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Presence of distinctive microbiome 
in the first‑pass meconium 
of newborn infants
Jenni Turunen1,2*, Mysore V. Tejesvi2,3, Niko Paalanne1,4, Jenni Hekkala2,5, Outi Lindgren5,6,7, 
Mika Kaakinen2, Tytti Pokka1,4, Anna Kaisanlahti2,5, Justus Reunanen2,5,8 & 
Terhi Tapiainen1,2,4,8

We critically evaluated the fetal microbiome concept in 44 neonates with placenta, amniotic fluid, 
and first-pass meconium samples. Placental histology showed no signs of inflammation. Meconium 
samples were more often bacterial culture positive after vaginal delivery. In next-generation 
sequencing of the bacterial 16S gene, before and after removal of extracellular and PCR contaminant 
DNA, the median number of reads was low in placenta (48) and amniotic fluid (46) and high in 
meconium samples (14,556 C-section, 24,860 vaginal). In electron microscopy, meconium samples 
showed extracellular vesicles. Utilizing the analysis of composition of microbiomes (ANCOM) against 
water, meconium samples had a higher relative abundance of Firmicutes, Lactobacillus, Streptococcus, 
and Escherichia-Shigella. Our results did not support the existence of the placenta and amniotic fluid 
microbiota in healthy pregnancies. The first-pass meconium samples, formed in utero, appeared to 
harbor a microbiome that may be explained by perinatal colonization or intrauterine colonization via 
bacterial extracellular vesicles.

The fetal microbiome concept was developed after culture-independent methods, mainly next-generation 
sequencing of the bacterial 16S marker gene, had shown diverse microbiome signatures in the first-pass meco-
nium formed in utero1–3, amniotic fluid1,3, placenta1,4–6, and fetal lungs7. The microbiome of meconium has been 
suggested as a proxy for fetal gut microbiome8,9 because it is formed before birth and associates with maternal 
and environmental factors during pregnancy, such as maternal diet10–12, smoking13, maternal antibiotics during 
pregnancy8, and the presence of household pets8,14 and/or siblings14.

Recent high-quality studies have questioned the presence of a distinct placental microbiome15–20 and an 
amniotic fluid microbiome21,22. Yet, in animal models, maternal bacteria have been suggested to actively colonize 
the fetal gut before birth23,24. In an interesting study, genetically labeled Enterococcus, isolated before the study 
from a healthy female’s breast milk, was orally administered to pregnant mice23. After term Caesarean section 
(C-section), meconium from fetuses was obtained and labeled bacteria were detected23. In humans, maternal 
mononuclear cells harbor whole bacteria or bacterial antigens frequently during pregnancy25.

Contaminant environmental bacterial DNA or DNA from laboratory kits, i.e. kitome, may explain the micro-
biome findings in samples with a low amount of bacterial DNA26,27. In order to critically investigate the proposed 
fetal microbiome concept further, we set out to characterize microbiomes in the first-pass meconium, placenta, 
and amniotic fluid; first, by next-generation sequencing of the bacterial 16S gene of unprocessed samples and 
then after removal of extracellular bacterial DNA and contaminant bacterial DNA in PCR reagents. Addition-
ally, we investigated the histology of the placenta and performed bacterial culture and electron microscopy of 
the first stool to detect whole-cell bacteria or extracellular vesicles.
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Material and methods
Study design and study population.  This was a cross-sectional study of 44 term newborn infants born 
from uncomplicated pregnancies (Fig.  1). Ethical Committee of Northern Ostrobothnia Hospital District at 
Oulu University Hospital, Finland, approved the study with a decision number EETTMK:3/2016. All families 
gave their written informed consent before the study, and the experiments were conducted in accordance with 
all relevant guidelines and regulations. The first-pass meconium, amniotic fluid, and placental samples were split 
into three subsets: (1) a sample without any processing, (2) a sample processed with a propidium monoazide 
(PMA) dye set to remove extracellular DNA from samples, and (3) a sample with processed PCR reagents using 
dsDNase to remove reagent contamination. Thus, each sample was analyzed in triplicate (Fig. 1). For each sub-
set, two negative control samples (sterile water, HyClone™ HyPure, Thermo Fisher Scientific, MA, USA) were 
prepared using the same protocol.

Sample collection and bacterial culture.  The obstetrician performing the C-section obtained the amni-
otic fluid samples using a sterile needle through the fetal membranes or by collecting fluid from a sterile kidney 
dish filled with amniotic fluid during the procedure. None of the amniotic fluid samples were reported to be 
contaminated by meconium. Data was not available for three samples. Trained midwives collected the placental 
samples after the C-section. Altogether two 1.5 × 1.5 × 1 cm samples were cut with a sterile knife approximately 
3–4  cm away from the cord insertion site (Supplementary Fig.  S1). The first-pass meconium, i.e., first stool 
after birth formed in utero, was collected by either a midwife at the delivery room or the child’s named nurse at 
the labor ward from a diaper within 24 h from birth. The samples were first placed at − 20 °C and then stored 
at − 80 °C.

Bacterial culture of the first stool after birth was performed for all meconium samples using routine bacterial 
culture methods in a clinical microbiology laboratory at Nordlab, Oulu University Hospital, Finland.

Histology of placenta.  Fifteen placentas from C-section deliveries were available for histological evalu-
ation. Representative samples from the cords, membranes, and three full-thickness cross-sections of placental 
parenchyma were processed according to standard protocol and embedded in paraffin. Histological slides of 
3.5 µm thickness were cut from formalin-fixed paraffin-embedded (FFPE) samples and stained using hematoxy-
lin–eosin (Dako CoverStainer, CS100, Agilent, CA, USA) at Oulu University Hospital Pathology Department. 

Figure 1.   The study design. The study design. In total, samples from 44 newborn infants were used. (A) 
Placenta and amniotic fluid samples. Two C-section deliveries were planned as vaginal deliveries. Due to this, 
placenta and amniotic fluid samples could not be obtained from those deliveries. (B) Meconium samples.
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Histological evaluation of placental infection was done accordingly to Amsterdam Placental Workshop Group 
Consensus criteria28.

Electron microscopy and characterization of nanoparticles of the first‑pass meconium.  Elec-
tron microscopy of meconium samples was performed at Biocenter Oulu, Finland, according to the following 
protocol: approximately 50 µg meconium was suspended in 200 µl sterile phosphate-buffered saline (PBS). Next, 
5 µl of this solution was placed on carbon-coated and glow-discharged grid and incubated for 20 min. The grid 
was then washed for 1 min twice in 100 µl of PBS. The sample was fixed by incubating the grid on a drop of 
1% glutaraldehyde in PBS for 5 min. The grid was washed eight times for 1 min in a drop of distilled water and 
stained with neutral 2% UA in 50 µl water for 5 min. The grid was coated with 50 µl 2% methylcellulose-UA 
(0.4%) solution for 10 min on ice and removed from the drop with loop. Excess fluid was blotted by pushing the 
loop sideways on Whatman no. 1 filter paper, leaving thin film on the EV side of the grid. The grid was air-dried 
for 10 min and stored in a grid storage box until electron microscopy analysis. The imaging was performed using 
a Tecnai Spirit transmission electron microscope (Fei Europe) and a Quemesa CCD camera (Olympus Soft 
Imaging Solutions GMBH).

Meconium samples (2 vaginal deliveries and 2 C-sections) were suspended into 1 × Dubelcco’s phosphate 
buffered saline (dPBS) (100 mg/ml) and centrifuged for 2 min at 3000×g to pellet solid material. Supernatant 
was collected for further analyses by microscopy and Nanoparticle Tracking Analysis (NTA). The size of parti-
cles (smaller than 600 nm) and particle concentration were measured by NTA using Nanosight 300 (Malvern). 
Samples were diluted to 1:13 in 1 × dPBS and loaded to NS300 for imaging. Each sample was captured four times 
60 s video and each 1 s frame was analyzed via Nano Tracking Analysis. For light microscopy, the samples were 
serially diluted 1:10 in dPBS, applied on microscopic slides and allowed to air dry, followed by heat fixation and 
Gram-staining.

Removal of extracellular DNA with propidium monoazide.  To remove extracellular DNA from the 
samples, we used propidium monoazide (PMA) dye. We chose PMAxx™ dye (Biotium, CA, United States), which 
has been used successfully in a similar study29. The manufacturer’s protocol was followed. For meconium and 
placenta samples, 200 mg of sample was dissolved in 1 ml of phosphate-buffered saline (PBS) with bead beating, 
and 1.25 µl of 25 mM PMA was added. For amniotic fluid samples, 1.25 µl of 25 mM PMA was added to 500 µl 
of amniotic fluid. Samples were incubated in the dark for 10 min with occasional vortexing and then exposed 
to light in an ice bath for 15 min. Samples were centrifuged at 5000 rpm for 10 min. Then the pellet was resus-
pended to DNA extraction buffer, after which the DNA extraction continued with the cell lysis step.

DNA extraction.  DNA was extracted using QIAamp PowerFecal Pro DNA Kit (Qiagen, Germany) accord-
ing to the manufacturer’s protocol. Meconium and placenta samples were homogenized using bead beating at 
25 Hz for 2 min in the TissueLyser (Qiagen) and incubated on ice for 1 min. Steps were repeated 1–3 times. 
Amniotic fluid samples were centrifuged for 25 min at 13,000 rpm, the supernatant was discarded, and the pellet 
was dissolved in extraction buffer. After this, DNA extraction was performed. The final DNA elution was set to 
50 µl to increase the DNA yield. DNA concentration was measured using NanoDrop 1000 Spectrophotometer 
(Thermo Fisher Scientific).

Removal of bacterial DNA contamination in PCR reagents by dsDNase treatment.  Before per-
forming PCR, one-third of samples’ PCR master mixes went through dsDNase treatment using a PCR Decon-
tamination Kit (ArcticZymes, Tromsø, Norway) according to the manufacturer’s protocol. The kit has earlier 
been evaluated and used on PCR reagents to purify them of DNA contaminations on a similar fetal microbiome 
study3,30.

PCR, 16S rRNA gene sequencing, and analysis.  We performed sequencing of the 16S rRNA gene’s 
V4–V5 region using primer 519F with unique barcodes as well as primer 926R. For PCR, the manufacturer’s 
protocol of Phusion Flash High-Fidelity PCR master mix (Thermo Fisher Scientific) was followed. A negative 
control (sterile water, HyClone™ HyPure, Thermo Fisher Scientific) was used in each PCR plate, as well as five 
positive controls of HM-782D, Microbial Mock Community B (BEI resources, USA) to each sequencing run. 
PCR was performed with Applied Biosystems™ Veriti 96-Well Thermal Cycler (Thermo Fisher Scientific). The 
PCR initialization program was ran for 3 min at 98 °C, followed by 30 cycles of reaction, starting at 98 °C for 
10 s and followed by 30 s at 56 °C annealing temperature and elongation at 72 °C for 30 s. Final elongation was 
at 72 °C for 5 min.

The samples were pooled and purified using AMPure XP (Beckman Coulter, CA, USA). The purified pool was 
run in 1% agarose gel, after which the 16S product was cut from the gel and purified with MinElute Gel Extrac-
tion Kit (Qiagen). The purified product went through second PCR with Phusion Flash High-Fidelity PCR master 
mix using 1 µM HPLC-purified primers A and trP1. The program was run for seven cycles at a 63 °C annealing 
temperature and 5 min of elongation. The final product was purified with AMPure XP, analyzed with Bioanalyzer, 
and the concentration of the pool was measured using Quant-iT PicoGreen dsDNA Assay Kit (Thermo Fisher 
Scientific). The sequencing was performed on IonTorrent PGM (Thermo Fisher Scientific).

Analysis was performed on Quantitative Insights Into Microbial Ecology 2 (QIIME2; version 2020.2 and 
2020.6)31. DNA reads under 200 bp were omitted from the taxonomic analysis. Reads were then demultiplexed 
and denoised with DADA232. Denoised reads were trimmed at 15 and truncated at 260, and chimeric reads were 
filtered out, resulting in a total of 3,994,640 processed reads ready for further analyses. R package decontam (ver-
sion 1.8.0) was used to filter out environmental contaminants from each sample type using a prevalence-based 
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method with a threshold of 0.533. Furthermore, taxa identified as Cyanobacteria, Mitochondria, Eukaryota, or 
Archaea were removed, similar to previous fetal microbiome studies6,12,17,34,35. Reads were normalized using R 
package MetagenomeSeq (version 1.30.0)36. Samples with less than 10 reads and taxa that were not present in 
the samples were removed. Reads were normalized with a normalization percentile calculated using the cum-
NormStat function.

We performed Principal Coordinate Analysis (PCoA) with Bray–Curtis dissimilarity and taxonomic analysis 
of the samples at phylum and genus levels. Taxonomic compositions in each sample group were calculated by 
relative frequency. The SILVA database (version 138) was used for the taxonomic analysis37. Figures were drawn 
on RStudio38 using packages ggplot2 (version 3.3.5)39, grid (version 4.0.2)38, and GridExtra (version 2.3)40.

Statistical analysis.  We employed analysis of composition of microbiomes (ANCOM) using the QIIME2 
bioinformatics platform and Mann–Whitney U test, confirmed by p-test, applying RStudio for the differential 
abundance analysis of all taxa in the samples41. Beta diversities’ statistical analyses were calculated using PER-
MANOVA and confirmed with a p-test. The proportions of bacterial culture-positive samples were compared 
using the StatsDirect analysis for two proportions.

Results
Study population.  In total, 44 term newborn infants from uncomplicated pregnancies were enrolled in the 
study (Table 1). Altogether 23 infants were vaginally delivered and 21 were born via C-section. Bacterial culture 
of the first-pass meconium was positive in 16/22 (73%) of vaginally born newborn infants and 3/19 (16%) of 
those born via C-section (p < 0.001, 95% confidence interval of the difference 27% to 76%; Table 2). All placental 
samples were morphologically normal with normal terminal villi development. None met the diagnostic histo-

Table 1.   Characteristics of the study participants. NICU neonatal intensive care unit. a 2 patients recruited 
in the vaginal delivery group gave birth via C-section and were analyzed as such. b Streptococcus 
agalactiae screening before birth was not performed in 6 cases. *In the vaginal delivery group, 1 mother had 
been administered amoxicillin. In the C-section group 1 mother had been administered amoxicillin and 1 
received cephalexin. **In the vaginal delivery group, all 5 mothers had been administered benzylpenicillin. In 
the C-section group, 19 mothers had been administered cefuroxime, 1 Piperacillin-Tazobactam, and 1 received 
Clindamycin.

Vaginal
N = 23

C-section
N = 21a

All
N = 44

Mothers age, year mean (SD) 28.3 (5.0) 35.8 (5.0) 31.9 (6.3)

Gestational age (weeks) mean (SD) 39.5 (2.3) 39.3 (0.9) 39.4 (1.8)

Birth weight (grams) mean (SD) 3510 (280) 3740 (620) 3620 (480)

Boys (%) 12 (52%) 10 (48%) 22 (50%)

Maternal asthma 0 4 (19%) 4 (9.1%)

Maternal allergy 8 (35%) 11 (52%) 19 (43%)

Gestational diabetes 4 (17%) 8 (38%) 12 (27%)

Streptococcus agalactiaeb 5 (22%) 9 (43%)b 14 (32%)

Antibiotics during pregnancy 9 (39%) 5 (24%) 14 (32%)*

Intrapartum antibiotics 5 (22%) 21 (100%) 26 (59%)**

Perinatal antibiotics after birth 1 (4.3%) 1 (4.8%) 2 (4.5%)

NICU admission 1 (4.3%) 2 (9.5%) 3 (7.0%)

Table 2.   Bacterial culture of the first-pass meconium.

Vaginal
N = 23

C-section
N = 21

All
N = 44

Negative 7 (30%) 16 (76%) 23 (52%)

Coagulase-negative staphylococci 6 (26%) 2 (9.5%) 9 (20%)

Escherichia coli 3 (13%) 0 3 (6.8%)

Lactobacillus species 2 (8.7%) 0 2 (4.5%)

Group viridans streptococci 1 (4.3%) 1 (4.8%) 2 (4.5%)

Staphylococcus epidermidis 1 (4.3%) 0 1 (2.3%)

Bacillus species 1 (4.3%) 0 1 (2.3%)

Propionibacterium species 1 (4.3%) 0 1 (2.3%)

Group B streptococci 1 (4.3%) 0 1 (2.3%)

Culture results unavailable 1 2 3
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logical criteria for acute chorioamnionitis, subchorionitis, or chorionitis, i.e. no maternal inflammatory response 
was observed. No detectable funisitis, chorionic vasculitis or umbilical phlebitis was observed, i.e. no signs of 
fetal inflammatory response were seen. No detectable villitis or chronic basal plate inflammation was observed.

Basic microbiome analysis.  Read counts of raw data varied markedly between sample types (Fig. 2). The 
majority of placenta (30/49, 61%) and amniotic fluid (31/50, 59%) samples had fewer than 100 reads. In total 
37% (23/63) of meconium samples after C-section had fewer than 100 reads, whereas 15% (10/67) of those after 
vaginal delivery had < 100 reads. The median number of reads was low in placenta (48) and amniotic fluid (46) 
and high in meconium samples (14,556 C-section, 24,860 vaginal). The variation was less clearly seen between 
the processing groups, including PMA treatment to remove extracellular DNA and dsDNase treatment to 
remove bacterial contamination from PCR reagents (Fig. 2). Alpha diversity analysis concluded no significant 
difference in observed operational taxonomic units (OTUs) in placenta and amniotic fluid samples versus the 
negative control (sterile water) except for unprocessed placenta samples, where water samples, in fact, contained 
more observed OTUs, and dsDNase-treated amniotic fluid samples (Supplementary Table S1).

Principal coordinate analysis.  In Principal Coordinate Analysis using Bray–Curtis dissimilarity, signifi-
cant differences between samples and controls were observed (p = 0.001; Fig. 3). Placenta and amniotic fluid 
samples were closely clustered near the negative control samples whereas highly diverse meconium samples 
clearly differed from the placenta, amniotic fluid, or negative control samples.

Analysis of composition of microbiomes.  ANCOM was performed on all sample types and water, as 
well as all samples with different treatments within each sample type (Table 3). Placenta and amniotic fluid had 
two differentially abundant taxa against water: Actinobacteriota and Cutibacterium. In meconium against water, 
differentially abundant taxa included Firmicutes, Lactobacillus, Streptococcus, and Escherichia-Shigella group. 

Figure 2.   Read counts of raw sequencing data according to sample types (A–D) and laboratory processing. 
PMA indicates propidium monoazide used to remove extracellular DNA, and dsDNase indicates the 
decontamination of PCR reagents. Each column indicates one sample. (A) Placental samples without processing, 
after PMA, and after dsDNase treatments (B) Amniotic fluid samples without processing, after PMA, and after 
dsDNase treatments. (C) First-pass meconium samples after vaginal birth without processing, after PMA, and 
after dsDNase treatments. (D) First-pass meconium samples after C-section delivery without processing, after 
PMA, and after dsDNase treatments. 
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Different treatments did not yield differentially abundant taxa in any sample type aside from Streptococcus in 
placenta.

Microbiome of the first‑pass meconium.  As amniotic fluid and placenta samples were unlikely to pos-
sess a distinct microbiome based on the very low number of reads, observed OTUs, Bray–Curtis dissimilarity, 
and ANCOM analysis, we continued with a detailed analysis of the first-pass meconium samples.

When all meconium samples were divided based on delivery mode, significant differences were found between 
the microbiome compositions of meconium after vaginal and C-section deliveries (Fig. 4). The microbiomes of 
meconium samples after C-section formed a tight cluster, whereas the microbiomes of the samples obtained after 
vaginal delivery showed diverse patterns (Bray–Curtis Dissimilarity (p = 0.001; Fig. 4). Firmicutes was the most 
abundant phylum in both samples after vaginal and C-section deliveries, followed by Proteobacteria (Table 4). 
Significant differences were found in phyla Actinobacteria (p = 0.008) and Firmicutes (p = 0.001, W = 27), as well 
as several genera between delivery modes (Supplementary Table S2).  

To elucidate better the characteristics of the microbiome in meconium, we then compared the microbiomes 
of meconium samples according to different laboratory treatments performed to remove contaminant bacterial 
DNA. The meconium microbiome differed statistically significantly from water in both the vaginal and C-section 
groups with and without dsDNase treatment (Figs. 5, 6). Following PMA treatment to remove extracellular 
bacterial DNA, the differences were not statistically significant (Figs. 5, 6). The number of observed OTUs was 
significantly greater in vaginally delivered meconium samples compared with the control samples (sterile water; 
Supplementary Table S1). C-section delivery samples had significantly more OTUs exclusively in the dsDNase 
treatment group (Supplementary Table S1).

Figure 3.   Principal Coordinate analysis using Bray–Curtis dissimilarity. PERMANOVA was used as a statistical 
test. The significance was confirmed via a p-test.

Table 3.   ANCOM results including differentially abundant OTUs in all sample groups.

OTU W

Placenta vs. water Cutibacterium 172

Placenta, unprocessed vs. PMA vs. dsDNase Streptococcus 16

Amniotic fluid vs. water
Actinobacteriota 8

Cutibacterium 180

Amniotic fluid, unprocessed vs. PMA vs. dsDNase Methylobacterium 95

Meconium vs. water

Firmicutes 22

Lactobacillus 547

Streptococcus 533

Escherichia-Shigella 500
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Electron microscopy of the first‑pass meconium.  We then characterized whether whole bacterial 
cells or extracellular vesicles were present in the first-pass meconium using electron microscopy of six samples 
in total. Electron microscopy of the first-pass meconium showed extracellular vesicles in samples both after 
vaginal and C-section deliveries (Fig. 7). Vesicle sizes ranged from approximately 100 nm to 200 nm in diameter.

Characterization of nanoparticles.  In microscopic analysis of the nanoparticles, only saffranin-stained 
particles not equalling in size and shape with bacterial cells could be observed. This indicated intact Gram-pos-
itive bacterial cells being absent or very low in numbers in the meconium samples, whereas fairly high amounts 
(5.0 + E09 − 1.378 + E10 particles/g) of particles falling into the size range of EVs (20–600 nm) could be detect-
eced by the NTA.

Discussion
In the present study, aligning with earlier findings17, we could not confirm the presence of the placenta and amni-
otic fluid microbiome. The first-pass meconium, however, appeared to harbor an actual microbiome, which may 
be explained by perinatal colonization, or hypothetically, partly by intrauterine colonization through bacterial 
extracellular vesicles, based on preliminary electron microscopy findings.

Our results do not support the idea of an existing microbiota in amniotic fluid or placenta. This aligns with 
the results from earlier high-quality studies15,18,19,42. Our results, however, showed that first-pass meconium likely 
harbors a distinct microbiota. We found that microbiomes of the meconium samples obtained after C-section 
delivery differ from those after vaginal delivery, which is analogous to the results of earlier studies11,43–45. This may 
indicate that meconium already shows the first steps of actual perinatal gut colonization. This idea is supported by 
the present study’s bacterial culture results showing that most meconium samples after vaginal delivery yielded 
positive cultures. Furthermore, the number of reads was markedly higher in the first-pass meconium samples 
than in amniotic fluid or placenta samples, the number of reads being highest in the meconium samples after 
vaginal birth. Finally, meconium samples seemed to harbor bacteria known to be the first colonizers of the gut, 
such as Staphylococcus, Lactobacillus, Escherichia, and Enterococcus.

Figure 4.   Beta and taxonomy analysis of the first-pass meconium samples, according to the delivery mode. The 
results of Bray–Curtis dissimilarity and PERMANOVA analysis are shown. Relative abundances of OTUs are 
presented at phylum and genus levels. The ten most abundant phyla and genera are shown.

Table 4.   Ten most abundant species in the first-pass meconium according to the delivery mode.

Phylum Vaginal (%) C-section (%) Genus Vaginal (%) C-section (%)

Firmicutes 74 40 Staphylococcus 36 23

Proteobacteria 22 20 Escherichia-Shigella 20 0.2

Actinobacteriota 1.3 18 Lactobacillus 18 1.0

Bacteroidota 1.6 11 Streptococcus 9.7 1.5

Acidobacteriota 0.3 2.9 f. Comamonadaceae 0.4 7.9

Deinococcota 0.2 2.2 Vibrionimonas 0.3 6.7

K. Bacteria 0.01 1.7 Corynebacterium 0.4 4.7

Bdellovibrionota 0.01 1.5 Cutibacterium 0.4 4.5

Myxococcota 0.03 1.3 Enterococcus 4.5 0.2

Unassigned 0.03 0.8 Bacillus 0.3 2.7

Other 0.2 1.4 Other 11 47
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One possible mechanism of perinatal colonization was presented by Lannon et al., who concluded in an 
interesting study that lactobacilli and bacterial vaginosis-associated bacteria can ascend from the vagina to the 
chorioamnion during term labor even in the absence of chorioamnionitis46. This may be one mechanism of bac-
teria inhabiting meconium during birth. In an earlier study, maternal gut microbes were found to transport to 
breast milk via mononuclear cells, potentially developing a neonate’s immune system during feeding25. Similarly, 
microbes might be transported from the mother to the fetus inside cells. In a more recent study by Kennedy et al., 
meconium samples were collected from C-sectionally delivered children after sectioning but before delivery, thus 
reducing the risk of contamination and transmission of bacteria from the mother to children during delivery47. 
Contrary to previous findings, this study did not find a distinctive meconium microbiota before birth47, which 
supports the idea of initial gut colonization occurring during and/or after birth.

There is a possibility that differences found between the delivery modes in meconium may be partly affected 
by the usage of maternal antibiotics. In our study population, 100% of the mothers giving birth via C-section 
received intrapartum antibiotic treatment, whereas from vaginally delivering mothers only 22% received anti-
biotics. It has been previously shown that maternal antibiotic usage may affect the neonatal gut development8,45. 
It is possible that the antibiotic treatment has elevated the differences in meconium microbiota of C-sectionally 
delivered neonates. However, in an earlier study by Tapiainen et al., the effect of perinatal antibiotics couldn’t be 
seen in newborns until 1–2 days after birth48. Furthermore, in this study cohort, mothers in the C-section group 
had more reported health conditions than those delivering vaginally. These conditions affect the microbiota of 
the mother, and there are implications of maternal health conditions affecting the child’s microbiota via bacte-
rial transfer49.

An important consideration in the meconium microbiome studies is the sampling time. Meconium is often 
defined as the first stool passed within 48 h from birth. Neonatal microbiota starts diversifying quickly after birth, 
and it is expected that longer sampling times may cause samples to contain bacteria obtained after birth. However, 
in an earlier study it was concluded that sampling times of 24 h and less after birth did not affect the bacterial 
load of the samples8. Therefore, it is unlikely that the sampling time affected these results in the present study.

Bacterial contamination from the environment or laboratory kits and reagents have been suggested as 
explanations for earlier findings of proposed fetal microbiome in the amniotic fluid and placenta in healthy 
pregnancies26,34. In the present study, we aimed to solve this problem by carefully removing bacterial DNA 
contamination and non-viable bacteria based on the methods used in previous fetal microbiome studies29,30. We 

Figure 5.   Beta and taxonomy analysis of the microbiome in meconium after vaginal delivery. The three 
laboratory methods used: Unprocessed samples, PMA treatment to remove extracellular DNA, and dsDNAase 
treatment to remove bacterial contaminant DNA from PCR reagents. The results of Bray–Curtis dissimilarity 
and PERMANOVA analysis are shown. Relative abundances of OTUs are presented at phylum and genus levels. 
The ten most abundant phyla and genera are shown. Water was used as a negative control.
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chose to use PMA and dsDNase to exclude non-cellular DNA from samples and remove contaminant DNA from 
PCR reagents. The impact on findings from the placenta and amniotic fluid samples was smaller than expected 
because even unprocessed samples showed very low read counts (Fig. 3) and few OTUs (Supplementary Table S1).

Previous studies about the microbiome of the first-pass meconium have mainly focused on sequencing of 
bacterial 16S gene in meconium1–3,8,10,11,43,50–52. In the present study, we first performed electron microscopy 
analysis and then the characterization of nanoparticles of the first-pass meconium. We detected few whole bac-
terial cells in meconium samples using electron microscopy. Using nanoparticle Tracking Analysis, we found 
many smaller particles fitting the size range of EVs. EVs are small particles secreted from either cell membranes 
or from endosomes53. They are known carriers of various molecules, such as RNA and DNA, and able to cross 
biological barriers54. It is known that both gram-positive54,55 and gram-negative bacteria56 are able to secrete what 
is called membrane vesicles (MVs) and outer-membrane vesicles (OMVs) that carry functional genetic material. 
Hypothetically, these bacterial EVs could contribute to the colonization of the fetus in utero. We did not verify 
whether EVs were of bacterial or human origin in this study. Thus, our findings remain speculative about the 
intrauterine colonization process by bacterial EVs derived from the maternal microbiome. Yet, the idea of fetal 
microbial EV contacts is both intriguing and plausible due to their barrier-crossing abilities. In the future, this 
novel hypothesis should be further investigated.

The first-pass meconium is the first readily available sample for gut microbiome studies after birth and may 
reflect the first steps of true bacterial colonization of the gut. It appeared that the differences in the gut microbi-
ome development between newborn infants born via vaginal route and C-section are detectable already in the 
first stool after birth. Thus, the recently suggested interventions for changing gut colonization in newborn infants 
born via C-section, such as fecal transplant from the mother’s first milk57, may already be late if the very first steps 
of that colonization process are crucial for later health. Yet, the clinical impact of the microbiome of meconium is 
still poorly understood. In our earlier prospective cohort studies, using an earlier cohort of consecutive newborn 
infants, the microbiome of meconium has been associated with subsequent infantile colic51 and overweight52.

The present study has several strengths. We used a wide array of methods to characterize the fetal microbiome 
concept in a meaningful way. We compared different sample types, including placenta, amniotic fluid, and the 
first-pass meconium samples, used different laboratory methods in processing the samples for 16S sequencing 
to remove bacterial contamination, used histological evaluation of placentas to exclude chorioamnionitis, and 
performed bacterial culture and electron microscopy of meconium in addition to routine 16S sequencing studies. 

Figure 6.   Beta and taxonomy analysis of the microbiome in meconium after C-section. The three laboratory 
methods used: Unprocessed samples, PMA treatment to remove extracellular DNA, and dsDNAase treatment 
to remove bacterial contaminant DNA from PCR reagents. The results of Bray–Curtis dissimilarity and 
PERMANOVA analysis are shown. Relative abundances of OTUs are presented at phylum and genus level. The 
ten most abundant phyla and genera are shown. Water was used as a negative control.
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Furthermore, we had a sufficiently sized negative control group going through the same 16S sequencing protocol. 
The importance of negative controls is generally recognized, but the number of negative controls is often limited 
in earlier studies, thus reducing the power of the negative control analysis. We ensured a sufficient number of 
negative controls (24) in each step of the study. Especially in studies with very low-biomass material, a negative 
control sample group is essential.

Our study has several limitations. First, sequencing only one small region of the 16S rRNA gene limits bac-
terial identification up to the species level. Sequencing the entire gene would most likely increase the number 
of taxa found in samples and accurately assign names to species. Furthermore, choosing the gene’s region and 
primers may slightly affect the results. Primers have different biases towards and against different taxa, which 
may result in excluding important taxa present in the samples58. Second, samples were most likely slightly con-
taminated during the entire workflow. This is inevitable, as it is impossible to work in a completely sterile space 
from start to finish. We avoided as many environmental contaminants as possible by working in a cleaned-up 
laminar airflow, using sterile instruments, and avoiding any splashing from a sample to another, as well as using 
Decontam to computationally remove environmental contaminants from our sequence data. However, there is 
still a possibility of cross-contamination, especially during PCR, when the neighboring wells are close together. 
In an ideal situation, samples would be positioned in the plate so that neighboring wells would be left empty to 
avoid the so-called splashome34. This approach is often not realistic for a large sample size due to the cost and 
time limitations. Third, the intrapartum antibiotic treatment and underlying medical conditions of mothers may 
have contributed to the differences found in meconium microbiome according to delivery modes.

We conclude that the placenta and amniotic fluid appeared to not harbor a unique microbiota. However, a 
distinct microbiota appears to be likely present in meconium, the first stool after birth formed in utero. Peri-
natal colonization appeared to play a role in the development of meconium microbiota since its composition 
depended on the delivery mode. Hypothetically, some bacterial DNA may have been transferred from mother 
to fetus in utero via extracellular vesicles, based on preliminary electron microscopy findings on meconium. 
This idea warrants further research.

Data availability
The raw sequences that support the findings of this study are available in sequence reads archives (SRA) with a 
BioProject accession number PRJNA691124.

Received: 18 May 2021; Accepted: 14 September 2021

Figure 7.   Electron microscopy figures of four different meconium samples. Two samples were from C-section 
delivery and two from vaginal delivery. Extracellular vesicles are visualized in all first-pass meconium samples 
both after vaginal delivery and C-section. (A,B) C-section delivery sample. (C,D) vaginal delivery sample. The 
size of the scale bar is 200 nm.
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