t)]−1j(t),

where the components of Iθ (t),Irθ
(t) and j(t) = ∑

K
l mlrl × vl are

readily available from a MD simulation.

The components of the rigid-body SR and the SIM contributions
are interesting to discuss individually. However, the available MD
trajectory is for a completely flexible molecule. To separate these
contributions, the rigid-body angular velocity is obtained by filter-
ing out conformation changes and bond vibrations, by computing
ωωωe(t) = (Ie)−1(t)Je(t) with Je,and (Ie)−1 obtained from the equi-
librium geometry re accordingly rotated to the instantaneous EF.
Note that the calculation of Je is performed with the internal ve-
locity contribution still present (see eqn (11)). However, this is of
small amplitude compared to the overall molecular rotation and
will be kept here, in favour of a simpler calculation. The angular
velocity of the internal region is computed as the remainder

θ̇θθ(t) = [Iθ (t)+ Irθ
(t)]−1j(t)−ωωω

e(t), (21)

containing the angular velocity of the internal region [cf. Fig-
ure 2A] and its coupling to the molecular angular velocity.

5 Spin states and relaxation rates

5.1 SR and SIM relaxation

Contributions to the magnetic field at the nucleus k are given by
the definitions

BSIM
k (t)≡[CCCk(ΘΘΘ(t))]Lab · θ̇θθ k(t)

BSR
k (t)≡[Ce

k(r
e)]Lab ·ωωωe(t),

where the internal molecular dynamics is expressed in the inter-
nal coordinate representation ∆r(t)→ΘΘΘ(t). Both tensors have an
additional time dependence due to the rotation from the instan-
taneous Eckart to laboratory frame [accomplished as [CCCk]

Lab(t) =
e(t) · [CCCk(ΘΘΘ(t))]EF · e−1(t)]. The TCFs are constructed56 from

eqs 6, 7 and 9:

Gλ
S0S0

(τ) =
2
3 ∑

l={x,y,z}
∆Bλ

l (t0)∆Bλ
l (t0 + τ) (22)

Gλ
IzIz

(τ) =
1
2 ∑

i= j,k
l={x,y}

Bλ
l,i(t0)B

λ
l,i(t0 + τ), (23)

where λ = {SIM,SR}, ( j,k) denote the spin pair and ∆Bλ
l (t) =

Bλ
j,l(t)−Bλ

k,l(t). Due to the sub-picosecond relaxation time corre-

sponding to these TCFs, the relaxation rates (T−1
S ,T−1

1 ) are avail-
able by direct numerical integration of Gλ

S0S0
(τ) and Gλ

IzIz
(τ), i.e.,

in the extreme narrowing regime.

5.2 Intramolecular dipole-dipole relaxation

We consider the singlet nuclear spin pair ( j,k) weakly coupled
to additional spins q, hence the dipole-dipole and J-coupling
fulfill the following relations: ‖HDD

jk ‖ � {‖H
iDD
jq ‖,‖H iDD

kq ‖} and
‖J jk‖ � {‖J jq‖,‖Jkq‖}, respectively. Thus the eigenstate of the
singlet pair jk is approximately preserved, despite these external
interactions57.

The spin pair is influenced by a lattice that consists of addi-
tional q-spins, as well as the classical degrees of freedom (molec-
ular tumbling and conformational changes). The relaxation prop-
erties of the spin pair are conveniently described with a composite
lattice that consists of both the classical degrees and the q-spins.
This approach is, for instance, followed in the derivation of para-
magnetic relaxation enhancement58. The DD Hamiltonian, which
is based on two spin operators, is formally rewritten in terms of
single spin operators59,60:

HDD,iDD(t) = III j ·BBBDD
j,k (t)+∑

q
[III j ·BBBiDD

j,q (t)+ IIIk ·BBBiDD
k,q (t)], (24)

where the III j = (I1, j
−1 , I

1, j
0 , I1, j

1 ) are first-rank spin operators for nu-
clear spin j and BBBiDD

j,q (t) is the dipolar field created by spin q at
the site of j, which depends on the location of spins q. For the
component l, the dipolar field as a first-rank operator reads

B(1)
l, j,q(t) = cDD

jq
√

30
1

∑
n=−1

(−1)n[C2, 1, 1
l−n,n,n−l ]I

1,q
n

D2
0,l−n[Ω jq(t)]

r3
jq(t)

, (25)

where Ω jq is the orientation of the internuclear axis between the
spins j and q relative to the laboratory frame, r jq is the corre-

sponding distance, D(2)
0,l−n is a second-rank Wigner rotation matrix

element, cDD
jq = γ jγqµ0h̄/4π (with symbols in their usual mean-

ing), and [C2, 1, 1
l−n,n,n−l ] are the appropriate 3j symbols61. Non-

equivalent spins may in general require solving a pair of coupled
differential equations59. However, we assume single-exponential
relaxation of ( j,k) spins due to the weakly coupled q-spins. From
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eqs 6, 7 and 24, the following TCFs are obtained56:

GiDD
S0S0

(τ) =
4
3 ∑

q,m
Iq(Iq +1)∆Fq∗

2m(0)∆Fq
2m(τ), (26)

GiDD
I j,zI j,z

(τ) =
2
3 ∑

q
Iq(Iq +1)g j,q(τ), with (27)

g j,q(τ) =F jq∗
20 (0)F jq

20 (τ)+3F jq∗
21 (0)F jq

21 (τ)+6F jq∗
22 (0)F jq

22 (τ),

GDD
IzIz

(τ) =
3
2
(F jk∗

21 (0)F jk
21 (τ)+4F jk∗

22 (0)F jk
22 (τ)), (28)

for singlet magnetisation (caused by the iDD q-spins) and intra-
( j,k)-pair DD magnetisation relaxation, respectively: F jq

2m(t) =

cDD
jq

D2
0m[Ω jq(t)]

r3
jq(t)

, ∆Fq
2m(t) = F jq

2m(t)−Fkq
2m(t), and Iq is the spin quan-

tum number of third spin. Integration of the correlation func-
tions of eqs 26-28 into spectral densities [cf. eqn (4)] provides
the (T iDD

S )−1, (T iDD
1 )−1 and (T DD

1 )−1 relaxation rates, respec-
tively. In this work, the relaxation rates are computed in the
extreme narrowing regime due to the short characteristic de-
cay time for the TCFs. The validity of eqs 26-28 requires a fast
q-spin relaxation [(T q

1 )
−1 � {(T j

1 )
−1,(T k

1 )
−1}], fulfilled for the

proton and quadrupole relaxation rates in the this work (typi-
cally by one order of magnitude or more), and that the char-
acteristic molecular dynamics rotational timescale (τc) is short
[τ−1

c �{(T q
1 )
−1,(T q

2 )
−1}], not to provide an additional relaxation

sink59.

6 Computational methods
Flowchart for the prediction of experimental observables from
QC/MD simulation is provided in Figure 3. After preparation of
an atomistic molecular MD with the explicit solvent molecules
[cf. sec 6.1], the coordinates {rl(t),vl(t)} of the LLS-agent and the
closest solvent molecules are extracted. From rl(t), the relevant
information to compute both iDD and DD relaxation is available
with numerical implementation of eqs 26-28. To proceed with the
properties dependent on the QC computed tensors (SR,CSA,. . . ),
the steps 1-5 in Figure 3 are followed:

1. The spatial degrees of freedom with significant influence on
the QC tensors are identified based on prior experience and
tests. In this study, bond angles local to the spin pair, as well
as all dihedral angles of the spin carrier molecule, are used.
The coordinates of the solvent may be relevant, as well.

2. Construction of spatial-training set {Θ} normalized to unit
interval (Θ(i) ∈ [0,1]). An efficient space filling method is
adapted to the generally challenging configurational space
spanned by the MD simulation. The key is to find a train-
ing set representing the complete configuration space with
relatively few configurations selected from the large pool
(> 105) of MD snapshots. A set {Θ} of typically a few hun-
dred configurations is used. Briefly, as illustrated by insert
in Figure 3, from initially selected configurations (a,b,c) an
additional configuration (d) is selected based on inverse dis-
tance squared in the configuration space [cf. sec 6.3.1].

3. For the training set, the QC-tensors are explicitly computed.
We use the DALTON62 software for the purpose [cf. sec. 6.2].

4. The QC-tensors of relevance to the relaxation mechanism
λ are used to parametrize a high-dimensional QCPS, em-
ploying the Kriging model41. The tensors for all the MD
snapshots (> 105) are computed from the constructed QCPS
[cf. sec. 6.3].

5. The spin Hamiltonians (see eqs 9,21) are assembled with
the QC tensors rotated from the Eckart to the laboratory
frame (sec. 4.1.1), and used to numerically compute the
TCFs (sec. 5.1).

Finally, the convergence of the Kriging model is probed with re-
spect to i) the size of the training set, by computing the observable
T−1

S as resulting from the mechanism λ using the whole MD tra-
jectory and ii) the quality of the QCPS model, by explicitly com-
puting a QC test function (here the TCF amplitude Gλ (t0) is used)
using a limited set of configurations (typically 100) and evaluat-
ing the QCPS model for the same set of configurations. If the
model does not converge, the training set is expanded and the
steps 2-5 updated until the additional configurations no longer
change the computed QCPS observable.
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Fig. 3 Flowchart for T−1
1 and T−1

S estimates from QM/MM trajectories and
QC tensor calculations, [cf. sec 6]. The upper insert illustrates molecule
I with a few of the considered degrees of freedom. The lower inserts
illustrate the training set selection of a new configuration (d), based on
the distance in the configuration space to the already existing set (a-c).

6.1 Molecular dynamics simulation

Considering the first three blocks of Figure 3, MD trajectories
were computed with a quantum mechanics/molecular mechan-
ics (QM/MM) model. This was performed with the SANDER
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(MPI) module of the AMBER program package63. The QM re-
gion was presently chosen to consist of just the single relevant
LLS candidate (see Figure 1), for which quantum-mechanically
computed forces replace the force field. The dynamics is clas-
sical, with quantum treatment of forces, however. There is ev-
idence that the QM calculation of forces improves the accuracy
of the internal dynamics64. The QM region is modelled with the
PM3 (parameter model 3) Hamiltonian, i.e., a semi-empirical QM
method, where typically the costly two-electron integrals are sim-
plified with parameters adjusted to reproduce energies for a set
of reference molecules65.

MM force field. The Hamiltonian is embedded in an ex-
plicit classical solvent (MM). A single LLS-agent has been placed
among the following solvent molecules in the dilute limit: I in
900 CH3OH molecules, II in 851 CH3OH molecules and III in
either (dilute limit a) 376 DMSO-h6 molecules, (b) 33 15N2O
in 741 DMSO-h6 molecules and (c) 33 15N2O in 741 DMSO-
d6 molecules, where the variants (b) and (c) correspond to
about 0.5 M concentration of 15N2O molecules. The simulation
boxes are typically of linear dimension of about 40 Å. The ini-
tial vacuum structures of the solutes were optimized with DFT
B3PW91/6-31G(d,p)62. The solvent force field for methanol is
provided in AMBER (MEOHBOX66) and also DMSO is available
pre-parametrized67. The program tleap, which is included in Am-
berTools13, was used to generate the QM/MM parameter files.
The MM (solvent) force field parameters were taken from AM-
BER/GAFF (General Amber Force Field) and ff99SB. The par-
tial charges for 15N2O were determined using the semi-empirical
QM method (AM1-SCC) implemented in the AMBER module an-
techamber. The QM/MM simulations were performed with peri-
odic boundary conditions.

MD trajectory. The particle-mesh Ewald method63 was used
for the long-range electrostatic interactions, with a cutoff at 11 Å.
The initial energy minimisation of the complete system consisted
of 5000 steps, alternating between the steepest descent and con-
jugate gradient algorithms. Subsequently, equilibration was per-
formed with a constant number of particles and normal temper-
ature and pressure (NTP, 25◦C, 1 bar) over 300 ps or more, in
contact with a Langevin thermostat. The system was then equili-
brated for 10 ps at constant volume (NVT) with a weak Berendsen
thermostat (10 ps coupling constant was used). The production
run consisted of a subsequent 2-8 ns NVT simulation with config-
urations stored typically every 10 fs. A 1.0 fs time step was used
in the simulations. The MD simulations were done on a single 4
GB memory node (with sixteen 2.6 GHz cores on the University
of Southampton supercomputer68). The MD simulation provided
2.8 and 3.5 ns ogf trajectory per 24 hours of simulation time for
molecules I and II, respectively. Extraction of the relevant LLS-
agent trajectory {r(t),v(t)} was done with the program ptraj in-
cluded in the AMBER package.

6.2 Quantum Chemistry

The focus of the present QC calculations is on the interaction
tensors for the SR mechanism (for equilibrium configuration re)
and the corresponding SIM tensors for the training set {Θ} (see

eqn (9) and the stage 3 of Figure 3). Both are needed to model the
coupling of the nuclear magnetic moment with the intramolecular
magnetic field27.

The SR-tensor69 was computed with the DALTON62 software
involving the perturbation of the ground state by the total (elec-
tronic+nuclear) and spin angular momenta. The integration over
the electronic momentum and position degrees of freedom pro-
vides the interaction tensor per unit of angular momentum for
the nuclear configuration Θ, as

CCCSR
k (Θ) = [CCCel

k (Θ)+CCCnuc
k (Θ)]I(Θ)−1, (29)

where the components of the MCM moment of inertia I are given
in eqn (15), and CCCel

k and CCCnuc
k are the tensors containing the QC-

computed electronic and classical nuclear contributions, respec-
tively. The tensor CCCel

k is related to the nuclear shielding69. The
relevant interaction per angular velocity (required in eqn (9)) is
given by CCCk(Θ) =CCCSR

k (Θ)I(Θ).

Due to the finite size of the basis set used in the calculation of
magnetic properties, attention is needed to the question of gauge
origin. The gauge-origin problem is addressed with rotational
London atomic orbitals (LAOs) (also know as GIAOs). These or-
bitals are adapted with explicit dependence of rotational angular
momentum and feature a good basis set convergence69. To main-
tain consistency with previous works69,70 concerning the gauge
origin, the electronic term is evaluated at MCM. Furthermore,
the nonrelativistic approximation is made, as is expected to be
valid71 for the low-mass nuclei 13C and 15N of interest here.

6.3 Quantum chemistry property surface

The purpose of the QCPS is to replace the computationally ex-
pensive QC calculation in obtaining the Hamiltonian tensors. In
this work, the QCPS is a Kriging model, a minimum mean-square
error method for nonlinear spatial prediction (see Ref.72 for a
review), built from a training set of precomputed QC tensors.

The training set vector consisting of K molecular configurations
is denoted as ΘΘΘ = [Θ(1),Θ(2), . . . ,Θ(K)]T , where Θ(i) are the non-
redundant coordinates expressed in the Z-matrix form of dimen-
sion n. These may include both intra- and intermolecular config-
urations and are associated with QC-computed tensor elements
Ckl(Θ

(i)). The format of the Kriging model is extensively discussed
in the literature41,72,73 and we provide the key aspects here. Al-
though a completely deterministic multivariate input-to-output
(Θ→Ckl) relation is ultimately constructed, the starting assump-
tion takes the point-of-view that our training set of QC calcula-
tions consists of statistical observations taken from a probability
distribution of dim(K) and is, thus, described by Ckl(Θ) = β1+Σ.
Here, β is a scalar, and 1 as well as ΣΣΣ are the unit vector and
a multivariate random variable with zero mean and covariance
Cov(ΣΣΣ) =σ2RRR(ΘΘΘ,ΘΘΘ′), respectively. The elements of RRR are given by
R(Θ(i),Θ( j)) = exp[∑n

l=1 ρl |Θ
(i)
l −Θ

( j)
l |

2] and the parameters β ,σ2

and ρl , (l = 1,2, . . . ,n) are determined by maximum likelihood es-
timation (MLE)41. This provides closed expressions for the over-
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all mean and variance (for a given set {ρl}):

β =
1T RCkl

1T R1
; σ

2 =
1
K
(Ckl −1)T R−1(Ckl −1),

and, to estimate the set {ρ}, an iterative global optimisation al-
gorithm by Jones et al.74 was followed. The sought model output
is given by

Ckl(Θ̂) = β +[R(Θ̂,Θ(1)), . . . ,R(Θ̂,Θ(K))]RRR−1(Ckl −1β ) (30)

where the bracket [·] contains the correlation between the Θ̂,
which is not in the training set, with each of the training con-
figurations. The parameters ρl model the non-linear variability
with respect to the spatial degree of freedom Θl . Note that with
one of the training configurations inserted in eqn (30), the cor-
responding QC value is recovered, honouring the status of the
training data as the best we have. Hence, the training data is ex-
plicitly included in model predictions, in addition to forming the
foundation for determining the Kriging model parameters.

A simple and commonly used method to account for the uncer-
tainty in the training data that may, for instance, originate from
omitted explicit degrees of freedom in the Kriging model, besides
other inaccuracies, is to work with a regression model. This may
be constructed by including a regression parameter41 in the Krig-
ing model, i.e., to substitute ΣΣΣ→ ΣΣΣ+1ρn+1 (with 1 the unit ma-
trix). Thus, the number of parameters increases by one and the
overall average agreement is sought, instead of considering the
training data as exact.

With one parametrized Kriging QCPS for each tensor compo-
nent, the snapshots C(Θ̂(t)) (∼ 105−106) of the MD trajectory are
computed at low cost. The largest computational cost associated
with the Kriging model lies in the matrix (O(K3)) operations and
the global optimisation of {ρ}. Provided a training set of circa
500 configurations is sufficient, a high dimensional (dim(Θ)=30)
Kriging model is feasible on an ordinary workstation in the or-
der of 10 min. The Kriging model is constructed in FORTAN77
code (see Kriging in Figure 3), implemented with blas and lapack
libraries41,75, compiled on Mac OS and Linux.

The Kriging model has been found to give more accurate re-
sults for a given training set size than the alternative surrogate
models, such as radial basis-function neutral networks44. In ad-
dition to the quantities in eqn (30), also the model uncertainty
may be estimated at a negligible additional cost76, which opens
an attractive training capability by predicting where in the config-
urational space any additional QC calculations are best invested.
Since the QC calculations pose an overall bottleneck in the time-
dependent Hamiltonian approach, the Kriging model is regarded
as an attractive approach in this work and a broad range of re-
lated QC-MD problems.

6.3.1 Strategy for an efficient training set

A key to successful implementation of QCPS is a representa-
tive training set of configurations (step 2, Figure 3). Methods
for a cost-effective representation of the spatial degrees of free-
dom exist, such as Sobol41 that provides configurations in an n-
dimensional unit cube. However, certain subsets of all the con-
figurations of the current molecular model are not allowed, for

instance when the atoms are in close contact. This makes Sobol
impossible to use without an additional selection strategy to dis-
regard physically improbable configurations. In the literature,
to address the complex configuration space of MD simulations,
the Sobol method has here been used initially, followed by it-
erative construction of QCPS, with subsequent removal of the
unfavourable training configurations44. A different approach is
taken in the "normal mode distortion"77 method in which first,
one computes the normal modes of the system and then generates
configurations by distorting the the normal mode configuration.
This comes with the system-dependent ambiguity in how much
distortion can be applied for the different modes.

To enable an efficient selection including intra-, as well as in-
termolecular degrees of freedom, and to simplify as compared
to the above-described methods, the space-filling method of Au-
dze et al.41,78 is adapted to the context of MD simulation. In
the implementation, (i) a large representative pool {Θ}NP of all
the configurations of the MD trajectory is extracted, containing
NP, typically 104 snapshots uniformly distributed in time, (ii) The
minimum and maximum values of each Θ(i) (for instance a bond
angle) are determined from the MD data and the range is nor-
malized to the interval [0,1]. Note that a QCPS is built in terms
of continuous variables and, thus, the distributions of Θ are in-
spected to verify this. In this work we only find a few dihedral
angles to be discontinuous, with population around −π/2 and
π/2 (for almost a flat segment of the molecule). The distributions
of these dihedral angles are easily made continuous by transform-
ing to a [0,π) range. Finally, (iii) after selecting the first configu-
ration from {Θ}NP , subsequent configurations are then based on
the previously (K) selected ones by finding Θ(K+1) such that the
minimum

min
Θ(K+1)∈{Θ}NP

K

∑
i=1

K+1

∑
j=i+1

1
||∆Θ(i j)||2

, (31)

is found, where ||∆Θ(i j)|| is the Euclidean distance of the normal-
ized parameters between the configurations i and j. This method
finds the new configuration that is displaced the furthest (in the
sense of eqn (31)) from the previously selected ones. This strat-
egy is applicable both to small and large molecules, with or with-
out solvent.

6.4 Setup of the MD/QC simulations

The preparation of the simulation is discussed here, bringing to-
gether the steps in Figure 3.

Force field. We note first that an independent check of the sol-
vent dynamics is available through the diffusion constant (D) of
the solvent. The solvent self-diffusion is estimated from the mean-
square displacement predicted from the MD simulation (see SEI
and Table S1 for complete list). Overall, the simulated results
agree well with corresponding experimental values. D(CH3OH)
is overestimated by only 6% in the simulation. For DMSO, both
the protonated and deuterated isotopomers are simulated and the
ratio D(DMSO-h6)/D(DMSO-d6) of 1.09 is found. Thus, square-
root-mass-trend seen in experiment, where the corresponding
ratio is 1.1479, is reasonably reproduced. In absolute terms,
D(DMSO) is overestimated by 30% in the simulations. Given the
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small effect deuterium is expected to have, we keep the proto-
nated form of methanol in the relaxation study.

For molecules I and II, it is assumed that the dilute limit pro-
vides a relevant description for the 0.1 M experimental samples.
The 15N2O, was simulated both at the dilute limit and at about
0.5 M concentration of 15N2O. Before considering the NMR relax-
ation below, we see from the radial pair correlation function for
the 15N(central)-15N(central) distance (see Figure 4), that there
is significant structure in the solvent at short distances. Typically
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Fig. 4 Radial pair correlation functions for the solvation of 15N2O in
DMSO: a 15N(central)-15N(central) and b 15N2O-DMSO center-of-mass
distance.

one neighbouring 15N2O is, on the average, present in the first
solvation shell (at around 5 Å), even at this relatively low con-
centration. This motivates the relaxation study to be conducted
at a finite concentration.

QC theory. In a study by Gauss et al.70, the accuracy of DFT
calculations for carbon and nitrogen SR-tensors is found to be rea-
sonable, featuring only a small dependence on the particular DFT
functional, as benchmarked with high-level ab initio QC meth-
ods, as well as compared with experiments for a large set of small
molecules. In Table 1, the basis-set dependence for the Frobenius
norm of the SR tensor is given for one MD snapshot of molecules
I-III. Comparing 6-31G∗, with polarisation functions on second-
row atoms (denoted with ∗), with the larger basis sets shows a
similar range of interaction, motivating this small basis set to be
used. On the other hand, comparing the vacuum structure calcu-
lation with the 6-31G∗ basis to results obtained with implicit and
explicit solvent, also displays similar values, motivating us to con-
sider the in vacuo results in the construction of QCPS. Molecule
III is found to have the computed central and terminal diagonal
components (3.28, 2.41) kHz in excellent agreement with exper-
iment80 (3.35, 2.48) kHz. The complete tensor has one large
off-diagonal element that occurs due to the product made with
the inverse inertia tensor (cf. eqn (29)) for this almost linear
snapshot. To avoid such large values, all construction of QCPS
was made for the interaction tensor per unit angular velocity (see
sec. 6.2).

Internal regions. A local region of atoms is required in eqn (9)
(see Figure 2), from which the SIM angular velocity is computed.
These regions are determined by testing several candidate re-
gions, separately for each of the spins j and k, in a screening pro-
cess. We are interested in the maximum contribution of TS[SIM],
i.e., the integral of TCF, eqn (22). For practical purposes, it is
convenient not to include the tensors (needed in eqn (22)) at this
stage. Instead we seek the maximum of the integrated TCF of the
difference of the local angular velocities for the regions attributed
to j and k, ∆(t) = θ̇θθ j(t)− θ̇θθ k(t). This property gives insight in
the total influence of the fluctuations. In Figure 5(a), the max-
imum of integrated TCF of ∆(t) is sought for candidate regions
attributed to j and k [scaled with the constant integrated TCF of
the overall angular velocity ωωω(t)], for molecule I. The internal an-
gular velocity θ̇θθ is readily computed from the angular momentum
and the inverse of the moment of inertia tensor, eqn (21). In Fig-
ure 5(b), the regions with maximum contribution are highlighted
in red. Note that for region 13, the whole molecule, the differ-
ence the in fluctuations cancels out. A similar study for molecule
II is illustrated in Figure 6, showing the largest amplitude from
the three-atom region for both spins j and k (displayed in red, in
panel b).

The same type of exploration was performed for molecule III,
as displayed in Figures S1 and S2 of SEI. Several combinations of
internal regions give almost the same magnitude of fluctuations
and also give approximately the same T−1

S relaxation rate. The
largest fluctuations are found for the single oxygen as the internal
region for the central nitrogen and both nitrogens as the internal
region for the terminal 15N spin. Note that an internal group con-
sisting of a single atom (oxygen in this case) has only two axes
of rotation and the inverse moment of inertia tensor is computed
from the associated two eigenvalues. The two nitrogens (for a
bent 15N2O), have formally three axes of rotation and the inter-
nal angular velocity may be computed accounting for all these.
This gives the mean T−1

1 ,T−1
S estimates consistent with the study

described below. The statistical variability in the estimates is very
large, however. It is expected that a roundoff error in θ̇θθ k(t) may
occur for nitrogens almost aligned with the MCM, where one very
large component of the inverse moment of inertia tensor is com-
pensated by the corresponding angular momentum component,
which almost equals zero (see eqn (21)). To avoid this problem,
both internal regions for 15N2O are assumed to have only two
axes of rotation.

A suitable time step in the integral of TCFs, after exploring the
range of 2.5-20 fs, is 5 fs for the molecules I and III, and 10 fs
for the molecule II. This defines the resolution at which the MD
snapshots are saved. Note that a too long time step may have
a large impact on these integrals, as well as for the forthcoming
spectral densities.

Remote internal regions. A simplified estimate for the remote
internal regions is discussed in this section. To proceed, consider
the nuclear contribution to the SIM tensor

CCCnuc
k = α

2
γk ∑

l

Zl

r3
lk
[(rlk · rlk)1− rlkrlk], (32)

where α is the fine structure constant, γk the gyromagnetic ra-
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Table 1 Basis-set dependence of the Frobenius norma of the SR tensors (kHz) calculated at the DFT/B3PW9 level, for one MD snapshot for molecules
I-III. 13C Nuclei j and k are depicted for molecules I and II in Figures 5 and 6, respectively. For molecule III, t denotes terminal and c the central 15N
nucleus. The diagonal component is listed in brackets for the molecule III.

molecule I molecule II molecule III
Basis ||CSR

j || ||CSR
k || ||CSR

j || ||CSR
k || ||CSR

c || ||CSR
t ||

6-31G∗ 0.2894 0.2859 0.2578 0.2833 76.70 (3.289) 203.16 (2.261)
(6-31G∗)b 0.2660 0.2459 0.2557 0.2892 - -
(6-31G∗)c 0.3049 0.2495 - - - -
6-311G∗ 0.2926 0.2919 0.2825 0.3126 86.46 (3.610) 232.62 (2.531)
cc-pVDZ 0.2946 0.2951 0.2608 0.2867 208.16 (3.359) 208.16 (2.333)
aug-cc-pVDZ 0.3211 0.3211 0.2637 0.2915 77.72 (3.370) 210.07 (2.340)

a ||CSR||=
√

∑l,m |clm|2.
b Polarizable continuum model with the methanol dielectric constant.
c Solute and eight explicit solvent molecules.

tio, Zl the charge of nuclei l and rlk is the vector pointing from
the lth to the kth nucleus. Note that the nuclear (as well as the
electronic) contribution is dependent on the gyromagnetic ratio.
Hence, the relaxation rate depends on γ2

k . When nuclear dy-
namics is described with classical mechanics for a remote group
of atoms, using CCCnuc

k contribution only, a 1/r3-dependent dipole
field27 results (i.e., a factor 1/r arises from eqn (32) and 1/r2

from I−1). To model the remote regions, the classical Biot-Savart
law description is considered. The molecule I is found to be highly
flexible and to have the largest influence of the remote regions,
as compared to the molecule II, the naphtalene derivative studied
in Ref.15, and several other medium-sized molecules (not studied
in this work). All remote, flexible regions are included, i.e., CH3,
CH2, CD2, and C−O−C, a total of 7 groups for molecule I. The
time-dependent interaction tensors are available from eqn (32) by
replacing the absolute nuclear charges with their partial atomic
charge counterparts, obtained from Mulliken population analysis
of the electronic wave function. The contributions to T−1

S from all
the remote SIM regions are added up. The dynamics of the the
remote fluctuating regions is accurately accounted for and, thus,
reflect their distance dependence. In spite of the large number of
regions included, the contribution of remote internal regions to TS

is longer than about one month or, for T−1
S , three orders of mag-

nitude less than the local-region SIM rates presented for molecule
I below. However, in this test where partial charges are applied,
the electronic contribution is not explicitly included. To estimate
the error arising from the classical description, the same local re-
gions used in the fully explicit method described below, were also
computed. The comparison show that the classical approximation
underestimates the contribution to the relaxation rate by a factor
of no less than 13. To summarize, the classical description for the
remote regions would nevertheless have a negligible contribution
even if we made an (approximate) calibration using the full the-
ory. This motivates the following study to be performed with only
the local regions residing in close proximity of the spins. The
small influence of the remote regions can be expected from the
1/r6 distance dependence of the contributions to the relaxation
rate.

Numerical estimation of spectral densities. In practice, the
spin Hamiltonian trajectory is divided into L time-blocks of length
equal to three times the rotational correlation time, or more.
These blocks are essentially uncorrelated and, from the station-
arity (equilibrium) property of MD simulations, L separate esti-
mates of the observables are calculated. Thus, a correlation func-
tion at time step n for the stochastic process BBB(t) is computed as
G(τn) = 1/L∑

L
m=1{G(τn)}m, where {G(τn)}m contains the statisti-

cal information that can be extracted from the single trajectory
block m. To make the most of each block, the TCF needs to be
computed as the "sum-over time origins"

{G(τn)}m =
1

On

On

∑
t0
{BBB†(t0) ·BBB(t0 + τn)}, (33)

where On is the number of time origins (t0) that are choosen for
the TCF at time step n. The statistical information content is thus
greater in the initial section of TCF.

With the assumption that {G(τn)}m is a Gaussian ran-
dom variable, the statistical error may be estimated as
tα,L−1

√
var[{G(τn)}m]/L, where var[·] denotes the estimated vari-

ance and t the t-distribution for statistical significance. The Gaus-
sian assumption is motivated by the central limit theorem81. The
value of the coefficient t is kept at unity and L equal to 10, cor-
responding to 70% and 85% two- and one-sided confidence in-
tervals, respectively81. Statistical errors for the relaxation rates
(T−1

1 ,T−1
S ) are computed similarly.

The spectral densities are obtained by integrating the TCFs for
each block and and taking the mean over the L blocks. Consistent
evaluations of the SIM and SR integrals are obtained by extract-
ing the limiting values after typically one reorientational correla-
tion time, as exemplified by the inserts [cf. Figures 10 and 11],
showing the cumulative integrals (by the trapezoidal method82).
This is even though the majority of SIM and SR TCFs decay at a
much shorter (collision-modulated) timescale. The dipole-dipole
spectral densities are computed from the sum of two exponentials
fitted to the weighted TCF [cf. eqs 26-28].

Convergence of the QCPS. The first step in setting up the
QCPS is to decide on the relevant degrees of freedom, where a
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Fig. 5 Panel (a): Ratio of the integrated TCF (〈∆2〉τ∆)/(〈ω2〉τω ) of the
difference in the j,k-internal region angular velocities [∆(t)= θ̇θθ j(t)− θ̇θθ k(t)]
and the overall molecular angular velocity ω(t). The τx (x = ∆,ω) denotes
the integral of the corresponding TCF, normalized to unity. Panel (b): The
thirteen explored candidates for the internal regions of molecule I, with
the regions for just one spin (denoted with *) shown. The corresponding
region for the other spin is given by inversion with respect to the triple
bond, the point of local inversion symmetry.

balance must be found between the computational cost implied
by the dimensionality and impact of the approximations on the
computed observable. Self-evidently, the conformational changes
local to the spin pair are expected to have a direct influence on the
interaction tensors and, therefore, the initial constructed model
only had five degrees of freedom: the j-k bond length, as well as
the local dihedral and bond angles, for the molecule I. This model
was complemented with an 18-dimensional model including all
the local dihedral and bond angles, the j-k bond length, as well
as all the dihedral angles throughout the molecule I (omitting
hydrogen centers). Adapting the latter model reduced T−1

S [SIM]

by a factor of two, suggesting that the overall molecular confor-
mation may have an explicit influence on the interaction tensors.
The latter strategy was then followed for molecules I and II, lead-
ing to 18- and 21-dimensional models in these cases, respectively.
The tensors are expressed as sums of zero-, first- and second-rank
parts and a distinct QCPS is constructed for each part, since dif-
ferent physical processes may be important for these components.
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Fig. 6 Explored internal regions for molecule II, see Figure 5 for details.

The degrees of freedom not explicitly included in the QCPS model
are still present in the training set of QC calculations and, thus,
their average contribution is implicitly included. The three in-
ternal degrees of freedom for molecule III were included in the
QCPS, also in this case excluding the solvent.

The second step is to establish a converged QCPS Kriging
model. In particular, two questions are considered: (i) what is
the sufficient size of the training set and (ii), what is the ab-
solute error based on the above-chosen explicit degrees of free-
dom? To address question (i), the relevant observable is com-
puted according to the following recipe: (1) construction of time-
dependent tensor (eqn (30)) for various training set sizes K up
to Kmax, obtained by the method of eqn (31); (2) obtaining the
internal and overall angular velocity (eqn (21)), where the lat-
ter is computed for a rigid reference structure of the molecule;
(3) integrating TCFs (eqn (23)), with the SIM+SR contribution
to study T−1

S [K]/T−1
S [Kmax]. The aspect (ii) needs to be addressed

separately since we need to discriminate between several QCPS
models. From a batch of 100 configurations not included in the
training set, the TCF value G̃(t0) is computed by explicit QC as
well as using two QCPS models. The deviations are computed
as shown in Figures 7 and 8 for molecules I and II, respectively.
Both the interpolation and regression Kriging models were ex-
plored. A regression model may be motivated for these training
sets where the deuterium degrees-of-freedom are not explicitly
included in the model and, hence, play the role of "noise". From
panels a and b in Figure 7, the singlet state (blue circles) is well-
described (dev < 10%) and magnetization (red triangles) is un-
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Fig. 7 (a,b) Deviation of the initial amplitude of SIM + SR TCF
(dev[G(t0)] = [G̃(t0)−G(t0)]/G̃(t0)) for molecule I, obtained from the direct
QC-computed tensors G̃(t0) as well as with the surrogate model G(t0), for
a batch of 100 configurations not included in the training set in the inter-
polation and regression models in panels a and b, respectively. Panel c
shows the ratio of T−1

S and T−1
S (Kmax) where the latter is computed with

Kmax =500 training configurations and interpolation scheme.

derestimated (dev ∼ 10%) for both models. Panel c suggests that
the regression model converges with slightly fewer (about 300)
training configurations. However, at the converged limit, approx-
imately the same results are obtained. The situation is similar
for molecule II (see Figure 8a-b), where the singlet state is the
better-modelled property, the magnetization amplitude is overes-
timated by about 10% and convergence is seen after 400 training
configurations (panel c). Note that the case of K = 1 which de-
notes the single equilibrium frame, is independent of the QCPS
model and deviates by a factor of 4.5 from the converged QCPS
model result, in Figure 8c. Since ensemble properties are con-
sidered in the test, this is a convergence in distribution81 (also
denoted weak convergence). This means that we cannot benefit
from the conventional arsenal of convergence tests used in ma-
chine learning41, where explicit agreement is sought, rather than
an accurate ensemble average. In this work we have carried out
additional QC calculations to obtain an independent test. How-
ever, it is expected that, by testing the QCPS model toward the
relevant observable, fewer training data are required. Note that
the SR tensors are computed for the rigid-molecule angular ve-
locity and static tensor (see sec. 5.1), hence the influence of the
conformational change of the QCPS is isolated to the SIM Hamil-

tonian. The same convergence test for 15N2O shows only a minor
variation of circa 1% with the training-set size in the range be-
tween 100 to 200 molecular configurations.

The QCPS model used here is restricted in dimensionality, an
increase in which requires a significantly larger training set and
may cause numerical challenges in the Kriging parameterization.
Computing with explicit solvent would cause such a drastic in-
crease in the dimensionality. The effect of solvent may be in-
cluded at negligible extra cost in an implicit form. Alternatively,
an average influence of the solvent, thus including solvent in the
training configurations, but not increasing the model dimension-
ality, may be a route forward. However, these two solvent rep-
resentations omit some of the dynamics and may lead to false
conclusions concerning relaxation. In this work we test the hy-
pothesis of only including intramolecular degrees of freedom in
the QCPS, thus omitting solvent. The result in Table 1 suggest that
the solvent does at least not give rise to order-of-magnitude dif-
ferences, justifying this approach for theses systems. It is left for
forthcoming work to systematically address higher-dimensional
QCPS models, where explicit solvent influence may be included.
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Fig. 8 Deviation in surrogate model for molecule II explored up to 520
training configurations, see Figure 7 for details.

7 Results and discussion
We explore the MD-QC model estimates for the mechanisms iDD,
SIM, SR and the interference therm SIM× SR. This information
and the total TS and T1 contributions, together with the experi-
mental decay times at 2.2 mT are listed in Table 2. These results

Journal Name, [year], [vol.],1–18 | 13



Table 2 Experimental and simulated longitudinal (T1) and singlet (TS) relaxation times (EXP and Cal), as well as the individual relaxation rate contribu-
tions.

T1 (s) 1/T1×10−3 (s−1)
MOL EXP Cal DD iDD SIM SR SIM×SR
I 51.5±0.8 62±8 12±1 0.3, 0.1a 2.6±0.15 0.9±0.04 ∼0
II 42±0.5 52±15 18±3 0.06 0.4±0.1 0.55±0.02 0.3
IIIb - 436±50 0.36 - ∼0 1.9±0.26 ∼0
IIIc 197±5 340±52 0.21 - 0.9±0.4 2.7±0.5 -0.9±0.4

TS (min) 1/TS×10−4 (s−1)
I 10.2±1 14.4±3 - 2.6±0.6, 0.2±0.01a 8.7±1.3 0.09 ∼0
II 15.9±0.3 13±8 - 0.3±0.05 11.0±4 0.27±0.01 1.3±0.4
IIIb - 75±14 - - 0.6±0.3 1.6±0.4 ∼0
IIIc 26±1 18.2±6.8 - - 8.7±3 3.0±1 -2.6

a) Contributions from deuterium and proton spins are given, in this order.
b) Simulation: 0.5M N2O and protonated solvent.
c) Simulation: 0.5M N2O and deuterated solvent.

are discussed below for each molecule.
Molecule I: The dominating magnetization relaxation mecha-

nism is provided by the j-k DD interaction, followed by the SIM
term with one-fifth contribution to the total relaxation rate. These
two mechanisms explain the experimental recording at T1 = 51 s,
overestimatimated by 20%. The intramolecular iDD terms have
only a minor contribution dominated by the deuterium spins in
close proximity, over the contributions from the protons. For the
singlet-state relaxation, the DD mechanism no longer dominates,
first and foremost due to the lack of an in-pair mechanism. Sec-
ondly, not only is the amplitude of the relevant iDD TCF smaller
(eqn (26)), but also the decay is faster by a factor of three, as is
seen in Figure 9(I).

Highlighting the T−1
S [iDD] modelling options, we have first the

assumption of a rigid molecule conformation and a single expo-
nential TCF17,19,20,83. A characteristic correlation time for this
hypothesis may in a realistic way be extracted from MD simula-
tion from the TCF for molecules I and II from the TCF of the j-k
vector, where intramolecular dynamics only have a minor influ-
ence. This result is quantitatively different (concerning the the
characteristic correlation time by a factor of three) to the second
option where all the explicit internal dynamics of GiDD

S0S0
(τ) is ac-

counted for, as illustrated in Figure 9(I,II, solid-red). Hence, this
motivates the use of MD simulations, not only to avoid explicit
adjustable parameters, but also not to overestimate T−1

S [iDD], as
may be done following the rigid molecule structure hypothesis.
For the same reason, the simulated result suggests caution in ex-
tracting reorientation correlation time from T1 experiments and
using this to model TS[iDD]19,83.

For the singlet state, the dominating mechanism is SIM. This
mechanism is computed using the angular velocity from the in-
ternal regions, shown in Figure 5. The TCF for the total SIM+SR
interaction is given in Figure 10(I), displaying a fast oscillatory
behavior, expected to originate from the torsional and slower vi-
brational modes within the molecule. The sum of the SIM and
iDD relaxation mechanisms (TS ∼ 14 min) is sufficient to explain
the experimentally recorded value (10 min).

Molecule II: The magnetization relaxation is explained by the
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in-pair DD mechanism, with a negligible contribution from iDD,
SR and SIM terms, the experimental T1 = 42 s is with the simu-
lation result overestimated by 24%, at 62 s. The small iDD con-
tribution may be understood to result from deuterium at a long
distance from the spin pair (see Figure 1). Also for this molecule,
the iDD singlet relaxation TCF decays faster than the j-k vector
by a factor of four [see Figure 9(II)], again revealing that impor-
tant intramolecular dynamics is accounted for. The experimental
singlet relaxation time, TS = 16 min, is reproduced by the SIM
relaxation mechanism, with the total computed result underesti-
mated at 13±8 min.

Molecule III: The first simulation was done at the dilute limit
with a single 15N2O molecule in DMSO-h6. However, this system
displays an unexpectedly small singlet relaxation rate, with TS

at about 9 hours. Finite 15N2O concentration (at approximately
0.5 M) was simulated in both DMSO-h6 and DMSO-d6, to ex-
plore the clustering and the solvent isotope (mass) effect. In this
format, the 15N2O solution displays structure at short distances
(Figure 4), meaning that we need to consider the solvent in the
relaxation study.

For 15N2O, the DD TCF actually decays faster in the DMSO-
d6 environment (with higher viscosity) than in DMSO-h6, with
the integrated correlation time shorter by a factor 0.6 [see Fig-
ure 9(III)]. T1 is dominated by the SR relaxation mechanism, with
the experimental value at 197 s overestimated by 70%, and re-
sulting in 340 s in DMSO-d6. The computed T1 values for the
central and terminal 15N nuclei, 251±50 s and 523±100 s re-
spectively, have the ratio of 0.47. Adding the computed esti-
mate for T−1

1 [CSA] at 7.04 T (see ESI), the ratio becomes 0.50,
in reasonable agreement with the ratio of 0.58 recorded in the
experiment28. The singlet state displays a large sensitivity to the
small isotopic mass change of the solvent, changing TS by a fac-
tor of four. The experimental datum at TS = 26 min, is slightly
underestimated with 18±6.8 min as simulated for the deuterated
solvent and dominated by the SIM mechanism. This is contrary
to previous works where either the dominating mechanisms are
suggested but not concluded29 (in DMSO-d6 solvent) or SR is
proposed to be the dominating mechanism21 (in H2O, CS2 and
isopropanol), based on Hubbard model25.

The normalized TCF GSR,SIM
S0S0

(τ), provided in Figure 10(III), dis-
plays a rapid oscillation at the frequency of circa 516 cm−1. This
oscillation is consistent with the NNO bending frequency. This
frequency is present, although with a lower amplitude, also in
the GSR,SIM

IzIz
(τ) TCF [Figure 11 panel (III)].

It is difficult to a priori argue, based on basic system properties,
when the SIM relaxation process is important, or to predict its
temperature dependence, as already noted for the spin-internal
rotation31,33 mechanism. Based on the SIM TCFs that contain
molecular oscillations, the relaxation rates depend on how these
motional modes are dissipated into the molecular rotational and
solvent dynamics which determine the TCF decay rate and the
TCF amplitude, related to the kinetic energy of the SIM regions.
Hubbard’s model in the diffusion limit25,33 cannot be expected
to be generally valid for SIM, pointing towards the conclusion
that detailed simulations are needed also to conclude on the tem-
perature trends. A posteriori, the greater T−1

1 [SIM] influence on
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Fig. 10 TCFs for singlet relaxation [GSR,SIM
S0S0

(τ)] computed from from MD
trajectories. Panels I-III refer to the molecular systems depicted in Fig-
ure 1. The inserts show the cumulative integrals of the TCFs, providing
extreme narrowing estimates of T−1

S [SR,SIM]. The estimated relaxation
rate is indicated with red dashed line, the limit value of the integral (after
typically one reorientation correlation time).

molecule I as compared to molecule II (see Table 2) may, since
the interaction tensors are similar in magnitude, be understood
to arise from the greater flexibility and kinetic energy of the SIM
regions of molecule I, which increases the amplitude. For the sin-
glet state, the observation is that the TCF decays slower for II
[see Figure 10(I, II)], and the larger T−1

S [SIM] has a more com-
plex explanation, since the correlation between two local fields is
considered (cf. eq 22).

Related to the viscosity and temperature dependence of
T−1

1 [SR] for molecule III, we note (see Table 2) the trend ex-
pected from the Hubbard model, that the SR contribution is in-
versely proportional to the reorientational correlation time25.
However, for this system, the macroscopic viscosity of DMSO does
not provide means to estimate the reorientational time by Stokes-
Einstein relation21, due to the complex solvent structure, thus
motivating carrying out the MD simulation also in this case.

8 Conclusion
A long-lived nuclear spin state, for instance in combination with
spin hyperpolarization13,14, allows for slow molecular processes
to be measured as well as opens possibilities for new MRI applica-
tions and hence, is important for magnetic resonance method de-
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Fig. 11 TCFs for longitudinal relaxation, GSIM,SR
IzIz (τ), computed from MD

trajectories. Panels I-III refer to the molecular systems depicted in Fig-
ure 1. The inserts show the cumulative integrals of the TCFs, providing
extreme narrowing estimates of T−1

1 [SR,SIM]. The estimated relaxation
rate is indicated with red dashed line, the limiting value of the integral
(after typically one reorientational correlation time).

velopment. The possibility to compare LLS-candidates with sim-
ulations, in part based on the low-field methodology detailed in
this work, has opened for the design of LLS molecules15,16.

We present a general methodology to compute time-dependent
spin Hamiltonian trajectories, as well as the singlet-order and
magnetization relaxation rates for the SR, SIM (spin-internal mo-
tion) and DD mechanisms, without adjustable parameters.

The steps required are (1) MD-simulation, (2) construction of
an interaction-tensor property surface, (3) selection of the SIM
regions, (4) assembly of the Hamiltonian, and (5) computation
of the spectral densities. A key feature is the Kriging interpo-
lation approach, which enables constructing a QCPS, as well as
time-dependent QC tensors with a detailed account for a large
sub-set of the degrees-of-freedom of the system, still avoiding pro-
hibitively large QC calculations. Here, a space-filling construction
of the initial training data is provided, which is found essential
for the efficient and general application of the Kriging model to
MD trajectories.

A key to the development of nuclear singlet-state relaxation
is to fill the knowledge gap in understanding the low-field relax-
ation mechanisms. This work shows that SIM is a mechanism that
needs to be considered, in order for the simulation methodology

to provide a reasonably quantitative agreement with experiment.
The time-dependent QCPS tensors give greater singlet relax-

ation rates by up to a factor of 4.5, as compared to the static
equilibrium tensors, hence the time dependence of the tensors is
essential. The work highlights a potential oversimplification in
applying the rigid-molecule assumption17,19,21,83 to the singlet-
state relaxation from intramolecular dipole-dipole interaction.

Additional mechanisms arising, e.g., from any residual para-
magnetic compounds, as well as refined tensor calculations by
considering explicit solvent, are clearly of interest. Such develop-
ments may be needed for detailed temperature-dependent studies
as well as more complex systems, and are left for future work. The
QCPS methodology sets up a framework to compute additional
singlet-state relaxation mechanisms. Work along these lines is
currently in progress.
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