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Many real world complex systems such as critical infrastructure networks are embedded in space and their
components may depend on one another to function. They are also susceptible to geographically localized
damage caused by malicious attacks or natural disasters. Here, we study a general model of spatially
embedded networks with dependencies under localized attacks. We develop a theoretical and numerical
approach to describe and predict the effects of localized attacks on spatially embedded systems with
dependencies. Surprisingly, we find that a localized attack can cause substantially more damage than an
equivalent random attack. Furthermore, we find that for a broad range of parameters, systems which appear
stable are in fact metastable. Though robust to random failures—even of finite fraction—if subjected to a
localized attack larger than a critical size which is independent of the system size (i.e., a zero fraction), a
cascading failure emerges which leads to complete system collapse. Our results demonstrate the potential
high risk of localized attacks on spatially embedded network systems with dependencies and may be useful
for designing more resilient systems.

M
any modern critical infrastructures are embedded in two dimensional space1–5. Examples include
ground transportation systems like road and railway networks, electrical power networks, gas and oil
pipelines, water supply, the internet and communication lines. The main feature of these spatial net-

works is that their links represent real physical connections (connectivity links), where link length is relatively
short compared to the system size. With the ongoing technological development, these systems have become
more and more integrated and interdependent (via dependency links) upon each other. These dependencies lead
to substantially increased vulnerability of spatial as well as non-spatial networks to random failures and even first
order transitions which are characterized by the emergence of cascading failures6–21. However, failures in spatially
embedded systems are often not random but geographically localized. These ‘‘localized attacks’’ can be caused by
natural disasters (e.g., the 2011 Tōhoku earthquake and tsunami) or malicious attacks (e.g., weapons of mass
destruction). The resilience of a complex system with dependencies under attack of this sort, which we call
‘‘localized attack,’’ has not been addressed before.

Even though different infrastructure systems have their own specific function and dynamics, they share a 2D
spatial embedding that implies a fundamental restriction on their structure due the length limitation of con-
nectivity and dependency links. Therefore we study here the general vulnerability of spatially embedded systems
under localized attacks. We find here that localized attacks on spatially embedded systems with dependencies are
significantly more damaging than random failures (see Fig. 1a), in marked contrast to single networks.

Furthermore, we discover a metastable phase which spans a broad range of parameters and is qualitatively
different from the stable and unstable phases known to percolation theory. In metastable systems, there exists a
critical damage size with radius rc

h, above which localized damage will spread and destroy the entire system and
below which the damage will remain in place (see Fig. 1a and 1c). This critical size is determined solely by
intensive system quantities and thus, in marked contrast to random failures, it does not scale with system size and
constitutes a zero-fraction of the system in the limit of large systems (N R ‘) (Fig. 1d).

To our knowledge, this is the first study to consider geographically localized attacks from the perspective
of percolation theory. Previous research using percolation theory has studied the effects of attacks targeting
nodes with special topological properties such as degree but not geographically correlated attacks22–25.
Geographic localized attacks have been utilized to identify the most vulnerable parts of specific infrastruc-
ture networks26–28 but have not been studied in a general percolation framework. Cascading failures have
been studied as the outcome of specific dynamic models: load-shedding29, binary decisions with fractional
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thresholds30, and betweenness-based loads31,32. Recently, it was
shown that a new kind of cascading failure emerges from per-
colation on interdependent networks12–19,33. However, these stud-
ies considered random attacks only. The unique cascading failures
that we describe here have not been observed before. Indeed, they
can only arise when the more realistic features of spatial embed-
ding, dependencies and localized attacks are considered together.

Though many of the models for complex systems with depend-
encies assume dependencies between networks, it has been shown
that similar effects are present in a single network composed of
connectivity and dependency links34–37. Here, we treat dependency
as a general property and examine cascading failures triggered by
localized attacks within a single network as well as between
networks.

When considering spatially embedded networks, the dimension of
a network is a fundamental quantity to characterize its structure and
basic physical properties39. On the basis of universality principles, all
single network models with links of a characteristic length, embed-
ded in a space of the same dimension, have the same percolation
behavior38. Therefore, any 2D network with a characteristic link
length belongs to the same universality class as regular lattices.
When dependency links are introduced, the critical behavior is addi-
tionally determined by the length of the dependency link17. For tract-
ability, the theory presented in this work is based on 2D lattices.
However, the effects of localized attacks on systems with depend-
encies are expected to be the same for any system embedded in 2D

space as illustrated with the European power grid40 in Sup. Fig. 2 and
synthetic power grids41,42 in Supplementary Figs. 1–4.

We model spatially embedded systems via square lattices diluted
to degree 2.5 # Ækæ # 4. The dependencies between nodes are con-
strained to be less than a distance r (in lattice units) and can be taken
across networks or within a single network. See Methods for details of
system construction.

The localized geographical attack is modeled by the removal of all
nodes within a distance rh from a random location in the system (see
Fig. 1a–b). This triggers a cascade in which the nodes that depend on
the removed nodes fail, triggering further losses as more nodes get
cut off from the largest connected component. This percolative
damage triggers further damage due to the dependencies between
the nodes. This process is continued iteratively until no more nodes
fail. At the end of this cascade, the system is categorized as functional
or non-functional depending on whether a largest connected com-
ponent of the order of the system size N remains or not.

Results
We discover that the k–r plane can be divided into three distinct
phases as shown in Fig. 1c. In the stable phase, no matter how large
rh is (as long as it is finite) the damage will remain localized and the
system will stay intact. In the unstable phase, the system sponta-
neously collapses even with rh 5 0 (no localized attack). In this phase,
low Ækæ and dependencies lead to the spontaneous emergence of holes
which overwhelm the system. Between these phases, the system is

Figure 1 | The effect of a localized attack on a system with dependencies. (a), Propagation of local damage in a system of two interdependent diluted

lattices with spatially constrained dependency links between the lattices (only one lattice shown here). The hole on the right is above the critical size rc
h and

spreads throughout the system while the hole on the left is below rc
h and remains essentially the same size. (b), A localized circular failure of radius rh in a

lattice with dependency links of length up to r. Outside the hole, the survival probability of a node increases with the distance r from the edge. The

parameter rc denotes the distance from the edge of the hole at which the occupation probability is equal to the percolation threshold of a lattice without

dependencies pc < 0.592736. (c), Phase diagram of a lattice with dependencies or two interdependent lattices. Depending on the average degree Ækæ and

dependency length r, the system is either stable, unstable or metastable. The circles illustrate the increase (when Ækæ increases) of the critical attack size (rc
h)

that leads to system collapse in the metastable region. (d), As the system size grows, the minimal number of nodes which cause the system to collapse

increases linearly for random attacks but stays constant (<300) for localized attacks. This figure was obtained for a system of interdependent lattices

diluted to Ækæ < 2.9 and r 5 15 (in the metastable phase-see c), with 1000 runs for each data point.
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metastable. If a hole smaller than rc
h is removed, the system remains

intact. However, if a hole of size §rc
h is removed, it will trigger a

cascade which destroys the entire system. This cascade is character-
ized by the spread of damage from the initial localized attack
throughout the system (Fig. 1a, b). This metastability is analogous
to the well known supercooling property of water in which water can
be cooled well below its freezing point and remain in the liquid state
until a disturbance triggers crystallization of a critical size and it turns
to ice44.

For a system in the metastable phase under random attack, the
number of nodes required to trigger system collapse increases line-
arly with the system size (See Fig. 1d). Therefore, as N R ‘, meta-
stable systems are robust to the removal of O(N) nodes, as long as
they are removed randomly. However, if the attack is localized, the
number of nodes required remains constant (Fig. 1d) and even a zero
fraction removed can trigger a cascading failure which destroys the
system. Thus increasing the size of the system does not increase its
resilience with respect to localized attacks. We find similar results for
both interdependent networks and single networks composed of
connectivity and dependency links. The results presented in the main
text were obtained from interdependent networks and comparison to
single networks with connectivity and dependency links is shown in
Supplementary Fig. 1.

Predicting the value of rc
h for a given system is an important ques-

tion which is treated below theoretically and numerically, with good
agreement.

Simulations. We find that rc
h is entirely determined by the average

degree Ækæ and the maximal dependency link length r. These are
intensive system quantities and therefore rc

h does not grow with
system size (Fig. 1d). Figs. 2c and 2d show how the critical damage
size rc

h changes with respect to Ækæ and r for a system of size L 3 L 5

1000 3 1000. In Fig. 2c we can see that the metastable region covers a
wider range of Ækæ values when r increases. In the metastable phase,
for every r, rc

h increases with Ækæ and jumps up dramatically at a
certain Ækæ value which represents the end of the metastable phase
and the beginning of the stable phase. Furthermore, we see that this
jump occurs at larger Ækæ values for larger r values (Fig. 2c). In Fig. 2d,
we see that above a certain minimum value, rc

h has an approximately
linear dependence on r in the metastable region. This is due to the
fact that a larger r means that a given node’s dependency link can be
located farther away. Thus the secondary damage from the localized
attack is more dispersed and a larger attack size is required to initiate
a cascade. Furthermore, we find that the critical damage size rc

h takes
a minimal value and the system is most susceptible to small local
attacks when r is near the stable phase. Extensive numerical
simulations of rc

h over a high resolution grid of parameters Ækæ and
r is shown in Fig. 2a and the theoretical prediction which is in good
agreement is given in Fig. 2b. The theoretical description of the effect
of Ækæ and r on rc

h is presented below.

Theory. Since the metastable region spreads over a wide range of
realistic values of r and Ækæ, it is of great interest to understand how
this transition takes place and to develop a theory to predict the value
of rc

h r, kh ið Þ. To do so, we first consider in detail the chain of events
triggered by the geographically localized damage. When a hole of rh is
removed from the system, it can directly disable nodes up to a
distance r from its edge due to the existence of dependency links of
length # r (see Fig. 1b). The probability that a given node was
dependent on one of the removed nodes is highest at the edge of
the hole and monotonously decreases with the distance from the
edge, until it equals zero at distance r. To calculate this decrease,
we need to calculate the probability that a node i depends on a
node which was removed in the localized attack (cf. Fig. 1b). This
probability is determined by the area of intersection of two circles:
the localized attack (with radius rh) and the circle of maximal

dependence (with radius r and center i). Taking r as the distance
from the edge of the hole, the gradient of occupation probability
following an attack can be evaluated as

p r,r,rh, kh ið Þ~ps kh ið Þ I rh,r,rð Þ
pr2

ð1Þ

where ps(Ækæ) is the occupation concentration before the attack and
I(rh, r, r) is the standard formula for the area of intersection of two
circles of radius r and rh with centers located a distance r 1 rh from
each other. This probability describes a lattice concentration gradient
in the form of an annulus of width r surrounding the removed hole,
see Fig. 1b. For a given set of system parameters (r, rh, Ækæ) we can set
p(r) on the LHS of Eq. (1) to pc of the lattice and solve for r. If a
solution in the region of interest (0 , r , r) exists, it corresponds to a
distance rc at which the lattice concentration will be equal to its
critical value. The existence of such a point is a necessary but not
sufficient condition for the hole to propagate. Below pc, the network
forms clusters with a characteristic size j,(p), which diverges at pc,
where j,(p) is the connectedness correlation length for p , pc

38,45.
Hence the sufficient condition for damage propagation is that the
critical region 0 , r , rc be wide enough for clusters of size j,(p) to
form and break away.

The value of j,(p) is determined by the underlying topology and
can thus be calculated from the percolation problem on a lattice
without dependencies using an appropriate estimation for p in the
0 , r , rc region. From Eq. (1), p(r) increases monotonically over
this region and an accurate evaluation solution for j, would require
treating the full gradient percolation problem46. In this work, for
simplicity we assume p~�p which is the average of p(r) over the
region of interest. Additionally, the removal of the hole causes sec-
ondary damage due to dependencies in the annulus and the concen-
tration of the gradient is decreased by a factor of g(r) which we
calculate numerically and find to vary monotonically from 0.85 to

0.89 as a function of r. We can thereby estimate �p<g rð Þ
ðrc

0
p rð Þdr.

We evaluate j, following38 as:

j2
v

~
1

Np

X
i,jð Þ

ri{rj

�� ��2 ð2Þ

where (i, j) refers to nodes i and j which are in the same connected
component, ri is the coordinate and, Np is the total number of such
pairs of nodes. In order for the hole to propagate, the clusters which
are of typical size j,, need to be smaller than rc. Therefore, the
critical hole size (rc

h) for any system is obtained from the self-
consistent solution of

j
v

~rc ð3Þ

where both sides are functions of r, rh and ps. Using these considera-
tions, we can predict rc

h for every set of (k, r) parameters as shown in
Fig. 2b. These theoretical results are in close agreement with the
numerical simulations (Fig. 2a) for the value of rc

h as well as its lack
of scaling with system size (Fig. 1d). Though the above method for
calculating rc

h is accurate only for systems of diluted lattices, the
effects of local attacks on more realistic topologies are the same as
shown on the UCTE European power grid40 and on synthetic power
grids41 in Supplementary Figs. 2–4.

Discussion
Everything about the scenario described above is local: nodes can
have dependency links only up to length r, the connectivity links are
tied to an underlying lattice structure with characteristic length of
one unit in the model or are limited by length-cost in the real world
system and the attack is restricted to a hole of finite radius rh.
However, for a wide range of system parameters, this leads to a
catastrophic cascade which destroys the entire system.

www.nature.com/scientificreports
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It is instructive to compare this process to a single spatially embed-
ded network without dependencies. If a hole of any finite size is
created in a lattice or other spatially embedded network, it will have
no effect on the overall system robustness. Only the trivial case of rh

approaching the system size L leads to system collapse. A similar
argument holds with respect to dependency links which are not
restricted in length. If a hole of size rh (mass , r2

h) is removed from
one network, it will lead to random removal of a fraction , r2

h

�
N in

the other network. Therefore, in the limit of large systems, the
numerator remains constant while the denominator tends to infinity
and we find that here too the localized attack will have negligible
impact. Only when the dependency links are of limited length does
this unique phenomenon arise.

Surprisingly, the localization of dependency opens the door for the
spreading phenomenon which amplifies the local damage and leads to
total system collapse. When a hole of radius rh is removed from the
system, the nodes that depended on them must be within a distance r
of the hole. Thus the secondary damage is highly concentrated around
the edge of the hole, leading to the creation of a damage front which
propagates outwards, step by step. This is why the amount of damage
caused per node removed is substantially higher when the damage is
localized as compared with random removal (Fig. 1d). If r R ‘ or r R
0, this weakness would not exist because the secondary damage would
spread everywhere uniformly or remain in place, respectively.

Paradoxically, the highly localized topology of embedded inter-
dependent networks enables relatively small localized attacks to
cause catastrophic global damage. These results have profound
implications for the role of network topology in the design of resilient
infrastructures.

We note that after the submission of this manuscript, an analytical
framework to study localized attacks on non-embedded networks
was developed by Shao et al.43

Methods
On the basis of universality principles, the theoretical analysis and specific predictions
for rc

h presented in this work are based on a lattice model. To make the model more
realistic while maintaining its solvability, we have diluted the lattices from the
standard square lattice (k 5 4) to lower values of Ækæ. The range of Ækæ values studied
here is based on empirical studies of power grids which have found a mean degree of
2.5 # Ækæ # 342. This dilution is carried out by removing a given fraction of nodes from
the system and allowing the percolative process to reach a steady state, including the
effects of the dependencies. This dilution process is equivalent to the percolation
problem on interdependent spatially embedded networks17.

Dependencies can be constructed between networks or within a network. We
model dependencies between spatially embedded networks by overlaying two diluted
square lattices A and B of size L 3 L with periodic boundary conditions on the same
Cartesian plane. Each node in network A is dependent upon a node in network B
(and vice versa) which is chosen at random from all of the nodes within a radius r. If a
node in A is dependent on a node in B, the failure of the node in B will cause the node
in A to fail immediately and vice versa. These dependency relationships are taken to
be mutual to prevent a single failure from propagating through the entire system16.
The numerical results in this paper were generated in this manner. The lattice size
was L 5 1000 (N 5 106), Ækæ was sampled in intervals of 0.05 and r sampled in
intervals of one lattice unit.

We obtain the same results via constructing dependencies between nodes on a single
network in the following way. For each node i, a random node j within a radius r from i
is selected and the two nodes are taken to be mutually interdependent. The exposition
of the theory above describes the effects of dependencies of either type. The numerical
results are essentially the same, see Supplementary Fig. 1 for a detailed comparison.
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