Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

Toll-like receptors and immune regulation: implications for cancer therapy

Abstract

Toll-like receptors (TLRs) function as pathogen pattern recognition molecules that sensor and initiate innate and adaptive immune responses against microbes and cancer cells. Recognition of pathogen-derived ligands by TLRs expressed on many types of cells, including dendritic cells and T cells, triggers the nuclear factor (NF)-κB and type-1 interferon pathways, leading to the production of proinflammatory cytokines that are essential in stimulating CD4+ T cells to differentiate to T helper (Th) 1, Th2 Th17 and regulatory T (Treg) cells. Recent studies indicate that Treg cells play a critical role in suppressing immune responses and inducing immune tolerance to cancer and infectious diseases. Of particular interest, the human TLR8 signaling pathway is essential for reversing the suppressive function of Treg cells. Thus, TLRs regulate cancer immunity and tolerance through innate immune responses mediated by Treg, dendritic and other immune cells. In this review, we focus on the current understanding of TLRs and Treg cells with emphasis on their roles in cancer immunity. Related information on non-TLR immune receptors will be briefly discussed.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2

Similar content being viewed by others

References

  • Acosta-Rodriguez EV, Napolitani G, Lanzavecchia A, Sallusto F . (2007). Interleukins 1beta and 6 but not transforming growth factor-beta are essential for the differentiation of interleukin 17-producing human T helper cells. Nat Immunol 8: 942–949.

    CAS  PubMed  Google Scholar 

  • Akira S, Takeda K . (2004). Toll-like receptor signalling. Nat Rev Immunol 4: 499–511.

    Article  CAS  PubMed  Google Scholar 

  • Akira S, Uematsu S, Takeuchi O . (2006). Pathogen recognition and innate immunity. Cell 124: 783–801.

    Article  CAS  PubMed  Google Scholar 

  • Baldridge JR, McGowan P, Evans JT, Cluff C, Mossman S, Johnson D et al. (2004). Taking a Toll on human disease: Toll-like receptor 4 agonists as vaccine adjuvants and monotherapeutic agents. Expert Opin Biol Ther 4: 1129–1138.

    CAS  PubMed  Google Scholar 

  • Belkaid Y, Piccirillo CA, Mendez S, Shevach EM, Sacks DL . (2002). CD4+CD25+ regulatory T cells control Leishmania major persistence and immunity. Nature 420: 502–507.

    CAS  PubMed  Google Scholar 

  • Bettelli E, Carrier Y, Gao W, Korn T, Strom TB, Oukka M et al. (2006). Reciprocal developmental pathways for the generation of pathogenic effector TH17 and regulatory T cells. Nature 441: 235–238.

    Article  CAS  PubMed  Google Scholar 

  • Blander JM, Medzhitov R . (2006). Toll-dependent selection of microbial antigens for presentation by dendritic cells. Nature 440: 808–812.

    CAS  PubMed  Google Scholar 

  • Coussens LM, Werb Z . (2002). Inflammation and cancer. Nature 420: 860–867.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Crellin NK, Garcia RV, Hadisfar O, Allan SE, Steiner TS, Levings MK . (2005). Human CD4+ T cells express TLR5 and its ligand flagellin enhances the suppressive capacity and expression of FOXP3 in CD4+CD25+ T regulatory cells. J Immunol 175: 8051–8059.

    CAS  PubMed  Google Scholar 

  • Crozat K, Beutler B . (2004). TLR7: a new sensor of viral infection. Proc Natl Acad Sci USA 101: 6835–6836.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Curiel TJ, Coukos G, Zou L, Alvarez X, Cheng P, Mottram P et al. (2004). Specific recruitment of regulatory T cells in ovarian carcinoma fosters immune privilege and predicts reduced survival. Nat Med 10: 942–949.

    Article  CAS  PubMed  Google Scholar 

  • Diebold SS, Kaisho T, Hemmi H, Akira S, Reis e Sousa C . (2004). Innate antiviral responses by means of TLR7-mediated recognition of single-stranded RNA. Science 303: 1529–1531.

    CAS  PubMed  Google Scholar 

  • Dunn GP, Old LJ, Schreiber RD . (2004). The immunobiology of cancer immunosurveillance and immunoediting. Immunity 21: 137–148.

    CAS  PubMed  Google Scholar 

  • Fehervari Z, Sakaguchi S . (2004). Control of Foxp3+ CD25+CD4+ regulatory cell activation and function by dendritic cells. Int Immunol 16: 1769–1780.

    CAS  PubMed  Google Scholar 

  • Fontenot JD, Gavin MA, Rudensky AY . (2003). Foxp3 programs the development and function of CD4(+)CD25(+) regulatory T cells. Nat Immunol 4: 330–336.

    CAS  PubMed  Google Scholar 

  • Fontenot JD, Rasmussen JP, Williams LM, Dooley JL, Farr AG, Rudensky AY . (2005). Regulatory T cell lineage specification by the forkhead transcription factor foxp3. Immunity 22: 329–341.

    CAS  PubMed  Google Scholar 

  • Francois Bach J . (2003). Regulatory T cells under scrutiny. Nat Rev Immunol 3: 189–198.

    CAS  PubMed  Google Scholar 

  • Galon J, Costes A, Sanchez-Cabo F, Kirilovsky A, Mlecnik B, Lagorce-Pages C et al. (2006). Type, density, and location of immune cells within human colorectal tumors predict clinical outcome. Science 313: 1960–1964.

    CAS  PubMed  Google Scholar 

  • Greten FR, Eckmann L, Greten TF, Park JM, Li ZW, Egan LJ et al. (2004). IKKbeta links inflammation and tumorigenesis in a mouse model of colitis-associated cancer. Cell 118: 285–296.

    CAS  PubMed  Google Scholar 

  • Hamilton SE, Wolkers MC, Schoenberger SP, Jameson SC . (2006). The generation of protective memory-like CD8+ T cells during homeostatic proliferation requires CD4+ T cells. Nat Immunol 7: 475–481.

    CAS  PubMed  Google Scholar 

  • Harrington LE, Hatton RD, Mangan PR, Turner H, Murphy TL, Murphy KM et al. (2005). Interleukin 17-producing CD4+ effector T cells develop via a lineage distinct from the T helper type 1 and 2 lineages. Nat Immunol 6: 1123–1132.

    CAS  PubMed  Google Scholar 

  • Heil F, Hemmi H, Hochrein H, Ampenberger F, Kirschning C, Akira S et al. (2004). Species-specific recognition of single-stranded RNA via Toll-like receptor 7 and 8. Science 303: 1526–1529.

    CAS  PubMed  Google Scholar 

  • Hemmi H, Kaisho T, Takeuchi O, Sato S, Sanjo H, Hoshino K et al. (2002). Small anti-viral compounds activate immune cells via the TLR7 MyD88-dependent signaling pathway. Nat Immunol 3: 196–200.

    CAS  PubMed  Google Scholar 

  • Honda K, Ohba Y, Yanai H, Negishi H, Mizutani T, Takaoka A et al. (2005a). Spatiotemporal regulation of MyD88-IRF-7 signalling for robust type-I interferon induction. Nature 434: 1035–1040.

    CAS  PubMed  Google Scholar 

  • Honda K, Yanai H, Negishi H, Asagiri M, Sato M, Mizutani T et al. (2005b). IRF-7 is the master regulator of type-I interferon-dependent immune responses. Nature 434: 772–777.

    CAS  PubMed  Google Scholar 

  • Hori S, Nomura T, Sakaguchi S . (2003). Control of regulatory T cell development by the transcription factor foxp3. Science 299: 1057–1061.

    CAS  PubMed  Google Scholar 

  • Hornung V, Ellegast J, Kim S, Brzozka K, Jung A, Kato H et al. (2006). 5′-Triphosphate RNA is the ligand for RIG-I. Science 314: 994–997.

    PubMed  Google Scholar 

  • Hu J, Yuan X, Belladonna ML, Ong JM, Wachsmann-Hogiu S, Farkas DL et al. (2006). Induction of potent antitumor immunity by intratumoral injection of interleukin 23-transduced dendritic cells. Cancer Res 66: 8887–8896.

    CAS  PubMed  Google Scholar 

  • Inohara N, Chamaillard M, McDonald C, Nunez G . (2005). NOD-LRR proteins: role in host–microbial interactions and inflammatory disease. Annu Rev Biochem 74: 355–383.

    CAS  PubMed  Google Scholar 

  • Ivanov II, McKenzie BS, Zhou L, Tadokoro CE, Lepelley A, Lafaille JJ et al. (2006). The orphan nuclear receptor RORgammat directs the differentiation program of proinflammatory IL-17(+) T helper cells. Cell 126: 1121–1133.

    CAS  PubMed  Google Scholar 

  • Iwasaki A, Medzhitov R . (2004). Toll-like receptor control of the adaptive immune responses. Nat Immunol 5: 987–995.

    CAS  PubMed  Google Scholar 

  • Jackson DC, Lau YF, Le T, Suhrbier A, Deliyannis G, Cheers C et al. (2004). A totally synthetic vaccine of generic structure that targets Toll-like receptor 2 on dendritic cells and promotes antibody or cytotoxic T cell responses. Proc Natl Acad Sci USA 101: 15440–15445.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jahrsdorfer B, Muhlenhoff L, Blackwell SE, Wagner M, Poeck H, Hartmann E et al. (2005a). B-cell lymphomas differ in their responsiveness to CpG oligodeoxynucleotides. Clin Cancer Res 11: 1490–1499.

    CAS  PubMed  Google Scholar 

  • Jahrsdorfer B, Wooldridge JE, Blackwell SE, Taylor CM, Griffith TS, Link BK et al. (2005b). Immunostimulatory oligodeoxynucleotides induce apoptosis of B cell chronic lymphocytic leukemia cells. J Leukoc Biol 77: 378–387.

    PubMed  Google Scholar 

  • Janssen EM, Droin NM, Lemmens EE, Pinkoski MJ, Bensinger SJ, Ehst BD et al. (2005). CD4+ T-cell help controls CD8+ T-cell memory via TRAIL-mediated activation-induced cell death. Nature 434: 88–93.

    CAS  PubMed  Google Scholar 

  • Janssen EM, Lemmens EE, Wolfe T, Christen U, Von Herrath MG, Schoenberger SP . (2003). CD4(+) T cells are required for secondary expansion and memory in CD8(+) T lymphocytes. Nature 421: 852–856.

    CAS  PubMed  Google Scholar 

  • Jurk M, Heil F, Vollmer J, Schetter C, Krieg AM, Wagner H et al. (2002). Human TLR7 or TLR8 independently confer responsiveness to the antiviral compound R-848. Nat Immunol 3: 499.

    CAS  PubMed  Google Scholar 

  • Kanneganti TD, Ozoren N, Body-Malapel M, Amer A, Park JH, Franchi L et al. (2006). Bacterial RNA and small antiviral compounds activate caspase-1 through cryopyrin/Nalp3. Nature 440: 233–236.

    CAS  PubMed  Google Scholar 

  • Karin M, Greten FR . (2005). NF-kappaB: linking inflammation and immunity to cancer development and progression. Nat Rev Immunol 5: 749–759.

    CAS  PubMed  Google Scholar 

  • Karin M, Lawrence T, Nizet V . (2006). Innate immunity gone awry: linking microbial infections to chronic inflammation and cancer. Cell 124: 823–835.

    CAS  PubMed  Google Scholar 

  • Kato H, Sato S, Yoneyama M, Yamamoto M, Uematsu S, Matsui K et al. (2005). Cell type-specific involvement of RIG-I in antiviral response. Immunity 23: 19–28.

    CAS  PubMed  Google Scholar 

  • Kawai T, Takahashi K, Sato S, Coban C, Kumar H, Kato H et al. (2005). IPS-1, an adaptor triggering RIG-I- and Mda5-mediated type I interferon induction. Nat Immunol 6: 981–988.

    CAS  PubMed  Google Scholar 

  • Khattri R, Cox T, Yasayko SA, Ramsdell F . (2003). An essential role for Scurfin in CD4(+)CD25(+) T regulatory cells. Nat Immunol 4: 337–342.

    CAS  PubMed  Google Scholar 

  • Kiniwa Y, Miyahara Y, Wang HY, Peng W, Peng G, Wheeler TM et al. (2007). CD8+ Foxp3+ regulatory T cells mediate immune suppression in prostate cancer. Clin Cancer Res (in press).

  • Korn T, Bettelli E, Gao W, Awasthi A, Jager A, Strom TB et al. (2007). IL-21 initiates an alternative pathway to induce proinflammatory T(H)17 cells. Nature 448: 484–487.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kubo T, Hatton RD, Oliver J, Liu X, Elson CO, Weaver CT . (2004). Regulatory T cell suppression and anergy are differentially regulated by proinflammatory cytokines produced by TLR-activated dendritic cells. J Immunol 173: 7249–7258.

    CAS  PubMed  Google Scholar 

  • Langowski JL, Zhang X, Wu L, Mattson JD, Chen T, Smith K et al. (2006). IL-23 promotes tumour incidence and growth. Nature 442: 461–465.

    CAS  PubMed  Google Scholar 

  • Lin R, Lacoste J, Nakhaei P, Sun Q, Yang L, Paz S et al. (2006). Dissociation of a MAVS/IPS-1/VISA/Cardif-IKKepsilon molecular complex from the mitochondrial outer membrane by hepatitis C virus NS3-4A proteolytic cleavage. J Virol 80: 6072–6083.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Liyanage UK, Moore TT, Joo HG, Tanaka Y, Herrmann V, Doherty G et al. (2002). Prevalence of regulatory T cells is increased in peripheral blood and tumor microenvironment of patients with pancreas or breast adenocarcinoma. J Immunol 169: 2756–2761.

    CAS  PubMed  Google Scholar 

  • Lund JM, Alexopoulou L, Sato A, Karow M, Adams NC, Gale NW et al. (2004). Recognition of single-stranded RNA viruses by Toll-like receptor 7. Proc Natl Acad Sci USA 101: 5598–5603.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mangan PR, Harrington LE, O'Quinn DB, Helms WS, Bullard DC, Elson CO et al. (2006). Transforming growth factor-beta induces development of the T(H)17 lineage. Nature 441: 231–234.

    CAS  PubMed  Google Scholar 

  • Mariathasan S, Monack DM . (2007). Inflammasome adaptors and sensors: intracellular regulators of infection and inflammation. Nat Rev Immunol 7: 31–40.

    CAS  PubMed  Google Scholar 

  • Mariathasan S, Weiss DS, Newton K, McBride J, O'Rourke K, Roose-Girma M et al. (2006). Cryopyrin activates the inflammasome in response to toxins and ATP. Nature 440: 228–232.

    CAS  PubMed  Google Scholar 

  • Martinon F, Petrilli V, Mayor A, Tardivel A, Tschopp J . (2006). Gout-associated uric acid crystals activate the NALP3 inflammasome. Nature 440: 237–241.

    CAS  PubMed  Google Scholar 

  • Martinon F, Tschopp J . (2004). Inflammatory caspases: linking an intracellular innate immune system to autoinflammatory diseases. Cell 117: 561–574.

    CAS  PubMed  Google Scholar 

  • Martinon F, Tschopp J . (2005). NLRs join TLRs as innate sensors of pathogens. Trends Immunol 26: 447–454.

    CAS  PubMed  Google Scholar 

  • Meylan E, Curran J, Hofmann K, Moradpour D, Binder M, Bartenschlager R et al. (2005). Cardif is an adaptor protein in the RIG-I antiviral pathway and is targeted by hepatitis C virus. Nature 437: 1167–1172.

    CAS  PubMed  Google Scholar 

  • Mucida D, Park Y, Kim G, Turovskaya O, Scott I, Kronenberg M et al. (2007). Reciprocal TH17 and regulatory T cell differentiation mediated by retinoic acid. Science 317: 256–260.

    CAS  PubMed  Google Scholar 

  • Naugler WE, Sakurai T, Kim S, Maeda S, Kim K, Elsharkawy AM et al. (2007). Gender disparity in liver cancer due to sex differences in MyD88-dependent IL-6 production. Science 317: 121–124.

    CAS  PubMed  Google Scholar 

  • Netea MG, Sutmuller R, Hermann C, Van der Graaf CA, Van der Meer JW, van Krieken JH et al. (2004). Toll-like receptor 2 suppresses immunity against Candida albicans through induction of IL-10 and regulatory T cells. J Immunol 172: 3712–3718.

    CAS  PubMed  Google Scholar 

  • Nurieva R, Yang XO, Martinez G, Zhang Y, Panopoulos AD, Ma L et al. (2007). Essential autocrine regulation by IL-21 in the generation of inflammatory T cells. Nature 448: 480–483.

    CAS  PubMed  Google Scholar 

  • Park H, Li Z, Yang XO, Chang SH, Nurieva R, Wang YH et al. (2005). A distinct lineage of CD4 T cells regulates tissue inflammation by producing interleukin 17. Nat Immunol 6: 1133–1141.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pasare C, Medzhitov R . (2003). Toll pathway-dependent blockade of CD4+CD25+ T cell-mediated suppression by dendritic cells. Science 299: 1033–1036.

    CAS  PubMed  Google Scholar 

  • Peng G, Guo Z, Kiniwa Y, Voo KS, Peng W, Fu T et al. (2005). Toll-like receptor 8 mediated-reversal of CD4+ regulatory T cell function. Science 309: 1380–1384.

    CAS  PubMed  Google Scholar 

  • Peng G, Wang HY, Peng W, Kiniwa Y, Seo K, Wang R-F . (2007). Tumor-infiltrating gamma-delta T cells suppress T and dendritic cell function via mechanisms controlled by a unique Toll-like receptor signaling pathway. Immunity 27: 334–348.

    CAS  PubMed  Google Scholar 

  • Pichlmair A, Schulz O, Tan CP, Naslund TI, Liljestrom P, Weber F et al. (2006). RIG-I-mediated antiviral responses to single-stranded RNA bearing 5′-phosphates. Science 314: 997–1001.

    CAS  PubMed  Google Scholar 

  • Rakoff-Nahoum S, Medzhitov R . (2007). Regulation of spontaneous intestinal tumorigenesis through the adaptor protein MyD88. Science 317: 124–127.

    CAS  PubMed  Google Scholar 

  • Roncarolo MG, Levings MK . (2000). The role of different subsets of T regulatory cells in controlling autoimmunity. Curr Opin Immunol 12: 676–683.

    CAS  PubMed  Google Scholar 

  • Sakaguchi S . (2004). Naturally arising CD4+ regulatory T cells for immunologic self-tolerance and negative control of immune responses. Annu Rev Immunol 22: 531–562.

    CAS  PubMed  Google Scholar 

  • Sakaguchi S, Sakaguchi N, Shimizu J, Yamazaki S, Sakihama T, Itoh M et al. (2001). Immunologic tolerance maintained by CD25+ CD4+ regulatory T cells: their common role in controlling autoimmunity, tumor immunity, and transplantation tolerance. Immunol Rev 182: 18–32.

    CAS  PubMed  Google Scholar 

  • Salaun B, Coste I, Rissoan MC, Lebecque SJ, Renno T . (2006). TLR3 can directly trigger apoptosis in human cancer cells. J Immunol 176: 4894–4901.

    CAS  PubMed  Google Scholar 

  • Sato E, Olson SH, Ahn J, Bundy B, Nishikawa H, Qian F et al. (2005). Intraepithelial CD8+ tumor-infiltrating lymphocytes and a high CD8+/regulatory T cell ratio are associated with favorable prognosis in ovarian cancer. Proc Natl Acad Sci USA 102: 18538–18543.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Seth RB, Sun L, Ea CK, Chen ZJ . (2005). Identification and characterization of MAVS, a mitochondrial antiviral signaling protein that activates NF-kappaB and IRF3. Cell 122: 669–682.

    CAS  PubMed  Google Scholar 

  • Shedlock DJ, Shen H . (2003). Requirement for CD4 T cell help in generating functional CD8 T cell memory. Science 300: 337–339.

    CAS  PubMed  Google Scholar 

  • Shevach EM . (2000). Regulatory T cells in autoimmmunity. Annu Rev Immunol 18: 423–449.

    CAS  PubMed  Google Scholar 

  • Shevach EM . (2002). CD4+ CD25+ suppressor T cells: more questions than answers. Nat Rev Immunol 2: 389–400.

    CAS  PubMed  Google Scholar 

  • Speiser DE, Lienard D, Rufer N, Rubio-Godoy V, Rimoldi D, Lejeune F et al. (2005). Rapid and strong human CD8+ T cell responses to vaccination with peptide, IFA, and CpG oligodeoxynucleotide 7909. J Clin Invest 115: 739–746.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Stockfleth E, Trefzer U, Garcia-Bartels C, Wegner T, Schmook T, Sterry W . (2003). The use of Toll-like receptor-7 agonist in the treatment of basal cell carcinoma: an overview. Br J Dermatol 149 (Suppl 66): 53–56.

    CAS  PubMed  Google Scholar 

  • Sun J, Wiklund F, Zheng SL, Chang B, Balter K, Li L et al. (2005). Sequence variants in Toll-like receptor gene cluster (TLR6-TLR1-TLR10) and prostate cancer risk. J Natl Cancer Inst 97: 525–532.

    CAS  PubMed  Google Scholar 

  • Sun JC, Bevan MJ . (2003). Defective CD8 T cell memory following acute infection without CD4 T cell help. Science 300: 339–342.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sun JC, Williams MA, Bevan MJ . (2004). CD4+ T cells are required for the maintenance, not programming, of memory CD8+ T cells after acute infection. Nat Immunol 5: 927–933.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sutmuller RP, den Brok MH, Kramer M, Bennink EJ, Toonen LW, Kullberg BJ et al. (2006a). Toll-like receptor 2 controls expansion and function of regulatory T cells. J Clin Invest 116: 485–494.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sutmuller RP, Morgan ME, Netea MG, Grauer O, Adema GJ . (2006b). Toll-like receptors on regulatory T cells: expanding immune regulation. Trends Immunol 27: 387–393.

    CAS  PubMed  Google Scholar 

  • Sutterwala FS, Ogura Y, Szczepanik M, Lara-Tejero M, Lichtenberger GS, Grant EP et al. (2006). Critical role for NALP3/CIAS1/cryopyrin in innate and adaptive immunity through its regulation of caspase-1. Immunity 24: 317–327.

    CAS  PubMed  Google Scholar 

  • Tabiasco J, Devevre E, Rufer N, Salaun B, Cerottini JC, Speiser D et al. (2006). Human effector CD8+ T lymphocytes express TLR3 as a functional coreceptor. J Immunol 177: 8708–8713.

    CAS  PubMed  Google Scholar 

  • Takaoka A, Yanai H, Kondo S, Duncan G, Negishi H, Mizutani T et al. (2005). Integral role of IRF-5 in the gene induction programme activated by Toll-like receptors. Nature 434: 243–249.

    CAS  PubMed  Google Scholar 

  • Takeda K, Akira S . (2005). Toll-like receptors in innate immunity. Int Immunol 17: 1–14.

    CAS  PubMed  Google Scholar 

  • Ting JP, Davis BK . (2005). CATERPILLER: a novel gene family important in immunity, cell death, and diseases. Annu Rev Immunol 23: 387–414.

    CAS  PubMed  Google Scholar 

  • Veldhoen M, Hocking RJ, Atkins CJ, Locksley RM, Stockinger B . (2006). TGFbeta in the context of an inflammatory cytokine milieu supports de novo differentiation of IL-17-producing T cells. Immunity 24: 179–189.

    CAS  PubMed  Google Scholar 

  • Walker MR, Kasprowicz DJ, Gersuk VH, Benard A, Van Landeghen M, Buckner JH et al. (2003). Induction of FoxP3 and acquisition of T regulatory activity by stimulated human CD4+CD25− T cells. J Clin Invest 112: 1437–1443.

    CAS  PubMed  Google Scholar 

  • Wan YY, Flavell RA . (2005). Identifying Foxp3-expressing suppressor T cells with a bicistronic reporter. Proc Natl Acad Sci USA 102: 5126–5131.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wang HY, Deen AL, Guangyong P, Zhong G, Yanchun L, Yukiko K et al. (2004). Tumor-specific human CD4+ regulatory T cells and their ligands: implication for immunotherapy. Immunity 20: 107–118.

    CAS  PubMed  Google Scholar 

  • Wang HY, Peng G, Guo Z, Shevach EM, Wang R-F . (2005). Recognition of a new ARTC1 peptide ligand uniquely expressed in tumor cells by antigen-specific CD4+ regulatory T cells. J Immunol 174: 2661–2670.

    CAS  PubMed  Google Scholar 

  • Wang HY, Wang RF . (2007). Regulatory T cells and cancer. Curr Opin Immunol 19: 217–223.

    CAS  PubMed  Google Scholar 

  • Wang R-F . (2001). The role of MHC class II-restricted tumor antigens and CD4+ T cells in antitumor immunity. Trends Immunol 22: 269–276.

    PubMed  Google Scholar 

  • Weaver CT, Harrington LE, Mangan PR, Gavrieli M, Murphy KM . (2006). Th17: an effector CD4 T cell lineage with regulatory T cell ties. Immunity 24: 677–688.

    CAS  PubMed  Google Scholar 

  • Weiner HL . (2001). Induction and mechanism of action of transforming growth factor-beta-secreting Th3 regulatory cells. Immunol Rev 182: 207–214.

    CAS  PubMed  Google Scholar 

  • Wille-Reece U, Flynn BJ, Lore K, Koup RA, Kedl RM, Mattapallil JJ et al. (2005). HIV Gag protein conjugated to a Toll-like receptor 7/8 agonist improves the magnitude and quality of Th1 and CD8+ T cell responses in nonhuman primates. Proc Natl Acad Sci USA 102: 15190–15194.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wilson NJ, Boniface K, Chan JR, McKenzie BS, Blumenschein WM, Mattson JD et al. (2007). Development, cytokine profile and function of human interleukin 17-producing helper T cells. Nat Immunol 8: 950–957.

    CAS  PubMed  Google Scholar 

  • Woo EY, Chu CS, Goletz TJ, Schlienger K, Yeh H, Coukos G et al. (2001). Regulatory CD4(+)CD25(+) T cells in tumors from patients with early-stage non-small cell lung cancer and late-stage ovarian cancer. Cancer Res 61: 4766–4772.

    CAS  PubMed  Google Scholar 

  • Xu J, Lowey J, Wiklund F, Sun J, Lindmark F, Hsu FC et al. (2005a). The interaction of four genes in the inflammation pathway significantly predicts prostate cancer risk. Cancer Epidemiol Biomarkers Prev 14: 2563–2568.

    CAS  PubMed  Google Scholar 

  • Xu LG, Wang YY, Han KJ, Li LY, Zhai Z, Shu HB . (2005b). VISA is an adapter protein required for virus-triggered IFN-beta signaling. Mol Cell 19: 727–740.

    CAS  PubMed  Google Scholar 

  • Yarovinsky F, Zhang D, Andersen JF, Bannenberg GL, Serhan CN, Hayden MS et al. (2005). TLR11 activation of dendritic cells by a protozoan profilin-like protein. Science 308: 1626–1629.

    CAS  PubMed  Google Scholar 

  • Yoneyama M, Kikuchi M, Natsukawa T, Shinobu N, Imaizumi T, Miyagishi M et al. (2004). The RNA helicase RIG-I has an essential function in double-stranded RNA-induced innate antiviral responses. Nat Immunol 5: 730–737.

    CAS  PubMed  Google Scholar 

  • Yuan X, Hu J, Belladonna ML, Black KL, Yu JS . (2006). Interleukin-23-expressing bone marrow-derived neural stem-like cells exhibit antitumor activity against intracranial glioma. Cancer Res 66: 2630–2638.

    CAS  PubMed  Google Scholar 

  • Zhang D, Zhang G, Hayden MS, Greenblatt MB, Bussey C, Flavell RA et al. (2004). A Toll-like receptor that prevents infection by uropathogenic bacteria. Science 303: 1522–1526.

    CAS  PubMed  Google Scholar 

  • Zhang L, Conejo-Garcia JR, Katsaros D, Gimotty PA, Massobrio M, Regnani G et al. (2003). Intratumoral T cells, recurrence, and survival in epithelial ovarian cancer. N Engl J Med 348: 203–213.

    CAS  PubMed  Google Scholar 

  • Zhou L, Ivanov II, Spolski R, Min R, Shenderov K, Egawa T et al. (2007). IL-6 programs T(H)-17 cell differentiation by promoting sequential engagement of the IL-21 and IL-23 pathways. Nat Immunol 8: 967–974.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work is in part supported by grants from National Institutes of Health, American Cancer Society and Cancer Research Institute.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R-F Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, RF., Miyahara, Y. & Wang, H. Toll-like receptors and immune regulation: implications for cancer therapy. Oncogene 27, 181–189 (2008). https://doi.org/10.1038/sj.onc.1210906

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.onc.1210906

Keywords

This article is cited by

Search

Quick links