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Dense cellular segmentation 
for EM using 2D–3D neural network 
ensembles
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Irina D. Pokrovskaya3, Brian Storrie3 & Richard D. Leapman1

Biologists who use electron microscopy (EM) images to build nanoscale 3D models of whole cells and 
their organelles have historically been limited to small numbers of cells and cellular features due to 
constraints in imaging and analysis. This has been a major factor limiting insight into the complex 
variability of cellular environments. Modern EM can produce gigavoxel image volumes containing 
large numbers of cells, but accurate manual segmentation of image features is slow and limits the 
creation of cell models. Segmentation algorithms based on convolutional neural networks can process 
large volumes quickly, but achieving EM task accuracy goals often challenges current techniques. 
Here, we define dense cellular segmentation as a multiclass semantic segmentation task for modeling 
cells and large numbers of their organelles, and give an example in human blood platelets. We 
present an algorithm using novel hybrid 2D–3D segmentation networks to produce dense cellular 
segmentations with accuracy levels that outperform baseline methods and approach those of human 
annotators. To our knowledge, this work represents the first published approach to automating the 
creation of cell models with this level of structural detail.

Biomedical researchers use electron microscopy (EM) to image cells, organelles, and their constituents at the 
nanoscale. Today, the resulting image volumes can be gigavoxels in size or more, using hardware including 
the serial block-face scanning electron microscope (SBF-SEM)1, which employs automated serial sectioning 
techniques on block samples. This rapid growth in throughput challenges traditional image analytic workflows for 
EM, which rely on trained humans to identify salient image features. High-throughput EM offers to revolutionize 
structural biology by providing nanoscale structural detail across macroscopic tissue regions, but using these 
datasets in their entirety will be infeasibly time-consuming until analytic bottlenecks are addressed.

This paper develops the dense cellular segmentation method, a semantic segmentation task which classifies 
each voxel in an image into categories from a detailed schema of cellular and subcellular structures. Cell biologists 
have used similar segmentations of cellular structures to provide rich 3D ultrastructural models yielding new 
insights into cellular processes2,3, but applying this method across entire SBF-SEM datasets requires automation. 
Modeling 30 platelet cells across 3 physical platelet samples2 required nine months’ work from two in-lab 
annotators and represented a small fraction of all imaged cells.

It is challenging to automate dense segmentation tasks for EM due to the image complexity of biological 
structures at the nanoscale. An image with little noise and high contrast between features may be accurately 
segmented with simple thresholding methods, while accurate segmentation of images with multiscale 
features, noise, and textural content remains an open problem for many biomedical applications. Solving such 
segmentation problems algorithmically is one of many tasks in applied computer vision that has received 
increased interest in the past decade, as advances in deep neural network construction and training have driven 
significant computer vision performance improvements. Natural image-based applications of image segmentation 
have received enormous attention, with major companies and research institutions creating sophisticated trained 
neural networks in the pursuit of solutions to problems of economic importance4–8.

Work in biomedical imaging has been comparatively modest, but there nevertheless are thriving research 
communities working on problems in medical computed tomography (CT)9,10 and microscopy. A seminal 
contribution from this area was the U-Net11, which spawned numerous encoder-decoder variants demonstrating 
architectural improvements12,13 and helped popularize the encoder-decoder motif for segmentation problems 
in biomedical imaging. An important difference between biomedical and natural imaging is the ubiquity of 
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volumetric imaging methods, including the SBF-SEM studied in this paper. These methods have spurred 
developments in volumetric segmentation, including 2D techniques applied to orthogonal slices of a 3D 
volume14, fully-3D segmentation15–19, as well as hybrid architectures that incorporate both 2D and 3D spatial 
processing17,20,21. Here, we have adapted existing 2D DeeplabV36, 3D DeepVess19, and 2D and 3D U-Net 
architectures to our segmentation task as a baseline for our new results.

We find that for our application, hybrid 2D–3D networks work best. Building on previous work in this 
direction, we introduce a new 3D biomedical segmentation algorithm based on ensembles of neural networks 
with separated 2D and 3D convolutional modules and output heads. We show that our algorithm outperforms 
baselines in intersection-over-union (IoU) metrics, does a better job of maintaining boundaries between 
adjacent cellular structures, approaches the image quality of our human annotators, and closely matches human 
performance on a downstream biological analysis task. We use the algorithm to segment a billion-voxel block 
sample in an hour on a single NVIDIA GTX 1080 GPU, demonstrating a segmentation capability that is infeasible 
without automation and is accessible to commodity computing tools.

Methods
SBF-SEM image volumes were obtained from identically-prepared platelet samples from two humans. Lab 
members manually segmented portions of each volume into seven classes to analyze the structure of the 
platelets. The labels were used for the supervised training of candidate network architectures, as well as baseline 
comparisons. We trained multiple instances of candidate architectures, each with different random initializations. 
The best-performing instances were ensembled together to produce the final segmentation algorithms used in 
this paper.

Data collection.  This study used datasets prepared from two human platelet samples as part of a 
collaborative effort between the National Institute of Biomedical Imaging and Bioengineering (NIBIB), NIH 
and the University of Arkansas for Medical Sciences. All human blood draws were approved by the University 
of Arkansas for Medical Sciences’ Institutional Review Board in accordance with national and international 
guidelines. All donors were informed of possible risks and signed an informed consent form. The platelet 
samples were imaged using a Zeiss Sigma 3View SBF-SEM. The Subject 1 dataset is a (z, y, x) 250× 2000× 2000 
voxel image with a lateral resolution in the y − x plane of 10 nm and an axial resolution along the z-axis of 50 nm , 
from a sample volume with dimensions 12.5× 20× 20µm3 . The Subject 2 dataset is a 239× 2000× 2000 voxel 
image produced by the same imaging protocol with the same lateral and axial resolutions.

We assembled labeled datasets from manually-segmented regions of the platelet image volumes. Lab members 
created tool-assisted manual segmentations using Amira22. Ground-truth labels for the training, evaluation, and 
test datasets were repeatedly reviewed by subject experts and corrected until accuracy standards were met, a 
slow feedback process that is necessary to produce high-quality labels. The Annotator 1 and Annotator 2 labels 
were created in a single pass by lab members without going through a review process from subject experts. As 
a result, the Annotator 1 and Annotator 2 labels are less accurate, but also much faster to produce. We use the 
high-quality ground-truth labels to train and validate all networks in this paper, but also compare algorithms 
against the unreviewed Annotator 1 and 2 labels as an additional measure of performance.

The training image was a 50× 800× 800 subvolume of the Subject 1 dataset spanning the region 81 ≤ z ≤ 130 , 
1073 ≤ y ≤ 1872 , 620 ≤ x ≤ 1419 in 0-indexed notation. The evaluation image was a 24× 800× 800 subvolume 
of the Subject 1 dataset spanning the region 100 ≤ z ≤ 123 , 200 ≤ y ≤ 999 , 620 ≤ x ≤ 1419 . The test image 
was a 121× 609× 400 subvolume of the Subject 2 dataset spanning the region 0 ≤ z ≤ 120 , 460 ≤ y ≤ 1068 , 
308 ≤ x ≤ 707 . The annotator comparison image was a 110× 602× 509 subvolume of the Subject 2 dataset 
spanning the region 116 ≤ z ≤ 225 , 638 ≤ y ≤ 1239 , 966 ≤ x ≤ 1474 . The training and evaluation labels 
covered the entirety of their respective images, while the test and annotator comparison labels covered a single 
cell contained within their image volumes. The labeling schema divides image content into seven classes: 
background (0), cell (1), mitochondrion (2), canalicular channel (3), alpha granule 
(4), dense granule (5), and dense granule core (6). Voxels labeled as the cell class include 
cytoplasm as well as organelles not accounted for in the labeling schema. Figure 1 shows sample images of the 
datasets and ground truth labels.

Neural architectures and ensembling.  The Subject 1 and Subject 2 datasets were binned by 2 in x and y, 
and aligned. For each of the training, evaluation, and testing procedures, the respective image subvolumes were 
normalized to have mean 0 and standard deviation 1 before further processing.

The highest-performing network architecture in this paper, 2D–3D + 3 × 3 × 3, is a composition of a 2D 
U-net-style encoder-decoder and 3D convolutional spatial pyramid, with additional 3 × 3 × 3 convolutions at the 
beginning of convolution blocks in the 2D encoder-decoder. All convolutions are zero-padded to preserve array 
shape throughout the network, allowing deep architectures to operate on data windows with small z-dimension. 
A ReLU activation follows each convolution. All convolution and transposed convolutions use bias terms. The 
architecture is fully specified as a diagram in Fig. 2. Additionally, several baseline comparison networks and 
three 2D–3D + 3 × 3 × 3 ablation networks were also tested in this paper and are described in the Validation 
and Performance Metrics section.

To build a 2D–3D network, one can adapt a 2D U-net-style encoder-decoder module to work on 3D data by 
recasting 2D 3 × 3 convolutions as 1 × 3 × 3 convolutions, and 2D 2 × 2 max-pooling and transposed convolution 
layers as 1 × 2 × 2 equivalents. In this way, a 3D input volume can be processed in a single computation graph as 
a sequence of independent 2D regions in a 2D module and as a contiguous 3D region in a 3D module, and the 
2D and 3D modules can be jointly trained end-to-end. This formulation also allows for seamless combination 
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of batched-2D and 3D operations within a module, demonstrated in the 2D–3D + 3 × 3 × 3 architecture as 2D 
convolution block-initial 3 × 3 × 3 convolutions. Intermediate 2D class predictions x̂2D are formed from the 
2D module output, and the 2D output and class predictions are concatenated along the feature axis to form 
an input to a 3D spatial pyramid module. The 3D module applies a 1 × 2 × 2 max pool to its input to form a 
two-level spatial pyramid with scales 0 (input) and 1 (pooled). The pyramid elements separately pass through 
3D convolution blocks, and the scale 1 block output is upsampled and added to the scale 0 block output with a 
residual connection to form the module output. 3D class predictions x̂3D are formed from the 3D module output, 
and the final segmentation output ℓ̂ of the algorithm is a voxelwise argmax of the 3D class predictions. To build a 
2D–3D + 3 × 3 × 3 network, we inserted 3 × 3 × 3 convolution layers at the beginning of the first two convolution 
blocks in the 2D encoder and the last two convolution blocks in the 2D decoder.

Given a collection of networks’ 3D class predictions, one can form an ensemble prediction by computing 
a voxelwise average of the predictions and computing a segmentation from that. Ensembling high-quality but 
non-identical predictions can produce better predictions23, and there is reason to think that more sophisticated 
ensembles could be constructed from collections of diverse neural architectures24, but in this paper we use a 
simple source of differing predictions to boost performance: ensembles of identical architectures trained from 
different random initializations. The sources of randomness in the training procedure are examined more 

Figure 1.   Dataset visualization. Sample y − x orthoslices of the datasets used in this study. (a, b) One of the 50 
training image data and label orthoslices. (c, d) One of the 24 evaluation image data and label orthoslices. (e, f) 
One of the 121 test image data and label orthoslices. (g, h) One of the 110 annotator comparison (AC) image 
data and label orthoslices.
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Figure 2.   Methods. (a) Diagram of the 2D–3D + 3 × 3 × 3 network architecture, the best design tested in this 
paper. A 1-channel 3D image is passed through the network to produce a 7-channel output prediction of per-
voxel probability distributions over the 7 label classes. Boxes represent multidimensional arrays, and arrows 
represent operations between them. Number triplets along box tops are array spatial axis sizes in (z, y, x) order. 
Numbers along box sides are array channel axis sizes. (b) Illustration of initialization-dependent performance 
of trained segmentation networks, and exploiting it for ensembling. An image of the test cell and ground truth 
labels are compared with segmentations of the best 4 trained 2D–3D + 3 × 3 × 3 network instances and an 
ensemble formed from them. The ensemble improves MIoU

(org) by 7.1% over the best single network.
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thoroughly in the Validation and Performance Metrics section, but in our experiments this variation produced 
a small number of high-performing network instances per architecture with partially-uncorrelated errors.

Network training.  We consider a network predicting 7 classes C = {0, . . . , 6} for each voxel in a shape-
(oz , ox , oy) data window � containing N = ozoxoy voxels {vi}Ni=1 . The ground-truth segmentation of this region 
is a shape-(oz , ox , oy) array ℓ such that ℓ(v) ∈ C is the ground-truth label for voxel v. A network output prediction 
is a shape-(7, oz , ox , oy) array x̂ such that xv � x̂(:, v) is a probability distribution over possible class labels for 
voxel v. The corresponding segmentation ℓ̂ is the per-voxel argmax of x̂ . Inversely, from ℓ one may construct a 
shape-(7, oz , ox , oy) per-voxel probability distribution x such that xv(i) = 1 if i = ℓ(v) and 0 if not, which is useful 
during training. All networks used a minibatch size of 1, so the minibatch axis is omitted from each of the array 
shape descriptions in this paper. Array shapes are given in (C, Z, Y, X) order, where C is the array size along the 
channel axis.

We trained our networks as a series of experiments, with each experiment training and evaluating 1 or more 
instances of a fixed network architecture. Instances within an experiment varied only in the random number 
generator (RNG) seed used to control trainable variable initialization and training data presentation order. In 
addition to the main 2D–3D + 3 × 3 × 3 architecture, there were three ablation experiments - No 3 × 3 × 3 Convs, 
No Multi-Loss, No 3D Pyramid - and five baseline experiments - Original U-Net, 3D U-Net Thin, 3D U-Net 
Thick, Deeplab + DRN, and Deeplab + ResNet101. Instances were trained and ranked by evaluation dataset 
MIoU. Experiments tracked evaluation MIoU for each instance at each evaluation point throughout training, and 
saved the final weight checkpoint as well as the checkpoint with highest evaluation MIoU. In this work we report 
evaluation MIoU checkpoints for each instance. The 2D–3D + 3 × 3 × 3 experiment and its ablations trained 26 
instances for 40 epochs with minibatch size 1 (33k steps). The Original U-Net experiment trained 500 instances 
for 100 epochs with minibatch size 1 (180k steps). The 3D U-Net Thin experiment trained 26 instances for 100 
epochs with minibatch size 1 (29k steps), and the 3D U-Net Thick experiment trained 26 instances for 100 epochs 
with minibatch size 1 (30k steps). The Deeplab + DRN and Deeplab + ResNet101 experiments trained 1 instance 
each for 200 epochs with minibatch size 4 (360k steps). Due to poor performance and slow training times of the 
Deeplab models, we deemed it unnecessary to train further instances. Networks were trained on NVIDIA GTX 
1080 and NVIDIA Tesla P100 GPUs.

This subsection details the training of the 2D–3D + 3 × 3 × 3 network. Baseline and ablation networks were 
trained identically except as noted in Validation and Performance Metrics. All trainable variables were initialized 
from Xavier uniform distributions. Each instance was trained for 40 epochs on shape-(1, 5, 300, 300) windows 
extracted from the training volume, and output a shape-(7, 5, 296, 296) class prediction array. The number of win-
dows in each epoch was determined by a window spacing parameter which determined the distance along each 
axis between the top-back-left corners of each window, here (2, 100, 100), resulting in 828 windows per epoch. 
An early stopping criterion halted the training of any network that failed to reach an MIoU of 0.3 after 10 epochs.

Networks were trained using a regularized, weighted sum of cross-entropy functions. The network has a set 
� trainable variables divided into four subsets: �2D for variables in the 2D encoder-decoder module, �3D for 
variables in the 3D spatial pyramid module, the single 1 × 1 × 1 convolution variable {θ2DP} which produces 
intermediate 2D class predictions x̂2D from the encoder-decoder’s 64 output features, and the single 1 × 1 × 1 
convolution variable {θ3DP} which produces the final 3D class predictions x̂3D from the spatial pyramid’s 64 output 
features. The loss function comparing predictions against ground-truth labels is

where �2D = 1× 10−4.7 and �3D = 1× 10−5 are L2 regularization hyperparameters for the variables in �2D 
and �3D , �P = 1× 10−9 is an L2 regularization hyperparameter for the predictor variables θ2DP and θ3DP , and 
c2D = 0.33 is a constant that weights the importance of the intermediate 2D class predictions in the loss function. 
H(x, x̂) is the voxelwise cross-entropy function, i.e.,

W is a shape-(5, 296, 296) array of weights; its Kronecker product with H produces a relative weighting of the 
cross-entropy error per voxel. This weighting strategy is based generally on the approach in Ronneberger et al.11:

The initial w = 0.01 is a constant that sets a floor for the minimum weight value, Wcb is a class-balancing 
term such that Wcb,i ∝ 1/Ni , where Ni is the number of occurrences in the training data of ℓi , rescaled so that 
maxWcb = 1 . Wep is an edge-preserving term that upweights voxels near boundaries between image objects and 
within small 2D cross-sections. In Ronneberger et al.11 this is computed using morphological operations. We 
used a sum of scaled, thresholded diffusion operations to approximate this strategy in a manner that requires 
no morphological information. Wep is built up as a rectified sum of four terms:
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where Rα(W) = ReLU(W − α) · maxW
maxW−a . For each term, we choose two disjoint subsets Csource and Ctarget of 

the classes C. Let ℓsource be the binary image such that ℓsource(v) = 1 if ℓ(v) ∈ Csource and ℓsource(v) = 0 otherwise. 
Define

where ∗ denotes convolution and kσ is a Gaussian diffusion kernel with standard deviation σ . Then, 
Wsource→target(v) = Msource(v) if ℓ(v) ∈ Ctarget , and is 0 otherwise. The terms in the Wep array used in this 
paper were computed using class subsets bkgd = {0} , cell = {1} , and org = {2, 3, 4, 5, 6} , α = 0.25 , c = 0.882 , 
and σ = 6 . The error weighting array used in this paper and the code used to generate it are available with the 
rest of the platelet dataset at https://​leapm​anlab.​github.​io/​dense-​cell. See Figure S6 for a visualization of the 
error weighting array. Wcb is calculated all at once across the entire 3D training volume, while Wep is calculated 
independently per each 2D z-slice of the training volume.

We employed data augmentation to partially compensate for the limited available training data. Augmenta-
tions were random reflections along each axis, random shifts in brightness ( ±12% ) and contrast ( ±20% ), and 
elastic deformation as in Ronneberger et al.11. For elastic deformation, each 800x800 x − y plane in the shape-
(50, 800, 800) training data and label arrays was displaced according to a shape-(800, 800, 2) array of 2D random 
pixel displacement vectors, generated by bilinearly upsampling a shape-(20, 20, 2) array of independent and 
identically distributed Gaussian random variables with mean 20 and standard deviation 0.6. During each epoch 
of training, a single displacement map was created and applied to the entire training volume before creating the 
epoch’s batch of input and output windows. Training used the ADAM optimizer with learning rate 1× 10−3 , 
β1 = 1− 1× 10−1.5 , β2 = 1− 1× 10−2.1 , and ǫ = 1× 10−7 . Training also used learning rate decay with an 
exponential decay rate of 0.75 every 1× 103.4 training iterations.

Validation and performance metrics.  The performance metric used in this work is mean intersection-
over-union (MIoU) between ground-truth image segmentation ℓ ’s 7 labeled sets {Lj = v ∈ � | ℓ(v) = j}j∈C and 
predicted segmentation’s ℓ̂ labeled sets {L̂j = v ∈ � | ℓ̂(v) = j}j∈C . Given two sets A and B, IoU(A,B) = |A∩B|

|A∪B| . 
Then for segmentations ℓ and ℓ̂ with their corresponding labeled sets over the 7 semantic classes, 
MIoU(ℓ, ℓ̂) = 1

7

∑

j∈C IoU(Lj , L̂j). More generally, for a subset of labels D ⊆ C , one can compute the MIoU over 
D, or MIoU(D) , as

Note that this definition weights the IoU scores for each class equally, regardless of the number of examples of 
each class in the dataset. One may choose to use a class frequency-weighted MIoU instead to reflect this class 
imbalance, but we choose to use an unweighted MIoU to emphasize performance on rarer classes.

Here we are concerned with MIoUs over two sets of labels: MIoU(all) over the set of all 7 class labels, and 
MIoU(org) over the set of 5 organelle labels 2-7. Our network validation metrics were MIoU(all) and MIoU(org) 
on the evaluation dataset, and MIoU(org) on the test dataset. Test data uses MIoU(org) because the labeled region 
is a single cell among several unlabeled ones, and restricting validation to the labeled region invalidates MIoU 
statistics for the background and cell classes (0 and 1). We include evaluation MIoU(org) to quantify how per-
formance drops between a region taken from the physical sample used to generate the training data, and a new 
physical sample of the same tissue system.

Using this procedure, the performance of the 2D–3D + 3 × 3 × 3 network was compared against three abla-
tions and five baseline networks. The three ablations each tested one of three features that distinguish the 2D–3D 
+ 3 × 3 × 3 network in this paper from similar baselines. The first, 2D + 3 × 3 × 3 No 3 × 3 × 3 Convs, replaces 
the 3 × 3 × 3 convolutions in the net’s encoder-decoder module with 1 × 3 × 3 convolutions that are otherwise 
identical. With this ablation, the network’s encoder-decoder loses any fully-3D layers. The second, 2D + 3 × 3 × 3 
No Multi-Loss, modifies the loss function in Eq. (1) by removing the term involving x̂2D but otherwise leaving 
the architecture and training procedure unchanged. This ablation tests whether it is important to have auxiliary 
accuracy loss terms during training. The third ablation, 2D–3D + 3 × 3 × 3 No 3D Pyramid, removes the 3D 
spatial pyramid module and 3D class predictor module from the network architecture, so that x̂2D is the network’s 
output. Correspondingly, the loss term involving x̂3D is removed from Eq. (1).

We implemented five baseline networks by adapting common models in the literature to our platelet segmen-
tation problem. Three of these were 2D - The original U-Net11 as well as two Deeplab variants6,7 using a deep 
residual network (DRN) backbone and a ResNet101 backbone25, minimally modified to output 7 class predic-
tions. The original U-Net used (572, 572) input windows and (388, 388) output windows, while the Deeplab 
variants used (572, 572) input and output windows. The two 3D networks were fully-3D U-Net variants adapted 
on the 3D U-Net in (Çiçek et al., 2016)26 - 3D U-Net Thin and 3D U-Net Thick. The variants used same-padding, 
had three convolutions per convolution block, and two pooling operations in the encoder for convolution blocks 
at three spatial scales. The 3D U-Net Thin network used (5, 300, 300) input windows and (5, 296, 296) output 
windows, and pooling and upsampling operations did not affect the z spatial axis. The 3D U-Net Thick network 
used (16, 180, 180) input windows and (16, 180, 180) output windows, and pooled and upsampled along all 
three spatial axes.

To determine whether one architecture is superior to another, trained instances are compared with each 
other. However, sources of randomness in the training process induce a distribution of final performance metric 

Wep � Rα
(

Wbkgd→cell +Wcell→bkgd +Wcell→org +Worg→cell

)

,

Msource(c, σ) � c · ℓsource ∗ kσ ,

MIoU(D)(ℓ, ℓ̂) =
1

|D|

∑

j∈D

IoU(Lj , L̂j).

https://leapmanlab.github.io/dense-cell
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scores across trained instances of an architecture, so that a single sample per architecture may be insufficient to 
determine which is better. While expensive, a collection of instances can be trained and evaluated to empirically 
approximate the performance distribution for each architecture. In this way, better inferences may be made 
about architecture design choices. Figure S5 shows the empirical performance distributions for the 26 trials of 
the 2D–3D + 3 × 3 × 3 architecture and its three ablations, as well as the 26 trials of the 3D U-Net and 500 trials 
of the 2D Original U-Net.

In addition to the multiclass baselines, we chose to also evaluate a CDeep3M plug-and-play system27 that can 
be spun up on Amazon Web Services (AWS) for binary segmentation problems. In a similar vein to our work 
and others’, they use an ensemble of convolutional neural networks to perform binary segmentation tasks. This 
differs from the multiclass segmentation problems that we address, but their polished workflow makes it easy to 
replicate and train on new data. We therefore decided to evaluate CDeep3M on a comparable binary segmenta-
tion task with our data, wherein all non-background classes were grouped together into a single cell class. 
Using the AWS stack provided on the project GitHub page (https://​github.​com/​CRBS/​cdeep​3m), we trained the 
networks used in their 3D segmentation ensemble for 30000 iterations on our training dataset, using all other 
default hyperparameters. Training took approximately 96 hours on an Amazon EC2 instance with an NVIDIA 
P100 GPU card.

After training completed, we ran the CDeep3M 3D ensemble’s prediction tool on our evaluation data-
set, and compared it with a binarized version of our best algorithm’s segmentation of the evaluation dataset. 
We binarized our algorithm’s segmentation the same way we binarized our ground truth labels, by mapping 
together all the non-background segmented classes. The CDeep3M algorithm, however, produces a single 
per-voxel probability map that indicates the probability each voxel belongs to a cell region. To compute a seg-
mentation from the probability map, a cutoff threshold t must be specified - a segmentation with threshold t 
assigns the cell class to all voxels with probability greater than t, and background to all others. We com-
puted MIoU scores for our lab’s (LCIMB) segmentation, as well as CDeep3M segmentations with thresholds in 
{0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1}.

A final point of comparison was drawn between the top algorithm’s performance and the initial work of labo-
ratory scientific image annotators, Annotator 1 and Annotator 2. The three sources each labeled the annotator 
comparison region from the Subject 2 platelet sample. Pairwise MIoU(org) scores and organelle confusion matrices 
were calculated to compare the level of disagreement between two human labelings and between humans and 
the algorithm. We also computed organelle volume fractions for each segmentation to compare performance in 
segmentation applications to downstream analysis tasks. The cell volume fraction of an organelle is equal to the 
summed voxels of all organelles in a cell, divided by the cell’s volume. To compute this quantity for each organelle, 
the number of voxels for each organelle label is divided by the number of voxels in the cell. For the algorithmic 
result, since the semantic segmentation map does not distinguish between separate cells in the field of view, a 
mask for the single annotator comparison dataset cell was approximated as all non-background-labeled voxels 
in a small region around the Annotator 1 cell mask.

Results
Inspired by existing work on combining 2D and 3D computations for volumetric data analysis20,21 we experi-
ment with combinations of 2D and 3D neural modules to trade off between computational efficiency and spatial 
context. The highest-performing network architecture in this paper, 2D–3D + 3 × 3 × 3, is a composition of a 
2D U-Net-style encoder-decoder and 3D convolutional spatial pyramid, with additional 3 × 3 × 3 convolutions 
at the beginning of convolution blocks in the encoder-decoder. We use same-padded convolution operations 
throughout, so that 3D operations can be used on anisotropic data windows with small size along the z axis.

Our best algorithms as defined by MIoU score are ensembles that average the per-voxel class probability 
distributions across several networks. The ensembled networks are identical architectures trained from dif-
ferent random weight initializations. When describing segmentation algorithms, we use Top-k to indicate an 
ensemble of the best k instances of an architecture. Figure 2 details our best network architecture and illustrates 
the ensembling process.

For the main experiment of this study, we train baseline architectures from the literature, our new architecture, 
and ablations of the new architecture on a dense cellular segmentation task by supervised learning from the 
training dataset. We compare single-network and ensemble segmentation performance on the evaluation and 
test datasets. We conclude that our algorithm outperforms baselines, the differentiating features of our final best 
architecture are responsible for the performance differences, and that multi-instance ensembles significantly 
improve performance over single networks. The results of this experiment are shown in Fig. 3. We consider 
test performance to be the best indicator of an algorithm’s performance as it shows its ability to generalize 
across different samples. Figure 3 row 2 compares visualizations of the best 3D segmentation algorithms with 
ground-truth labels and image data for the test dataset. Figure 3 row 4 highlights the most notable performance 
results, and more performance statistics can be found in Table S1. Additional 3D renderings comparing manual 
and algorithmic performance are shown in Figures S1 and S3, and a 2D comparison of segmentations of the 
evaluation dataset by all networks tested in this paper is shown in Figure S2.

We also compare our best algorithm against the segmentations of scientific image annotators, Annotator 1 
and Annotator 2, who are laboratory staff trained on annotation tasks but are not biological domain experts. 
These initial segmentations are currently the first step in producing high-quality dense cellular segmentations, 
and even before any corrections they require 1-2 work days per cell to create. Results are displayed in Fig. 3 row 
3, with further details in Figures S3 and S4. Annotator 1, Annotator 2, and our algorithm each labeled the anno-
tator comparison region from the Subject 2 platelet sample. We calculated MIoU(org) scores pairwise from the 
three segmentations: 0.571 for Annotator 1 vs. Annotator 2, 0.497 for Annotator 1 vs. Algorithm, and 0.483 for 

https://github.com/CRBS/cdeep3m
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Figure 3.   Results. (a, b) Orthoslice of Subject 1 image and segmentation. (c) Test dataset orthoslice, segmented 
cell highlighted. (d, f) Comparison between ground truth segmentation of test cell and our best 2D and 3D 
algorithms. (g) Annotator comparison (AC) dataset orthoslice, segmented cell highlighted. (h, j) Annotator 
comparison cell segmentations, comparing the two human annotators and our best (3D) algorithm. (k) 
Summarized comparison of mean intersection-over-union across organelle classes ( MIoU

(org) ) on test and 
evaluation datasets for segmentation algorithms. For full results, see Table S1. (m) Comparison of organelle 
volume fractions between two human annotators and our best algorithm, computed from annotator comparison 
cell segmentations.
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Annotator 2 vs. Algorithm. The confusion matrices in Figure S4 further break down results by organelle class. 
The statistics indicate that our algorithm disagrees more with either annotator than the annotators do with each 
other, but none of the labels are consistent everywhere, reflecting the difficulty of dense cellular segmentation 
even for humans.

Our final direct segmentation evaluation was on the binary task whose results were compared with CDeep3M. 
The 0.4 and 0.5 thresholds both produced the highest MIoU score - 0.935. In contrast, the LCIMB segmentation 
had an MIoU of 0.946. Both algorithms generally did a good job of detecting cell material, but the LCIMB 
segmentation did a much better job of preserving boundaries between adjacent cells. The results can be seen 
in Fig. 4.

We are also interested in understanding how even imperfect segmentations may be useful for downstream 
analysis tasks. To this end, we computed organelle volume fractions for each organelle within the cell in the 
annotator comparison dataset. The cell volume fraction of an organelle is equal to the summed voxels of all 
organelles in a cell, divided by the cell’s volume. Biologists can correlate this information with other cell features 
to better understand variations in the makeup of cellular structures across large samples. The results in Fig. 3 
row 4 show that our algorithm tended to underestimate volume fractions relative to the two annotators, but 
the difference between the algorithm and Annotator 1 is smaller than the difference between Annotator 1 and 

Figure 4.   CDeep3M segmentation comparison. Comparison between the CDeep3M segmentation tool and our 
lab’s (LCIMB) best segmentation algorithm for a binary cell/non-cell segmentation problem on our evaluation 
dataset. (a) Orthoslice of the ground truth binary segmentation of the evaluation dataset. (b) Segmentation 
using our lab’s (LCIMB) best 3D ensemble. (c) Probability map produced by the CDeep3M ensemble after 
training on our data for 30000 iterations. The probability map is a per-voxel probability that the voxel belongs 
to a cell region, and it must be thresholded to produce a segmentation. (d) Segmentation from the CDeep3M 
ensemble with the best tested threshold of 0.5. This resulted in an MIoU of 0.935, compared to 0.946 for the 
LCIMB segmentation. In addition to a slight improvement in MIoU statistic, the LCIMB segmentation does a 
much better job of preserving boundaries between adjacent cells.
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Annotator 2. The best 3D algorithm improves considerably over the best 2D algorithm. All algorithms detect 
small regions ignored by humans, but simple postprocessing with small region removal fails to significantly 
improve quality metrics.

Discussion
We have argued here that dense semantic labeling of 3D EM images for biomedicine is an image analysis method 
with transformative potential for structural biology. We demonstrated that while challenges exist for both human 
and algorithmic labelers, automated methods are approaching the performance of trained humans, and we plan 
to integrate them into annotation software for greatly enhancing the productivity of humans segmenting large 
datasets. We have carefully evaluated adaptations of multiple common network architectures for our task, and 
demonstrated that a novel variant of 2D–3D fully convolutional network performs best. Without question, 
challenges remain for creating algorithms that are robust to the many types of variation present across research 
applications. However, SBF-SEM analysis problems are a fertile early ground for this computer vision research, 
as their large dataset sizes make the entire train-test-deploy cycle of supervised learning viable for accelerating 
analysis of even individual samples. We believe that the image in Fig. 3a,b showcases this best—after manually 
segmenting less than 1% of the Subject 1 dataset, we were able to train a segmentation algorithm that produces a 
high-quality segmentation of the full dataset, a feat that would be impossible with anything short of an army of 
human annotators. While gains in accuracy will be realized with future developments, the procedure of training 
neural network ensembles on a manually annotated portion of a large SBF-SEM dataset is already becoming 
viable for making dense cellular segmentation a reality.

Online content.  Supplementary materials, source data, code, and reproducible examples are available 
online at https://​leapm​anlab.​github.​io/​dense-​cell.
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