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Multivariate multiscale complex 
network analysis of vertical upward 
oil-water two-phase flow in a small 
diameter pipe
Zhong-Ke Gao, Yu-Xuan Yang, Lu-Sheng Zhai, Wei-Dong Dang, Jia-Liang Yu & Ning-De Jin

High water cut and low velocity vertical upward oil-water two-phase flow is a typical complex system 
with the features of multiscale, unstable and non-homogenous. We first measure local flow information 
by using distributed conductance sensor and then develop a multivariate multiscale complex network 
(MMCN) to reveal the dispersed oil-in-water local flow behavior. Specifically, we infer complex 
networks at different scales from multi-channel measurements for three typical vertical oil-in-water 
flow patterns. Then we characterize the generated multiscale complex networks in terms of network 
clustering measure. The results suggest that the clustering coefficient entropy from the MMCN not only 
allows indicating the oil-in-water flow pattern transition but also enables to probe the dynamical flow 
behavior governing the transitions of vertical oil-water two-phase flow.

Vertical upward oil-water two-phase flow is widely encountered in petroleum industry. An oil well is vertically 
drilled through the ground at first, and then it goes on following an inclined angle before it finally enters into the 
oil reservoir. The oil and water usually coexist during the above oil-well production, and these two immiscible 
fluids can distribute themselves in many temporal-spatial configurations, known as flow patterns, which greatly 
depend on the fluid properties, volume fraction and flow rates. Note that the flow behavior underlying mul-
tiphase flow is much more complicated than that of single-phase flow, due to the influence of phase interfacial 
interactions and local relative movements. Characterizing the dynamic behavior governing the transitions among 
vertical upward oil-water flow patterns has become a challenging subject of significant importance, especially for 
the physical modeling and flow parameters measurement.

The investigations on complicated flow behaviors underlying two-phase flow patterns have drawn a great deal 
of attention from various research areas. The nonlinear time series analysis methods1,2, laser-induced fluorescence 
method3, probability density function4, physical model5, continuous hidden Markov model6, time-frequency rep-
resentation7, and recurrence network8 have been implemented to characterize two-phase flow patterns. Despite 
the existing developments on the characterization of flow patterns, there still exist some significant challenges. 
The traditional single sensor measurement, e.g., ring-shape conductance sensor or double-helix capacitance sen-
sor or ultrasound sensor, allows capturing the global flow behavior but ignores the local flow information which 
is important for further uncovering the complicated flow structure. To address this problem, distributed con-
ductance sensors have been proposed and developed for measuring the local flow behavior at different positions. 
Under this research background, one key challenge is how to effectively analyze the multivariate measurements 
to reveal the local flow behavior accounting for the formation and transition among dispersed oil-in-water flow 
patterns. In this regard, developing a novel approach to fuse multivariate signals measured from distributed con-
ductance sensor would be particularly necessary and beneficial.

In recent years, the research into complex networks has undergone a remarkable development9–16. 
Representing constituents as nodes and regarding the interactions between constituents as connections allows 
us to construct a complex network from a complex system. The successful applications of complex network in 
different disciplines have reflected the insight that the complex network is a powerful tool for studying complex 
systems. Quite recently, complex network analysis of time series elicits a great deal of interests from different 
research fields17–25, including brain functional networks26,27, climate networks28,29, turbulent heated jets30, friction 
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networks31 and multiphase flows32–34, etc. Introducing complex network into multivariate information fusion 
allows us to analyze the distributed sensor data to uncover the complicated local flow behaviors of vertical upward 
dispersed oil-in-water flows.

Multivariate multiscale analyses provided us with an important perspective for characterizing complex sys-
tems35,36. We proposed a multivariate multiscale complex network (MMCN) method25 to analyze multivariate 
time series. As a further study, we in this paper develop the MMCN to reveal the complicated oil-in-water local 
flow behavior underlying high water cut and low velocity vertical upward oil-water two-phase flow. The verti-
cal upward oil-water two-phase flow in a small diameter pipe presents the features of multiscale, unstable and 
non-homogenous and its underlying dynamical behavior is much more complicated than that of gas-liquid 
two-phase flow. We carry out oil-water two-phase flow experiments in a vertical upward small diameter pipe at 
high water cut and low velocity and measure the local flow behavior for three typical oil-water flow patterns by 
using our designed distributed conductance sensor. Then, we infer the MMCN from multi-channel measure-
ments and exploit clustering coefficient entropy to characterize the local flow behavior leading to the evolutions of 
different vertical oil-water flow patterns. Our analysis yields deep insights into the dynamical behavior of vertical 
upward oil-water two-phase flow from the perspective of complex network and multiscale analysis.

Results
Experimental design and data acquisition.  We carry out the oil-water two-phase flow experiment in 
a vertical upward small diameter plexiglass pipe (20 mm-inner-diameter) at Tianjin University. The experiential 
mediums are tap water and No. 3 industry white oil. Figure 1 shows the schematic diagram of the experimental 
flow loop. The oil-water two-phase flow loop is consisted of a water tank, an oil tank, a mixing tank, two peristaltic 
metering pumps, and a vertical testing pipe. During the experiment, the two phases, i.e. oil and water, are firstly 
pumped out from the tanks respectively, and then flow into the vertical testing pipe and eventually are drained 
into the mixing tank, where the two phases will separate by gravity. The peristaltic pumps used in the experiment 
are high-precision metering pumps, which enable to obtain the precise information of the inlet flow rate and 
water cut.

As shown in Fig. 1, we in this experiment install the distributed conductance sensor and high-speed camera 
on the vertical testing pipe. The high-speed camera enables to record and classify different flow patterns. The 
experimental plan is as follows: we first fix the water cut and then gradually increase the total velocity of the 
oil-water mixture. When the total flow rate reaches a preset value, the multivariate signals from the distributed 
conductance sensor are collected. The measured multivariate signals contain the information about oil-in-water 
local flow behaviors. In this experiment, the water cut is in the range of 80%–100%, while the mixture total flow 
rate is set at 0.0184 m/s, 0.0368 m/s, 0.0737 m/s, 0.1105 m/s, 0.1474 m/s, 0.1842 m/s, 0.2210 m/s and 0.2579 m/s 
respectively. The sampling rate is 4 kHz and the sampling duration for each measurement is 30 s. The multivariate 
signals from distributed conductance sensor are recorded by National Instrument Corporation’s data acquisition 
card PXI 4472 under LabVIEW operating environments.

MMCN analysis of vertical oil-water two-phase flow.  Our method enables to map a multivariate time 
series into a multiscale complex network, which allows us to investigate the inherent properties of multivariate 
time series from the perspective of complex network analysis and multiscale analysis. Then we use network clus-
tering measure to characterize the inherent structure of the MMCN. The clustering coefficient37 of a node v is 
defined as
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Figure 1.  The schematic of vertical upward oil-water two-phase flow loop facility. 
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where Tv is the total number of closed triangles containing node v and kv is the degree of node v. A large clustering 
coefficient indicates a specific network configuration associated with the cliquish feature of a node. According to 
the information entropy, we develop a novel clustering coefficient entropy, denoted as EC, which is calculated by:
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where N is the total number of nodes in the network. For the MMCN analysis, we calculate the EC under different 
scales and then plot EC with changing scale factors to uncover the multiscale features of the MMCN. Aiming to 
reveal the dynamic flow behavior in the evolution of oil-in-water flow patterns, we derive the MMCN from exper-
imental measurements for different flow conditions. The results are shown in Figs 2–5, in which Kw denotes the 
fixed water cut and Um represents the total velocity of the oil-water mixture. We can see that, the distributions of 
EC at different scales for three oil-in-water flow patterns present distinct features. Vertical oil-in-water slug flows 
occur at low oil-water mixture flow rate, where there exist many oil slugs whose diameters nearly equal to the pipe 
diameter. The local flow behavior for this flow pattern presents the features of the slow movements, intermittent 
oscillation and non-homogenous distribution. In particular, some small numbers of oil droplets simultaneously 
follow the cap-shaped oil slugs. Correspondingly, as shown in Figs 2 and 3, the clustering coefficient entropy of 
the oil-in-water slug flow exhibits large values. With the increase of mixture flow rate, the turbulent energy is 
increased, and correspondingly the oil slugs become unstable and then are dispersed into small oil droplets, i.e., 
an onset of an oil-in-water bubble flow. The typical feature of oil-in-water bubble flow is that the oil phase flows 

Figure 2.  The clustering coefficient entropy of multiscale complex networks at different flow conditions 
when the water cut Kw = 80%. The distribution of the clustering coefficient entropy with the change of the scale 
factor.

Figure 3.  The clustering coefficient entropy of multiscale complex networks at different flow conditions 
when the water cut Kw = 84%. The distribution of the clustering coefficient entropy with the change of the scale 
factor.
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in a water continuum in the form of discrete droplets. As can be seen, the clustering coefficient entropy allows 
indicating the oil-in-water flow pattern transitions. That is, the clustering coefficient entropy decreases in the 
transition from the oil-in-water slug flow to the oil-in-water bubble flow, indicating that the intermittent oscil-
lation of oil slugs gradually disappears and the movement of oil droplets becomes faster and stochastic, and the 
non-homogenous distribution of the oil phase becomes weak. With a further increase in the mixture flow rate, 
the oil droplets are broken into even smaller oil droplets in the transition from the oil-in-water bubble flow to 
the very fine dispersed oil-in-water bubble flow. In this flow pattern, a large numbers of smaller oil droplets uni-
formly disperse in the water continuous phase and randomly flow from the bottom up. Consequently, as shown in  
Figs 4 and 5, the clustering coefficient entropy further decreases as the flow pattern evolves into the very fine 
dispersed oil-in-water bubble flow, suggesting that the local flow behavior of very fine dispersed oil-in water 
bubble flow becomes more stochastic and the distribution of oil phase becomes more homogenous. These inter-
esting findings demonstrate that the MMCN allows identifying three typical vertical oil-water flow patterns and 
further enables to reveal local flow behaviors of different flow patterns at different scales from multi-channel 
measurements.

Discussions
Characterizing complicated patterns arising from vertical upward oil-water two-phase flow is a contemporary 
problem of significant importance. We measure the local flow information from three vertical oil-in-water flow 
patterns and then develop a multivariate multiscale complex network to investigate the dynamic behavior in the 
transitions among different oil-in-water flow patterns from multi-channel measurements. The basic idea of the 
MMCN is to define temporal scales in terms of the coarse-grain process and then reconstruct the phase-space 
from coarse-grained multivariate time series for each scale to construct a multiscale complex network. Our 
results indicate that the clustering coefficient entropy at different scales allows faithfully revealing the dynamical 
flow behavior associated with different mixture flow rate and water cut in the evolution of different flow patterns. 

Figure 5.  The clustering coefficient entropy of multiscale complex networks at different flow conditions 
when the water cut Kw = 98%. The distribution of the clustering coefficient entropy with the change of the scale 
factor.

Figure 4.  The clustering coefficient entropy of multiscale complex networks at different flow conditions 
when the water cut Kw = 94%. The distribution of the clustering coefficient entropy with the change of the scale 
factor.
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Bridging the MMCN analysis and oil-water two-phase flow provides deep insights into the understanding of 
the fluid mechanism governing the formation and transition among different vertical oil-in-water flow patterns.

Methods
Multivariate multiscale complex network (MMCN).  For a multivariate time series containing p sub-
time series of equal length L , = , , ...,, =x k p{ } 1 2k i i

L
1 , we first define temporal scales in terms of the coarse-grain 

process and get a coarse-grained multivariate time series38 in the following form:
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. These parameters can be determined by the meth-

ods presented in Refs 25,39. Based on the above, we can infer the multivariate multiscale complex network 
(MMCN) as follows:

(a) We generate ( − )L n  composite delay vectors ( ) ∈X i Rm
m , where τ= ×n Mmax{ } max{ } and 

= , , …, −i L n1 2 ; (b) We define the distance between any two phase-space vectors ( )X im  and ( )X jm , ≠j i by 
using the maximum norm

( ), ( ) = ( + − )− ( + − ) ( )= ,…,d X i X j x i l x j l[ ] max { 1 1 } 6m m l m1

(c) We can derive a complex network by representing each phase space vector as a node and determining the con-
nections in terms of their distances. By determining a threshold, a network adjacency matrix A can be obtained 
following the rule that two nodes are connected if the distance between them is smaller than the threshold: Aij =  1 
indicates node i and j are connected, while Aij =  0 means node i and j are disconnected. The topological structure 
of the network can be described by the adjacency matrix A. (d) Finally, we can get the MMCN by performing 
steps (a–c) on each coarse-grained multivariate time series. It should be pointed out that, according to Ref. 25, we 
normalize each sub-time series to unit variance and then use the percentage (i.e., 15%) of total variation Tr(S) to 
determine the threshold for constructing the MMCN, where S is the covariance matrix of multivariate time series.
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