Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Review Article

ACE inhibition in aortic stenosis: dangerous medicine or golden opportunity?

Abstract

Conventionally angiotensin-converting enzyme (ACE) inhibitors are contraindicated in patients with aortic stenosis. Abundant evidence is now available showing that angiotensin II has a central role in the development of left ventricular hypertrophy (LVH), myocardial contractile failure and diastolic dysfunction in response to pressure overload. In animal models, ACE inhibitors have been shown to attenuate these pathological responses. In humans there is no such evidence available, however uncontrolled studies have shown that these agents are not only tolerated but are associated with acute improvements in haemodynamics and diastolic function. Further studies are merited to assess the possible role of ACE inhibitors in aortic stenosis both before and after valve replacement. Potential benefits may include prevention of LVH, improved diastolic function, reduction of arrhythmias and preservation of left ventricular function.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Cohn JN, Franciosa JA Vasodilator therapy of cardiac failure (second of two parts) N Engl J Med 1977 297 254–258

    Article  CAS  PubMed  Google Scholar 

  2. Cleland JG, Oakley CM Vascular tone in heart failure: the neuroendocrine-therapeutic interface Br Heart J 1991 66 264–267

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Iivanainen AM et alNatural history of aortic valve stenosis of varying severity in the elderly Am J Cardiol 1996 78 97–101

    Article  CAS  PubMed  Google Scholar 

  4. Seiler C, Jenni R Severe aortic stenosis without left ventricular hypertrophy: prevalence, predictors, and short-term follow up after aortic valve replacement Heart 1996 76 250–255

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Levy D, Garrison RJ, Savage DD Prognostic implications of echocardiographically determined left ventricular mass in the Framingham Heart Study N Engl J Med 1990 322 1561–1565

    Article  CAS  PubMed  Google Scholar 

  6. Sadoshima J et alAutocrine release of angiotensin II mediates stretch-induced hypertrophy of cardiac myocytes in vitro Cell 1993 75 977–984

    Article  CAS  PubMed  Google Scholar 

  7. Wollert KC, Drexler H The renin-angiotensin system and experimental heart failure Cardiovasc Res 1999 43 838–849

    Article  CAS  PubMed  Google Scholar 

  8. Studer R et alIncreased angiotensin-I converting enzyme gene expression in the failing human heart. Quantification by competitive RNA polymerase chain reaction J Clin Invest 1994 94 301–310

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Baker KM et alRenin-angiotensin system involvement in pressure-overload cardiac hypertrophy in rats Am J Physiol 1990 259 H324–H332

    CAS  PubMed  Google Scholar 

  10. Schunkert H, Jackson B, Tang SS Distribution and functional significance of cardiac angiotensin converting enzyme in hypertrophied rat hearts Circulation 1993 87 1328–1339

    Article  CAS  PubMed  Google Scholar 

  11. Weinberg EO et alAngiotensin AT1 receptor inhibition. Effects on hypertrophic remodeling and ACE expression in rats with pressure-overload hypertrophy due to ascending aortic stenosis Circulation 1997 95 1592–1600

    Article  CAS  PubMed  Google Scholar 

  12. Passier RC et alActivation of angiotensin-converting enzyme expression in infarct zone following myocardial infarction Am J Physiol 1995 269 H1268–H1276

    CAS  PubMed  Google Scholar 

  13. Hokimoto S et alExpression of angiotensin-converting enzyme in remaining viable myocytes of human ventricles after myocardial infarction Circulation 1996 94 1513–1518

    Article  CAS  PubMed  Google Scholar 

  14. Nio Y et alRegulation of gene transcription of angiotensin II receptor subtypes in myocardial infarction J Clin Invest 1995 95 46–54

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Bartunek J et alAngiotensin II type 2 receptor blockade amplifies the early signals of cardiac growth response to angiotensin II in hypertrophied hearts Circulation 1999 99 22–25

    Article  CAS  PubMed  Google Scholar 

  16. Goodfriend TL, Elliott ME, Catt KJ Angiotensin receptors and their antagonists N Engl J Med 1996 334 1649–1654

    Article  CAS  PubMed  Google Scholar 

  17. Lopez JJ et alDistribution and function of cardiac angiotensin AT1- and AT2-receptor subtypes in hypertrophied rat hearts Am J Physiol 1994 267 H844–H852

    CAS  PubMed  Google Scholar 

  18. Meggs LG et alRegulation of angiotensin II receptors on ventricular myocytes after myocardial infarction in rats Circ Res 1993 72 1149–1152

    Article  CAS  PubMed  Google Scholar 

  19. Schunkert H et alAlteration of growth responses in established cardiac pressure overload hypertrophy in rats with aortic banding J Clin Invest 1995 96 2768–2774

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Feldman AM et alSelective changes in cardiac gene expression during compensated hypertrophy and the transition to cardiac decompensation in rats with chronic aortic banding Circ Res 1993 73 184–192

    Article  CAS  PubMed  Google Scholar 

  21. Sadoshima J, Izumo S Molecular characterization of angiotensin II-induced hypertrophy of cardiac myocytes and hyperplasia of cardiac fibroblasts. Critical role of the AT1 receptor subtype Circ Res 1993 73 413–423

    Article  CAS  PubMed  Google Scholar 

  22. Schunkert H et alAngiotensin II-induced growth responses in isolated adult rat hearts. Evidence for load-independent induction of cardiac protein synthesis by angiotensin II Circ Res 1995 76 489–497

    Article  CAS  PubMed  Google Scholar 

  23. Calderone A et alPressure- and volume-induced left ventricular hypertrophies are associated with distinct myocyte phenotypes and differential induction of peptide growth factor mRNAs Circulation 1995 92 2385–2390

    Article  CAS  PubMed  Google Scholar 

  24. Donohue TJ et alInduction of myocardial insulin-like growth factor-I gene expression in left ventricular hypertrophy Circulation 1994 89 799–809

    Article  CAS  PubMed  Google Scholar 

  25. Brilla CG, Maisch B, Zhou G, Weber KT Hormonal regulation of cardiac fibroblast function Eur Heart J 1995 16 (Suppl C) 45–50

    Article  Google Scholar 

  26. Silvestre JS et alMyocardial production of aldosterone and corticosterone in the rat. Physiological regulation J Biolog Chem 1998 273 4883–4891

    Article  CAS  Google Scholar 

  27. Zhou G et alEffects of angiotensin II and aldosterone on collagen gene expression and protein turnover in cardiac fibroblasts Molec Cell Biochem 1996 154 171–178

    Article  CAS  PubMed  Google Scholar 

  28. Thienelt CD et alLoad-induced growth responses in isolated adult rat hearts. Role of the AT1 receptor Circulation 1997 95 2677–2683

    Article  CAS  PubMed  Google Scholar 

  29. Villari B et alEffect of aortic valve stenosis (pressure overload) and regurgitation (volume overload) on left ventricular systolic and diastolic function Am J Cardiol 1992 69 927–934

    Article  CAS  PubMed  Google Scholar 

  30. Neyses L, Vetter H Impaired relaxation of the hypertrophied myocardium is potentiated by angiotensin II J Hypertens Suppl 1989 7 S104–S105

    Article  CAS  PubMed  Google Scholar 

  31. Litwin SE et alSerial echocardiographic-Doppler assessment of left ventricular geometry and function in rats with pressure-overload hypertrophy. Chronic angiotensin-converting enzyme inhibition attenuates the transition to heart failure Circulation 1995 91 2642–2654

    Article  CAS  PubMed  Google Scholar 

  32. Takeishi Y, Bhagwat A, Ball NA, Kirkpatrick DL Effects of angiotensin-converting enzyme inhibition on protein kinase C and SR proteins in heart failure Am J Physiol 1999 276 H53–H62

    CAS  PubMed  Google Scholar 

  33. Condorelli G et alIncreased cardiomyocyte apoptosis and changes in proapoptotic and antiapoptotic genes bax and bcl-2 during left ventricular adaptations to chronic pressure overload in the rat Circulation 1999 99 3071–3078

    Article  CAS  PubMed  Google Scholar 

  34. Ding B et alLeft ventricular hypertrophy in ascending aortic stenosis mice: anoikis and the progression to early failure Circulation 2000 101 2854–2862

    Article  CAS  PubMed  Google Scholar 

  35. Leri A et alUp-regulation of AT(1) and AT(2) receptors in postinfarcted hypertrophied myocytes and stretch-mediated apoptotic cell death Am J Pathol 2000 156 1663–1672

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Kajstura J et alAngiotensin II induces apoptosis of adult ventricular myocytes in vitro J Molec Cell Cardiol 1997 29 859–870

    Article  CAS  Google Scholar 

  37. Bruckschlegel G et alBlockade of the renin-angiotensin system in cardiac pressure-overload hypertrophy in rats Hypertension 1995 25 250–259

    Article  CAS  PubMed  Google Scholar 

  38. Kromer EP, Elsner D, Riegger GA Role of neurohumoral systems for pressure induced left ventricular hypertrophy in experimental supravalvular aortic stenosis in rats Am J Hypertens 1991 4 521–524

    Article  CAS  PubMed  Google Scholar 

  39. Weinberg EO et alAngiotensin-converting enzyme inhibition prolongs survival and modifies the transition to heart failure in rats with pressure overload hypertrophy due to ascending aortic stenosis Circulation 1994 90 1410–1422

    Article  CAS  PubMed  Google Scholar 

  40. Investigators TS Effect of enalapril on survival inpatients with reduced left ventricular ejection fractions and congestive heart failure N Engl J Med 1991 325 293–302

    Article  Google Scholar 

  41. Dzau VJ Autocrine and paracrine mechanisms in the pathophysiology of heart failure Am J Cardiol 1992 70 4C–11C

    Article  CAS  PubMed  Google Scholar 

  42. Litwin SE, Morgan JP Captopril enhances intracellular calcium handling and beta-adrenergic responsiveness of myocardium from rats with postinfarction failure Circ Res 1992 71 797–807

    Article  CAS  PubMed  Google Scholar 

  43. Townend JN et alModulation of cardiac autonomic control in humans by angiotensin II Hypertension 1995 25 1270–1275

    Article  CAS  PubMed  Google Scholar 

  44. Zimmerman BG Adrenergic facilitation by angiotensin: does it serve a physiological function? Clin Sci 1981 60 343–348

    Article  CAS  Google Scholar 

  45. Hannson L STOP – Hypertension-2 and best practice for the future Heart 2000 84 (Suppl 1) i2–i4

    Article  Google Scholar 

  46. Wren C, Petch MC Calcific aortic stenosis J Royal College Physic London 1983 17 192–195

    CAS  Google Scholar 

  47. Levy D Clinical significance of left ventricular hypertrophy: insights from the Framingham Study J Cardiovasc Pharmacol 1991 17 (Suppl 2) S1–S6

    Article  Google Scholar 

  48. Brilla CG, Funck RC, Rupp H Lisinopril-mediated regression of myocardial fibrosis inpatients with hypertensive heart disease Circulation 2000 102 1388–1393

    Article  CAS  PubMed  Google Scholar 

  49. Carabello BA, Crawford FA Jr Valvular heart disease N Engl J Med 1997 337 32–41

    Article  CAS  PubMed  Google Scholar 

  50. Lindblom D, Lindblom U, Ivert T Heart valve replacement in septuagenarians Scand J Thoracic & Cardiovasc Surg 1989 23 29–32

    Article  CAS  Google Scholar 

  51. Lindblom D et alLong-term relative survival rates after heart valve replacement J Am Coll Cardiol 1990 15 566–573

    Article  CAS  PubMed  Google Scholar 

  52. Smith N, McAnulty JH, Rahimtoola SH Severe aortic stenosis with impaired left ventricular function and clinical heart failure: results of valve replacement Circulation 1978 58 255–264

    Article  CAS  PubMed  Google Scholar 

  53. Connolly HM et alAortic valve replacement for aortic stenosis with severe left ventricular dysfunction. Prognostic indicators Circulation 1997 95 2395–2400

    Article  CAS  PubMed  Google Scholar 

  54. Logeais Y et alAortic valve replacement for aortic stenosis in 200 consecutive octogenarians J Heart Valve Dis 1995 4 (Suppl 1) S64–S71

    Google Scholar 

  55. Copeland JG et alLong-term follow-up after isolated aortic valve replacement J Thoracic & Cardiovasc Surg 1977 74 875–889

    CAS  Google Scholar 

  56. Murphy ES et alSevere aortic stenosis inpatients 60 years of age or older: left ventricular function and 10-year survival after valve replacement Circulation 1981 64 II184–II188

    CAS  PubMed  Google Scholar 

  57. Olsson M et alQuality of life in octogenarians after valve replacement due to aortic stenosis. A prospective comparison with youngerpatients Eur Heart J 1996 17 583–589

    Article  CAS  PubMed  Google Scholar 

  58. Lund O Preoperative risk evaluation and stratification of long-term survival after valve replacement for aortic stenosis. Reasons for earlier operative intervention Circulation 1990 82 124–139

    Article  CAS  PubMed  Google Scholar 

  59. Schwarz F et alThe effect of aortic valve replacement on survival Circulation 1982 66 1105–1110

    Article  CAS  PubMed  Google Scholar 

  60. O’Toole JD et alEffect of preoperative ejection fraction on survival and hemodynamic improvement following aortic valve replacement Circulation 1978 58 1175–1184

    Article  PubMed  Google Scholar 

  61. Lund O, Larsen KE Cardiac pathology after isolated valve replacement for aortic stenosis in relation to preoperativepatient status. Early and late autopsy findings Scand J Thoracic & Cardiovasc Surg 1989 23 263–270

    Article  CAS  Google Scholar 

  62. McGrath BP, Denham IM, Johnston CI Clinical improvement and hormonal changes in severe cardiac failure after captopril treatment Austr N Z J Med 1981 11 639–644

    Article  CAS  Google Scholar 

  63. Wong SS, Long CC, Holt PJ Lichenoid eruption induced by low dose captopril Acta Dermato-Venereologica 1992 72 358–359

    CAS  PubMed  Google Scholar 

  64. Cox NL, Abdul-Hamid AR, Mulley GP Why deny ACE inhibitors topatients with aortic stenosis? [letter] Lancet 1998 352 111–112

    Article  CAS  PubMed  Google Scholar 

  65. Martinez SC et alHemodynamic effects of oral captopril inpatients with critical aortic stenosis Archivos del Instituto de Cardiologia de Mexico 1996 66 322–330

    Google Scholar 

  66. Friedrich SP et alIntracardiac angiotensin-converting enzyme inhibition improves diastolic function inpatients with left ventricular hypertrophy due to aortic stenosis Circulation 1994 90 2761–2771

    Article  CAS  PubMed  Google Scholar 

  67. Grace AA, Brooks NH, Schofield PM Beneficial clinical and haemodynamic effects of captopril in severe symptomatic aortic stenosis Eur Heart J 1991 12 (Suppl) 740

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to HC Routledge.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Routledge, H., Townend, J. ACE inhibition in aortic stenosis: dangerous medicine or golden opportunity?. J Hum Hypertens 15, 659–667 (2001). https://doi.org/10.1038/sj.jhh.1001260

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.jhh.1001260

Keywords

This article is cited by

Search

Quick links