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Step detection and energy 
expenditure at different speeds 
by three accelerometers 
in a controlled environment
Ville Stenbäck1,2, Juhani Leppäluoto1, Nelli Leskelä1, Linda Viitala1, Erkki Vihriälä3, 
Dominique Gagnon1,4, Mikko Tulppo1 & Karl‑Heinz Herzig1,5*

Physical activity (PA) is one of the most efficient ways to prevent obesity and its associated 
diseases worldwide. In the USA, less than 10% of the adult population were able to meet the PA 
recommendations when accelerometers were used to assess PA habituation. Accelerometers 
significantly differ from each other in step recognition and do not reveal raw data. The aim of our 
study was to compare a novel accelerometer, Sartorio Xelometer, which enables to gather raw 
data, with existing accelerometers ActiGraph GT3X+ and activPAL in terms of step detection and 
energy expenditure estimation accuracy. 53 healthy subjects were divided into 2 cohorts (cohort 
1 optimization; cohort 2 validation) and wore 3 accelerometers and performed an exercise routine 
consisting of the following speeds: 1.5, 3, 4.5, 9 and 10.5 km/h (6 km/h for 2nd cohort included). 
Data from optimization cohort was used to optimize Sartorio step detection algorithm. Actual taken 
steps were recorded with a video camera and energy expenditure (EE) was measured. To observe 
the similarity between video and accelerometer step counts, paired samples t test and intraclass 
correlation were used separately for step counts in different speeds and for total counts as well as EE 
estimations. In speeds of 1.5, 3, 4.5, 6, 9 and 10.5 km/h mean absolute percentage error (MAPE) % 
were 8.1, 3.5, 4.3, 4.2, 3.1 and 7.8 for the Xelometer, respectively (after optimization). For ActiGraph 
GT3X+ the MAPE-% were 96.93 (87.4), 34.69 (23.1), 2.13 (2.3), 1.96 (2.6) and 2.99 (3.8), respectively 
and for activPAL 6.55 (5.6), 1.59 (0.6), 0.81 (1.1), 10.60 (10.3) and 15.76 (13.8), respectively. Significant 
intraclass correlations were observed with Xelometer estimates and actual steps in all speeds. 
Xelometer estimated the EE with a MAPE-% of 30.3, activPAL and ActiGraph GT3X+ with MAPE 
percentages of 20.5 and 24.3, respectively. The Xelometer is a valid device for assessing step counts at 
different gait speeds. MAPE is different at different speeds, which is of importance when assessing the 
PA in obese subjects and elderly. EE estimates of all three devices were found to be inaccurate when 
compared with indirect calorimetry.

Physical activity (PA) is one of the most efficient ways to prevent and treat obesity and its associated diseases 
worldwide. At least 26 chronic diseases can be influenced or prevented with sufficient PA including conditions 
ranging from depression, dementia to diabetes and hypertension1,2. WHO recommends 150 min of moderate-
intensity PA in a week or a combination of moderate and vigorous-intensity PA with additional health ben-
efits arising with increased exercise amounts3. This responds approximately 7000–10,000 daily steps4. Muscle-
strengthening activities should be done twice a week or more. The use of accelerometers enables to objectively 
assess the subjects’ PA behavior (volume and intensity), but the devices are not equal in their step-detection 
thresholds, sampling frequency and data processing5,6. In the USA, less than 10% of the adult population and 24% 
in Finland were able to meet the recommendations when accelerometers were used to assess PA habituation7,8. 
Healthy older adults (50 + years old) take 2000 to 9000 daily steps and special populations (older or diseased/
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disabled) 1200 to 8800 steps9. Previously, we have shown that most prediabetic subjects could not reach the 
PA recommendations and their activity was at a low-intensity level of below 2 METs (or 0.3–0.7 g, speed of 
2–3 km/h)10,11. For older subjects (65–84 years old), 8000–10,000 daily steps are associated with better metabolic 
health12. Chow and colleagues found that waist-worn accelerometers are significantly more accurate than wrist-
worn ones (error percentages 0.1 ± 4.2 and − 12.5 ± 19.2, respectively) in speeds of 5–12 km/h13. For wrist-worn 
devices, higher activity counts have been reported when accelerometer has been worn on dominant wrist vs. 
the non-dominant one14. Certain widely used accelerometers, such as the ActiGraph GT3X, tend to become 
more accurate in detecting steps with higher speeds of more than 4 km/h15. For hip-worn accelerometers, at 
the speed of 2.4 km/h, errors of 6.0–20% were observed e.g. for ActiGraph GT3X+. Pooled analysis of 9 cohort 
studies collected between 1986 and 2000 in 34,485 elderly people (> 65 years old) with a gait speed between 1.44 
to 5 km/h on average had an age-adjusted lower hazard ratio for death per 0.1-m/s higher gait speed16. Identify-
ing the overall PA across the gait spectrum and intensity with emphasis on slow walking speed is of significant 
importance for formulating relevant PA guidelines for overweight, elderly and special populations with case-
specific health outcomes.

In the existing accelerometers, the counting systems as intensity over time differ and no raw data are always 
available17. Uni- and triaxial equipment do not agree in all types of activity18. Furthermore, there are no standards 
towards step recognition, area under the curve, sampling frequency, signal filtering, length of the measurement 
or wearing site19, rendering the obtained results impossible to compare. Limitations in non-wear time detec-
tion are recognized as well20. Because of these severe limitations of the available accelerometers as black boxes, 
a waist-worn triaxial accelerometer was manufactured registering accelerations from slow walking to running 
and jumping.

The aim of this study was to compare this novel accelerometer, Sartorio Xelometer, with the two most com-
monly used accelerometers in scientific research (ActiGraph GT3X+, activPAL) for its accuracy at different 
locomotion speed and in EE estimation for its step detection.

Results
Step detection.  Three accelerometers were used to estimate the number of steps taken and each of them 
were individually compared with the counted steps in the video camera—recordings in the 5 different speeds 
(6 in cohort 2) to determine the accuracy of different methods (Table 1, 2). Two cohorts with similar anthro-
pometrics were measured. The data from the optimization cohort (cohort 1) were used to optimize the step 
detection algorithm and tested in cohort 2. The mean absolute percentage error (MAPE) percentages observed 
in steps detection resulted from the underestimation of step counts in all three devices. Bland–Altman plots were 
constructed to visualize the relationship between the mean and difference of actual and estimated steps in each 

Table 1.   35 healthy subjects (optimization cohort 1) participated in the study and performed a 20-min 
exercise routine with 3 walking (1.5, 3 and 4.5 km/h) and 2 running (9 and 10.5 km/h) speeds. Each speed was 
recorded for 4 min. The performance was recorded with a video camera and steps calculated afterwards for 
each speed. Mean absolute percentage error (MAPE) percentages, paired sample t test statistics and intraclass 
correlation (ICC) statistics with 95% CI presented for each device in each speed and for total sum of steps. 
*Shows statistical significance.

Speed (km/h) MAPE-% ± Std. dev.

Paired samples t test
95% Confidence interval of the 
difference

ICC

95% Confidence 
interval F test

Mean ± Std. dev. Lower Upper Sig. (2-tailed) Lower Upper Value Sig.

Sartorio

1.5 14.678 ± 14.93 − 10.182 ± 52.027 − 28.63 8.266 0.269 0.389 − 0.237 0.698 1.636 0.085

3 2.900 ± 3.05 5.545 ± 14.697 0.334 10.757 0.038* 0.910 0.817 0.955 11.08 0.000*

4.5 2.958 ± 1.734 6.303 ± 14.059 1.318 11.288 0.015* 0.811 0.685 0.896 5.285 0.000*

9 10.177 ± 9.340 66.545 ± 63.522 44.021 89.069 0.000* 0.846 0.688 0.924 6.481 0.000*

10.5 18.409 ± 10.645 128.563 ± 80.414 99.57 157.555 0.000* 0.177 − 0.788 0.564 1.133 0.363

Total 8.100 ± 5.930 194.576 ± 155.184 139.55 249.602 0.000* − 0.293 − 1.649 0.369 0.773 0.761

ActivPAL

1.5 6.550 ± 7.685 14.030 ± 21.708 6.333 21.727 0.001* 0.885 0.767 0.943 8.705 0.000*

3 1.587 ± 2.561 2.394 ± 10.377 − 1.286 6.073 0.194 0.953 0.904 0.977 21.076 0.000*

4.5 0.805 ± 1.483 2.152 ± 6.783 − 0.254 4.557 0.078 0.973 0.946 0.987 37.376 0.000*

9 10.603 ± 9.758 69.909 ± 68.533 45.608 94.21 0.000* − 1.389 − 3.836 − 0.18 0.419 0.992

10.5 15.755 ± 11.801 100.606 ± 99.704 65.253 135.959 0.000* 0.791 0.577 0.897 4.787 0.000*

Total 7.866 ± 5.543 190.818 ± 146.453 138.888 242.748 0.000* 0.567 0.123 0.786 2.309 0.010*

ActiGraph

1.5 96.931 ± 5.299 254.914 ± 30.099 244.574 265.253 0.000* 0.188 − 0.608 0.59 1.232 0.273

3 34.686 ± 17.185 129.257 ± 66.809 106.307 152.207 0.000* − 0.017 − 1.016 0.486 0.983 0.520

4.5 2.127 ± 3.029 8.4 ± 14.235 3.509 13.290 0.001* 0.877 0.756 0.938 8.12 0.000*

9 1.956 ± 4.957 1.485 ± 34.713 − 10.438 13.410 0.802 0.68 0.366 0.838 3.123 0.001*

10.5 2.989 ± 4.125 2.257 ± 37.344 − 10.571 15.085 0.723 0.975 0.951 0.988 40.495 0.000*

Total 16.694 ± 4.429 397.942 ± 110.348 360.036 435.848 0.000* 0.827 0.657 0.913 5.776 0.000*
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speed for the three devices (Supplementary Figures 1–3, 5–7)21. The exact means and 95% limits of agreement 
for the plots are presented in the Supplementary Tables 1 and 2. 

Optimization cohort 1.  The Sartorio Xelometer was more inaccurate in the very high running speeds 
(Table  1). In running speeds (9, 10.5  km/h) the MAPE percentages were 10.2 and 18.4, respectively with a 
significant difference with the recorded and counted steps. In walking speeds (1.5, 3 and 4.5 km/h) 14.7, 2.9 
and 3.0% of MAPE were observed with a significant difference between video camera-observations and accel-
erometer estimates in 3 and 4.5 km/h. The total steps taken estimated with Xelometer differed 8.1% on average 
with the counted steps. The mean difference in the Bland–Altman plot (Supplementary Figure 1) was 79.6 (95% 
CI lower: − 132.0, upper: 291.2) and the mean differences for the individual speeds ranged between − 10.2 and 
128.6 (95% CI lower: − 67.5 to 195.6, upper: 34.5 to 315.1) (Supplementary Table 1). R2 between the actual and 
device-estimated steps was 0.824 when considering all the different speeds individually (Fig. 1A). The intraclass 
correlations were significant in speeds between 3 and 9 km/h with good or excellent correlation coefficients 
(ICC > 0.75 and > 0.90, respectively).

The thigh-worn activPAL performed most accurately in the walking speeds of 1.5, 3 and 4.5 km/h speeds, 
with the MAPE percentages 6.6, 1.6 and 0.8, respectively (Table 1). In the walking speeds, a significant differ-
ence between the observed and estimated step counts was detected in 1.5 km/h speed but not with 3 or 4.5 km/h 
speeds (p = 0.001, 0.194 and 0.078, respectively). While running (9 and 10.5 km/h), MAPE percentages were 
10.6 and 15.8, respectively. Statistical differences between actual and meter-estimated steps were found in both 
running speeds. When all speeds evaluated together, MAPE percentage was 7.9 with a significant difference with 
the video recorded step counts. Regression analysis resulted in R2 of 0.836 when all speeds were individually 
considered (Fig. 1B). Statistically significant intraclass correlations were observed in all speeds except in 9 km/h. 
The mean difference in the Bland–Altman plot (Supplementary Figure 2) was 38.3 (95% CI lower: − 94.5, upper: 
171) for all speeds and during walking ranged between 2.4 and 14.0 (95% CI lower: − 2.9 to 28.5, upper: 22.7 
to 56.6) and between 69.9 and 100.6 (95% CI lower: − 94.8 and − 64.4, upper: 296.0 and 204.2) during running 
(Supplementary Table 1).

The ActiGraph GT3X+ performed well in higher exercise speeds (4.5, 9 and 10.5 km/h) with mean absolute 
error (MAPE) percentages of 2.1, 2.9 and 3.0, respectively. In the paired samples t test a significant difference 
between video-camera observed and ActiGraph-estimated steps was not observed in the running speeds (9 and 
10.5 km/h, p = 0.802 and 0.723, respectively). In walking speeds (1.5 and 3 km/h), the GT3X+ was less accurate 
with MAPE percentages of 96.9 and 34.7, respectively and a significant difference was observed in step counts 
between the methods (Table 1). There was a significant difference between the observation methods in the total 
steps taken during the 20-min period with MAPE percentage of 16.7. Significant intraclass correlations were 
observed in 4.5, 9, 10.5 km/h and total steps taken. The R2 for the regression between individual actual and 
estimated steps was 0.925 (Fig. 1C). For the Bland–Altman plot (Supplementary Figure 3) the mean difference 
for all speeds was 79.3 (95% CI lower: − 133, upper: 291.6). The differences for the individual speeds were high 
on the two lowest speeds (means: 254.9 and 129.3, 95% CI lower: 195.9 and 1.7, upper: 313.9 and 260.2), and 
lower for the three higher ones, between 2.3 and 14.2 (95% CI lower: − 19.5 to − 70.9, upper: 36.3 to 82.3) (Sup-
plementary Table 1).

EE estimates.  All three devices were used to assess EE (Table  2). The MAPE percentages for activPAL, 
ActiGraph and Sartorio were 20.5, 24.3 and 30.3, respectively. Significant differences were observed between 
the indirect calorimetry (IC) measured EE and accelerometer-estimated EE in all devices. None of the acceler-
ometers EE estimates correlated significantly with the IC measured EE. To assess the EE estimates more closely, 
we did a comparison between IC measured EE and Sartorio Xelometer-estimated EE as METs for each five 
speeds (Supplementary Figure 4, Supplementary Table 2). For walking (1.5, 3 and 4.5 km/h), the MAPE percent-
ages 63.0, 46.0 and 42.9, respectively (Table 3). For running (9 and 10.5 km/h), MAPE %’s were 29.4 and 18.4, 
respectively. The R2 between IC METs and accelerometer METs was 0.910 (Fig. 2). Significant differences were 
observed in all speeds between the accelerometer-estimated and IC EE. No significant intraclass correlations 
were found.

Validation cohort 2.  After the optimization of the Sartorio step detecting algorithm, a validation cohort 2 
was investigated (Table 4). At 1.5 km/h MAPE-% was 8.1 with a significant difference in step numbers between 

Table 2.   Energy expenditure (EE) estimates from three devices compared with indirect calorimetry (IC) in 
the optimization cohort 1. Mean absolute percentages error (MAPE) percentages, paired sample t test statistics 
and intraclass correlation (ICC) statistics with 95% CI presented for each device for total 20 min of testing. 
*Shows statistical significance.

MAPE-% ± Std. dev.

Paired samples t test 95% Confidence interval of the difference

ICC

95% Confidence 
interval F test

Mean ± Std. dev. Lower Upper Sig. (2-tailed) Lower Upper Value Sig.

Sartorio 30.324 ± 16.360 − 1.337 ± 0.678 − 1.590 − 1.084 0.000* 0.209 − 0.663 0.623 1.264 0.266

ActivPAL 20.545 ± 10.766 1.239 ± 1.134 0.827 1.655 0.000* 0.175 − 0.712 0.602 1.211 0.301

ActiGraph 24.319 ± 9.596 1.186 ± 0.680 0.917 1.455 0.000* 0.471 − 0.162 0.759 1.889 0.056
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the direct measurement and Xelometer-estimated steps (Table 5). At the additional walking speeds (3, 4.5 and 
6 km/h) the MAPE-%s were 3.5, 4.3 and 4.2, respectively. No significant differences between direct observation 
and estimated step counts were detected. At running speeds (9 and 10.5 km/h), the MAPE-%’s were 3 and 4.8, 
respectively. The MAPE-% for total 24-min step count was 2.7. At 10.5 km/h and total step counts, significant 
differences were observed between the direct observation and estimated steps. Significant intraclass correlations 
were detected in all speeds and the total step numbers, with correlation coefficients between 0.62 and 0.99. The 
R2 for the regression between the direct observation and estimated steps was 0.965 (Fig. 1D). In the Bland–Alt-
man plot (Supplementary Figure 5), the mean difference for all speeds was 73 (95% CI lower: − 33.2, upper: 
179.2). At the individual speeds, the mean differences ranged between 3.6 and 30.7 (95% CI lower: − 44.2 to 13.2, 
upper: 50.6 to 74.6) (Supplementary Table 3). 

In the validation cohort, the results for the activPAL and ActiGraph were similar to the optimization cohort 
(Fig. 1E,F). At 6 km/h, both devices had low MAPE-%s of 1.2 and 3.1, respectively and no significant differences 
between estimated and directly observed steps were found (Table 5). The R2’s of the regressions between direct 
observation and estimated steps were 0.88 and 0.86, respectively.

Figure 1.   The regression plots between different accelerometer detected steps and direct measurement. All 
five speeds have been plotted separately. (A–C) Optimization cohort 1. (D–F) Validation cohort 2. (A) Sartorio 
Xelometer R2 = 0.824. (B) activPAL R2 = 0.836. (C) ActiGraph GT3X+ R2 = 0.925. (D) Sartorio R2 = 0.965. (E) 
activPAL R2 = 0.881. (F) ActiGraph GT3X+ R2 = 0.925.
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Table 3.   Sartorio Xelometer MET-estimation in different speeds. 35 healthy subjects (optimization cohort 1) 
participated in the study and performed a 20-min exercise routine with 3 walking (1.5, 3 and 4.5 km/h) and 2 
running (9 and 10.5 km/h) speeds. Each speed was recorded for 4 min. The energy expenditure was recorded 
using indirect calorimetry and EE was calculated for each speed. IC calculated EE was compared with Sartorio 
Xelometer—estimated EE in MET. Mean absolute percentage error (MAPE) percentages, paired sample t test 
statistics and intraclass correlation (ICC) statistics with 95% CI presented for each device in each speed and for 
total sum of steps. *Shows statistical significance.

Speed (km/h) MAPE-% ± Std. dev.

Paired samples t test
95% Confidence interval of the 
difference

ICC

95% Confidence 
interval F test

Mean ± Std. dev. Lower Upper Sig. (2-tailed) Lower Upper Value Sig.

Sartorio

1.5 62.973 ± 31.479 − 1.004 ± 0.359 − 1.138 − 0.869 0.000* − 0.249 − 1.624 0.405 0.800 0.723

3 46.038 ± 23.020 − 1.042 ± 0.393 − 1.189 − 0.895 0.000* − 0.262 − 1.651 0.399 0.792 0.732

4.5 42.877 ± 24.560 − 1.260 ± 0.567 − 1.472 − 1.048 0.000* − 0.520 − 2.192 0.276 0.658 0.867

9 29.410 ± 15.911 − 2.012 ± 1.292 − 2.495 − 1.529 0.000* 0.380 − 0.303 0.704 1.612 0.102

10.5 18.484 ± 14.458 − 1.355 ± 1.431 − 1.899 − 0.810 0.000* 0.230 − 0.639 0.638 1.298 0.246

Total 30.325 ± 16.360 − 1.337 ± 0.678 − 1.590 − 1.084 0.000* 0.209 − 0.662 0.623 1.263 0.266

Figure 2.   The regression plot between indirect calorimetry MET and Sartorio Xelometer—estimated MET. All 
five speeds have been plotted separately. R2 = 0.910.

Table 4.   Study population characteristics (n = 54). BMI body mass index, SMM skeletal muscle mass.

Optimization cohort 1 Validation cohort 2

Sex 13 male, 22 female 12 male, 7 female

Age (years) 30.6 ± 9.2 33.5 ± 8.3

Height (cm) 172.5 ± 9.1 173.7 ± 9.9

Weight (kg) 68.5 ± 10.9 74.4 ± 13.0

BMI 23.0 ± 2.5 24.6 ± 3.24

SMM-% (impedance) 44.5 ± 5.1 43.4 ± 5.6

Fat-% (impedance) 22.9 ± 2.5 22.9 ± 9.0
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Discussion
We compared the novel Xelometer for step detection in a controlled environment at different speeds and com-
pared it to the two most commonly used accelerometers, ActiGraph GT3X+ and activPAL. Since the step detec-
tion of Sartorio Xelometer was found to be inaccurate in slow walking (1.5 km/h) and running speeds (9, 
10.5 km/h), we decided to optimize the algorithm with machine learning by using the data from the optimization 
cohort 1 and to test the optimized algorithm in the validation cohort 2. The protocol in optimization cohort 1 
included walking (1.5, 3 and 4.5 km/h or 25, 50 and 75 m/min) and running (9 and 10.5 km/h or 150 and 175 m/
min). In addition, the speed of 6 km/h (or 100 m/min) was included in the protocol of the validation cohort 
2. Our special interest was on slow walking speeds (1.5 and 3 km/h) since in the elderly and obese population 
these are the most frequent walking speeds. The optimization of the Sartorio step detection algorithm improved 
the accuracy on slow walking speed (1.5 km/h) and while running (9 and 10.5 km/h). There was reduction of 
the correlation coefficients in speeds of 1.5–4.5 km/h but the correlations became significant. All three accel-
erometers had their optimal speed range and the accuracy varied between devices. After optimizing the step 
detection algorithm, the Xelometer had the best overall performance in the validation cohort 2 with the total 
count MAPE percentage of 2.7, compared to ActiGraphs and activPALs 14.1 and 5.6, respectively. The most 
accurately Xelometer performed at speeds of 3 and 9 km/h. In walking speeds, activPAL was the most accurate 
device before Sartorio, while ActiGraph GT3X+ did not detect most of the steps. At running speed, the ActiGraph 
GTX3+ performed the most accurately before Sartorio and activPAL. The intraclass correlations support these 
findings showing good and significant (> 0.75) or excellent (> 0.90) correlation coefficients for activPAL in all 
speeds except 10.5 km/h, ActiGraph GTX3+ while running and walking at or over 4.5 km/. For the optimized 
Sartorio Xelerometer, the correlations were significant in all speeds with good or excellent correlations for the 
overall step number and in speeds of 4.5–10.5 km/h. Importantly, the Xelometer’s performance was the most 
stable throughout the protocol with all MAPE-%’s 3.1–4.3, except the 8.1 for 1.5 km/h.

The MAPE%s observed in this study for activPAL and GT3X+ are similar for those published by Feito and 
colleagues in 2012, where they showed that activPAL error-% are low in speeds of 2.4–5.6 km/h, while GT3X+ 
becomes accurate in detecting steps with speeds higher than 4 km/h (67 m/min) and significantly underestimates 
the step counts at lower speeds15. At a speed of 3.2 km/h, a 40% error has been reported for the GT3X+, which 
then diminishes with increasing speed22. We did not use ActiGraph’s low frequency extension, since discrepancies 
have been reported while applying it in overall step detection in free-living conditions23,24. Our findings are also 
in line with Ryan and colleagues, who showed accurate step detection for activPAL in speeds between 3.24 and 
6.4 km/h25. When selecting a suitable method for PA measurement, the properties of the accelerometers should 

Table 5.   19 healthy subjects (validation cohort 2) participated in the study and performed a 24-min exercise 
routine with 4 walking (1.5, 3, 4.5 and 6 km/h) and 2 running (9 and 10.5 km/h) speeds. Each speed was 
recorded for 4 min. The performance was recorded with a video camera and steps calculated afterwards for 
each speed. Mean absolute percentage error (MAPE) percentages, paired sample t test statistics and intraclass 
correlation (ICC) statistics with 95% CI presented for each device in each speed and for total sum of steps. 
*Shows statistical significance.

Speed (km/h) MAPE-% ± Std. dev.

Paired samples t test
95% Confidence interval of the 
difference

ICC

95% Confidence 
interval F test

Mean ± Std. dev. Lower Upper Sig. (2-tailed) Lower Upper Value Sig.

Sartorio

1.5 8.101 ± 6.538 19.588 ± 26.884 5.766 33.411 0.008* 0.619 − 0.052 0.862 2.624 0.031*

3 3.482 ± 4.697 3.588 ± 25.115 − 9.325 16.501 0.564 0.624 − 0.039 0.864 2.656 0.029*

4.5 4.343 ± 3.638 7.529 ± 25.666 − 5.667 20.726 0.244 0.742 0.287 0.907 3.873 0.005*

6 4.184 ± 3.073 6.176 ± 25.606 − 6.989 19.342 0.335 0.917 0.772 0.970 12.104 0.000*

9 3.060 ± 3.445 10.824 ± 20.926 0.064 21.582 0.049 0.981 0.948 0.993 53.292 0.000*

10.5 4.790 ± 3.079 30.714 ± 23.233 17.300 44.128 0.000* 0.781 0.317 0.930 4.561 0.005*

Total 2.742 ± 1.837 73.000 ± 55.861 44.279 101.721 0.000* 0.990 0.972 0.996 97.507 0.000*

ActivPAL

1.5 5.642 ± 5.993 13.111 ± 18.917 3.704 22.519 0.009* 0.919 0.783 0.970 12.318 0.000*

3 0.588 ± 0.959 − 0.833 ± 4.148 − 2.896 1.229 0.406 0.994 0.983 0.997 160.586 0.000*

4.5 1.121 ± 2.360 3.333 ± 12.852 − 3.058 9.725 0.286 0.936 0.829 0.976 15.621 0.000*

6 1.163 ± 1.885 2.667 ± 13.771 − 4.182 9.515 0.423 0.969 0.917 0.988 32.117 0.000*

9 10.270 ± 6.559 63.557 ± 46.902 40.232 86.879 0.000* 0.866 0.641 0.949 7.450 0.000*

10.5 13.790 ± 10.419 93.867 ± 77.936 50.707 137.026 0.000* − 3.500 − 12.404 − 0.510 0.222 0.996

Total 5.619 ± 3.870 160.056 ± 122.323 99.226 220.886 0.000* 0.935 0.826 0.975 15.393 0.000*

ActiGraph

1.5 87.397 ± 16.668 246.389 ± 53.910 219.58 273.198 0.000* 0.297 − 0.880 0.736 1.421 0.237

3 23.071 ± 16.909 87.000 ± 71.296 51.545 122.455 0.000* − 0.311 − 2.504 0.509 0.762 0.708

4.5 2.332 ± 4.597 9.278 ± 24.190 − 2.752 21.307 0.122 0.718 0.246 0.894 3.544 0.006*

6 3.112 ± 7.410 11.833 ± 39.825 − 7.971 31.638 0.224 0.813 0.500 0.930 5.346 0.000*

9 2.560 ± 5.959 13.611 ± 42.264 − 7.406 34.629 0.190 0.910 0.759 0.966 11.100 0.000*

10.5 3.750 ± 7.813 20.067 ± 61.969 − 14.251 54.384 0.230 − 0.604 − 3.777 0.461 0.623 0.806

Total 14.121 ± 6.290 384.833 ± 164.711 302.924 466.742 0.000* 0.920 0.785 0.969 12.462 0.000*
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be considered. If the main interest is in studying older or more sedentary populations, a device more accurate 
at the lower spectrum of locomotion would be needed.

Based on these results, the Xelometer’s step detection is a valid method to observe subject’s PA volume. In 
comparison with the two commonly used and validated accelerometers ActiGraph GT3X+ and activPAL, the 
Xelometer performed equally throughout the protocol (MAPE% 2.7, ICC 0.99) and thus suitable specially to 
observe the PA level.

All devices performed poorly estimating EE. activPAL estimated the EE closest with a MAPE of 20.5.2%, 
while Sartorio Xelometer and ActiGraph GT3X+ showed more inaccurate estimations with MAPE percentages 
of 30.3 and 24.3, respectively. Standard deviations of 9.6–16.4% support the inaccuracy statement. Moreover, 
ICCs showed no significant correlations with IC measurements in any of the three devices. Calculations of 
Sartorio Xelometer’s individual EE estimates for each speed showed higher inaccuracies on lower speeds with 
enhanced accuracy with higher speeds. Both activPAL and ActiGraph GT3X+ underestimated the EE, while 
an overestimation was observed for Sartorio Xelometer EE. Our error percentages are similar of those reported 
by Calabró and colleagues with an underestimation of 22.2% and 25.5% for activPAL and ActiGraph GT3X+, 
respectively26. Similar error percentages for ActiGraph GT3X+ but not for activPAL were reported (21.2 and 
9.3, respectively) by Alberto and colleagues in light-intensity PA27. These results suggest that accelerometer EE 
estimates are inaccurate and their use in research should be carefully considered.

In our study we need to consider limitations. Our subjects were healthy volunteers with a BMI less than 27 
(Optimization cohort 1 23.0 ± 2.5, Validation cohort 2 24.6 ± 3.24). The results observed in this population may 
not be translatable to a cohort with different anthropometrics and PA capabilities. We also examined the func-
tion of the devices in a controlled environment. The strengths of this study include video camera—recorded true 
steps, both sexes as subjects and the use of two already validated accelerometers.

Materials and methods
We recruited healthy 54 subjects amongst the students and faculty members of University of Oulu and other 
City of Oulu institutions (Table 4). The subjects were divided into two cohorts (35 subjects for the optimization 
cohort 1 and 19 subjects for the validation cohort 2) based on the order of their sign-up. Validation cohort 2 was 
recruited after the analysis of optimization cohort 1. The study was approved by the ethical committee of the 
Northern Ostrobothnia Hospital District and was executed in line with the National legislation, guidelines and 
the Declaration of Helsinki. Written informed consent was given by subjects in accordance with the Declaration 
of Helsinki.

Subjects in the optimization cohort (n = 35) were asked to fast and retain from strenuous exercise, coffee and 
nicotine at least 14 h before the study visit. Height and weight were measured in centimeters with one decimal 
accuracy. BMI was calculated as weight (kg) per height (m) squared. Body composition was determined using 
bioimpedance with InBody 720. Oxygen uptake and carbon dioxide production were recorded by indirect calo-
rimetry (IC) using Medikro model 909 Ergospirometer28–30. The device was calibrated before every subject for 
volume and gas concentrations. For gas calibration a mixture of oxygen (15%), carbon dioxide (5%) and nitrogen 
(80%) was used. The subjects had an overnight fast. Resting metabolic rate (RMR) was recorded in a supine 
position until the levels plateaued at least for 10 min. Last 5 min of the measurement were used to calculate 
basal metabolic rate (RMR). Respiratory exchange ratio (RER) was monitored to stay within 0.7 and 0.99 during 
the RMR measurement. Metabolic rate was calculated using the Weir equation: metabolic rate (kcal/day) = 1.44 
(3.94 VO2 + 1.11 VCO2). Since RMR was measured in a supine position and not while sitting, a conversion fac-
tor of 7% was used to correct RMR values for postural effect according to Newton et al.31. Corrected RMR was 
used as a level of 1 metabolic equivalent (MET) for further IC analysis for calculating the reference values for 
accelerometer estimates.

After the baseline measurements subjects were asked to perform an exercise routine of 20 min on a treadmill 
(OJK 2, Telineyhtymä, Kotka, Finland), which consisted of five 4-min walking and running periods. The speeds 
were 1.5, 3, 4.5, 9 and 10.5 km/h, respectively. The lower speeds were chosen to correspond the walking speeds 
in daily behavior of older and diseased subjects. People over 60-years move at a speed of 4.2 km/h on average 
and prediabetics subjects have been shown to move mainly on speeds between 2–3 km/h10,32. The acceleration 
to the next speed took 5–10 s and was included in the beginning of each 4-min period. A video camera was set 
up and recorded the subject’s moving feet during the exercise. These videos were used to calculate the actual 
step counts. Two persons counted the steps from the video33. This method of direct observation was chosen to 
reduce observational error. Oxygen consumption and carbon dioxide production were monitored throughout 
the exercise protocol to calculate the PA energy expenditure. The total EE for the 20-min protocol was calculated 
by assessing the EE with Weir equation for every minute and adding them together.

Subjects wore three different accelerometers on their body during the exercise. ActiGraph GT3X+ and Sar-
torio Xelometer were worn on elastic belt on the hip on the right side of the body. Sartorio Xelometer (Supple-
mentary Figure 4) is a novel tri-axial accelerometer with a raw acceleration data output (g) with a ± 8 g range, 
0.0156 g resolution, 100 Hz sampling rate and a battery life of 21 consecutive days of measurement. No data 
processing takes place within the device and all data processing is done in MATLAB R2019a software. ActivPAL 
was worn on the left thigh. Manufacturer’s software was used to set up the device and determine step counts 
and EE estimates. For the EE estimation, activPAL uses the following equation: MET × h−1 = (1.4 × d) + (4–14) × 
(c/120) × d, where c = cadence (steps per minute) and d = activity duration (in hours)34. ActiGraph GT3X+ data 
was extracted with ActiLife v6.13.4 and step counts were determined using 1 s epochs and 100 Hz sampling rate 
to accurately define the counts for different speeds. For energy expenditure (METs), Freedson Adult (1998) cut 
points were used within the software (equation: MET Rate = 1.439008 + (0.000795 × CPM) where CPM = Counts 
per Minute)35. For activPAL, PALconnect v8.10.8.76 was used to set up the devices and extract the data and 
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PALanalysis v8.11.2.54 to analyze the step counts and EE estimates (METhrs). MET-hours from activPAL were 
transformed into METs for comparisons. Only total EE for the recordings are available from ActiGraph’s ActiLife 
and activPAL’s s software, thus preventing comparison on 4-min interval level with the IC. Sartorio Xelometer 
data was extracted using Sartorio v18 software and detection algorithms provided by the manufacturer were run 
on MATLAB R2019a for step counts, step intensities and EE estimates (MET). The step detection algorithm cre-
ates a 3d-vector based on the recordings from the three axes (Fig. 3). When 3d-vector signal exceeds the certain 
threshold, this exceeding area is analyzed based on the peak amplitude, rising and declining time. The presented 
data have not been used in the development in the Sartorio step detection algorithm 1 or EE estimation algorithm 
or the software. The EE estimation algorithm for the Xelometer is based on the signal vector and results of Vähä-
Ypyä et al.36, following the equation: VO2 = 7.920–0.0331*MAD (mg). MAD (mean amplitude deviation) was 
calculated with the following equation: MAD = 1

N

∑j+N−1

i=j |ri − Rave|, where N is the number of samples in the 
epoch, j is the start of the epoch and Rave is the mean resultant value. The conversion of VO2 from the Sartorio 
EE estimation equation to MET was done using the standard conversion factor (1 MET = 3.5 ml*kg−1*min−1). 
Data from the optimization cohort 1 were used to optimize the Sartorio Xelometer step detection algorithm. 
The step detection program was developed using a machine learning algorithm. The algorithm applied super-
vised learning and used the optimization cohort 1 data as the training data. The data included exact step counts 
obtained by the video analysis with four different walking/running speeds and a recorded 3d acceleration signal. 
These speeds were 1.5, 3, 9 and 10.5 km/h, respectively. The algorithm was developed using MathWorks Matlab 
R2019a. The machine learning algorithm applied following parameters related to the norm of the 3d acceleration 
signal: (I.) a threshold value for the 3d acceleration (the acceleration value needs be higher than the threshold 
to be accepted as the starting point of an acceleration peak to be analyzed). (II.) The maximum value of the 3d 
acceleration peak. (III.) The slope of the 3d acceleration peak. (IV.) The area of the 3d acceleration peak. (V.) The 
time difference between consecutive 3d acceleration peaks. The algorithm tested different threshold values for 
the given parameters. If the accelerations were acting in the predetermined ways (for example, an acceleration 
value should be higher than the corresponding threshold, the time difference shorter than the corresponding 
threshold etc.) related to the tested parameters they were accepted as step counts and the relative error compar-
ing to the results obtained by the video analysis were calculated. Those parameter values that yielded the lowest 
relative errors were chosen to the final step count program (Supplementary Table 4).

Subjects in the validation cohort 2 (n = 19) completed a similar set of measurements with following excep-
tions. RMR and energy consumption were not measured since the optimization of the algorithm does not affect 
the EE estimation. The brisk walking speed of 6 km/h was added into the protocol.

MAPE percentages were calculated in all speeds between the actual (video) and accelerometer-estimated step 
counts with the following equation: M% =

(

1
n

∑n
t=1

∣

∣

∣

At−Ft
At

∣

∣

∣

)

× 100.

Figure 3.   Example of Sartorio Xelometer data. Raw data recording of one subject with different speeds marked 
with dashed lines. x, y and z-axis recordings separately and a 3d-vector composed of the triaxial data. Further 
calculations are conducted using the 3d-vector.
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MAPE percentages of over 5 were considered as relevant disagreement15,37. For EE estimates only total EE 
for 20 min was used in the assessment. Data from the accelerometers and IC were transformed into METs for 
comparisons. To observe the similarity between video and accelerometer step counts, paired samples t test, linear 
regression and intraclass correlation were calculated and Bland–Altman plots drawn for step counts in different 
speeds. All statistical analysis was done, and figures generated using IBM SPSS Statistics version 26. P-values 
less than 0.05 were considered statistically significant. ICC over 0.90 was considered excellent, 0.75–0.90 good, 
0.75–0.60 moderate and less than 0.60 as low. Results in the Tables 4 and 5 are represented as mean ± standard 
deviation.

Conclusions
The Xelometer is a valid device for assessing step counts at different gait speeds. Its accuracy is comparable to 
widely used activPAL and different than ActiGraph GT3X+. The EE estimates of all three devices were inaccurate 
when compared with indirect calorimetry.
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