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Corpse management of the invasive 
Argentine ant inhibits growth of 
pathogenic fungi
Jenni Kesäniemi, Janne J. Koskimäki & Jaana Jurvansuu

A dead conspecific poses a potential pathogen risk for social animals. We have discovered that Argentine 
ants (Linepithema humile) prevent spread of pathogenic fungi from corpses by depositing the dead to 
combined toilet and refuse areas and applying pygidial gland secretion on them. The presence of a corpse 
in a nest increases this secretion behaviour. We identified three fungi growing on Argentine ant corpses. 
Growth of the Argentine ant pathogen Aspergillus nomius and the plant pathogen Fusarium solani on 
corpses was inhibited as long as the ants were constantly attending them as the ant anal secretion 
only delayed germination of their spores. In contrast, the effect of the ant anal secretion on the human 
pathogen Aspergillus fumigatus was much stronger: it prevented spore germination and, accordingly, the 
fungus no longer grew on the treated corpses. The Argentine ants are one of the world’s worst invasive 
alien species as they cause ecological and economical damage in their new habitats. Our discovery points 
at a novel method to limit Argentine ant colonies through their natural fungal pathogens.

Social immune system is a term used to describe co-operative behaviour of social animals to reduce vulnerability 
to disease transmission that arises from living in a genetically homogenous closely interacting group1. For exam-
ple, management of corpses, faeces, and food waste is part of the social immune system to improve nest hygiene. 
Corpse-induced behavioural responses in insects include corpse removal from the nest, burial, cannibalism, 
avoidance, and combinations of these2,3. Undertaking responses depend also on disease and developmental state 
of the cadaver as well as nesting and feeding habits of the insect4. Corpse management aims to prevent growth 
and spread of pathogens and parasites: for example, it has been shown in a laboratory experiment that a single 
fungal infected cadaver can be fatal to the whole ant colony5. In some highly socially organised insects corpse 
management has been suggested to be separate from the other basic cleaning activities, such as disposing faeces 
and food remains. For example, some ant species remove corpses from nest more quickly and farther away than 
other objects6,7, foreign corpses are treated differently to nestmates’ corpses8, and faeces and corpses are deposited 
into separate areas9.

The Argentine ant is listed in the International Union for Conservation of Nature’s 100 world’s worst invasive 
alien species, because it has spread from South America to all over the world during the past 160 years and is able 
to harm ecosystems by displacing native species10–12. The success of the invasive Argentine ants has been attrib-
uted mostly to their lack of territoriality as the ants mix freely between nests and can hence form extensive super-
colonies spanning thousands of kilometers13,14. Whereas introduced Argentine ants from two different continents 
may show no hostility15, the native South American Argentine ants that form much smaller16 and short-lived17 
colonies display aggression among colonies18. The unicolonial social structure enables high population densi-
ties19, which together with low genetic diversity20 and relative few immune genes21 may predispose the invasive 
Argentine ants to pathogens. Thus, hygiene behaviour is expected to be especially important for their survival.

Argentine ants deposit food waste and dead bodies onto refuse piles22 yet their defecating behaviour has not 
been studied. We discovered that Argentine ants defecate and secrete pygidial gland content onto the corpses at 
the refuse piles and that this behaviour inhibits growth of pathogenic fungi.

Results
The Argentine ants deposit corpses and faeces on the same area.  We plated 20 ants to plaster-bot-
tom petri dishes and fed them with blue-coloured sugar mix. After four days we measured the sizes of the blue 
stained areas they left on the plaster. We repeated the experiment 20 times. The ants had clearly a preferred toilet 
area at the periphery of the plate as indicated by the large blue stained areas (1–2 toilets per plate, size >0.001 
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stained/whole area, that is, the proportion of stained area from the whole surface are of the plate), although sev-
eral tiny patches were also visible (total number of blue patches per plate: mean = 9, SD = 8.6) (Fig. 1a).

As it was earlier shown that black garden ants (Lasius niger) have separate toilet area and waste pile to where 
the corpses were laid9, we studied next where Argentine ants put their dead. We modified the previous experi-
ment by killing one of the ants a day after plating them, placing it immediately back to middle of the plate, and 
recording its location three days later. The experiment was repeated 20 times. We found that the corpses were in 
the large (>0.001 stained/whole area, 1–2 per plate) toilet areas and not at random locations (Fisher exact test 
p-value < 0,00001) (Fig. 1b). We saw the same effect with ants fed with fluorescence dye sugar mix instead of blue 
dye (see Supplementary Fig. 1).

When the ants were given a corpse they produced larger total area of blue patches than when there was no 
corpse in a plate (N = 40, Mann-Whitney U = 99, p = 0.006, Fig. 1c). However, when only the larger blue areas 
were considered (>0.001 stained/whole area, N = 55), there was no difference in their sizes between the colonies 
that were given a corpse (Fig. 1a) or not (Fig. 1b) (Mann-Whitney U = 326, p = 0.408). Yet the large blue patches 
with a corpse (N = 22) were significantly larger than patches without a corpse (N = 33) (Mann-Whitney U = 515, 
P = 0.009, Fig. 1d). These results suggest that in the presence of a corpse, ants increase defecation and/or secretion 
of anal gland products, specifically to the area where the corpse is (see Supplementary video 5 and Supplementary 
videos 1–4 for prior corpse processing behaviour).

Placing corpses to toilets inhibits fungal growth on them.  We noticed that when the ants are starv-
ing (were given only water) or fed with neonicotinoid neurotoxin (Imidacloprid) they did not pile or process 
the corpses and these unmanaged corpses started to grow fungi in a few days (see Supplementary Fig. 2). These 
observations indicated that fungal growth is inhibited from the corpses placed at the toilet areas. To test this idea 
we plated 22 ants on plaster-bottom petri dishes and a day after we killed two of them: the first corpse was placed 
to an empty new plate and the second corpse was put back to the nest plate. The corpse in the nest plate was kept 
with the living ants for six days after which the ants were removed. We recorded how many days after the ants 
were killed would fungus visibly grow on the corpses. The experiment was repeated 40 times. When a corpse was 
alone it started to grow fungus, on average, three days after death, whereas corpses in the nests did not grow fungi 
as long as there were living ants present (Fig. 2a). When the ants were removed, the corpses in the nests started 
to grow fungus in one day even if the corpses were in the toilet areas. Inhibition of fungal growth on corpses 
in the nests and alone was significantly different (inhibition shown with survival analysis with number of days 
until fungal growth from the corpses: Cox’s proportional hazard model, hazard ratio HR = 0.40, p = 0.002, see 
Supplementary Fig. 3). The overall percentage of fungi growing corpses remained somewhat lower in the nests 
(47.5%) than in the empty plates (57.5%), yet the difference is not statistically significant (Chi2 with Yates correc-
tion = 0.4511, p-value = 0.5018).

Fungal identification.  The corpses were growing three visibly different fungi, which were identified by 
internal transcribed spacer (ITS) sequencing to be Aspergillus nomius (yellow conidia, Fig. 3a), Aspergillus fumig-
atus (blue conidia, Fig. 3b), and Fusarium solani (completely white appearance, Fig. 3c). Interestingly, frequen-
cies of the three fungi growing on corpses were dependent on whether the corpses were alone or in the nest 
(Fig. 2b, Freeman-Halton Fisher exact test p-value = 0.003152). The corpses treated with anal secretion by their 
nestmates never grew A. fumigatus but still readily grew A. nomius and F. solani, whereas all three fungi grew in 
corpses that were alone.

Argentine ant pygidial gland secretion inhibits fungal spore germination.  To tests whether 
Argentine ant anal secretion inhibits fungal spore germination, we collected gut and gland contents by gently 
squeezing the ant’s gaster. Because in the previous experiment we saw that the presence of a corpse increased 
the secretion behaviour, we isolated gaster-liquids from ants that either had no corpse or had two corpses in the 
nest. We used fungicide Amphotericin B as a negative and 10% sucrose solution and no-treatment as positive 
controls. We plated F. solani, A. nomius, and A. fumigatus spores onto nutrient agar plates and added 1 µl of the 
gaster-liquid samples and controls to the plates. We were not able to use the common disc diffusion assay as the 
amount of liquid extracted from the ants was not sufficient. Percentage of germinated spores was recorded for 
each fungus every hour until the germination percentage at the control samples reached plateau (Fig. 2c–e). We 
repeated the experiment three times and had triplicates of each treatment (gaster-liquids and controls) on each 
plate. Additionally, the area of inhibition was measured for A. fumigatus samples 24 hours post-plating (Fig. 2f). 
The gaster-liquid delayed the start of the germination of F. solani and A. nomius spores by about two hours. As the 
germination rate of spores treated with gaster-liquid collected from ants housed with or without corpses was sim-
ilar, these samples were combined as the “gaster-liquid” treatment. This also suggests that the production of the 
effective substance in the gaster-liguid is not induced by the presence of a corpse. Additionally, the two positive 
controls (sugar and no-treatment) were combined for the analysis (Fig. 2c,d, see Supplementary Table 1). Spore 
germination rates of these two groups were compared at the time point when the positive control samples had 
reached a plateau. For F. solani, spore germination percentage was significantly lower for the spores treated with 
gaster-liquid (7 hours post-plating, p < 0.001, 24% and 91% for gaster-liquid and control, respectively). Similarly, 
for A. nomius, spore germination percentage was lower  for the gaster-liquid treated spores (8 hours post-plating, 
p < 0.001, 34% and 88% for gaster-liquid and control, respectively) (Table 1). The germination of A. fumigatus was 
completely inhibited by the gaster-liquid since we detected no germinated spores during the 8 hour observation 
period when about 70% of spores had germinated in the controls (Fig. 2e). After 24 hours we saw a no-growth 
zone where the gaster-liguid was applied indicating that the effect was permanent (Fig. 2f). On average, 250 ng of 
Amphotericin B produced 10 mm and gaster-liquid 2.7 mm diameter no-growth zone.
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Figure 1.  The Argentine ants have combined toilet and refuse pile areas. (a) Argentine ants defecate on 
dedicated toilet areas. Worker ants were plated on plaster-bottom petri dishes (N = 20) and they were given 
blue-coloured sugar solution for food. Plates were photographed four days after and the area of each blue patch 
was measured and blotted for each plate (colony). The false-colour image of a presentative plate shows toilet 
area in red. (b) The Argentine ants deposit corpses on the toilet areas. Ants were plated on plaster-bottom 
petri dishes (N = 20) and were given blue-coloured sugar solution for food and the next day one ant was killed 
and the corpse was immediately placed back to the middle of the nest plate. Three days later the plates were 
photographed and the stained areas were measured and the location of the corpse was recorded and blotted 
for each plate (colony). In a blot the yellow circles denote toilet patches and red circles are toilet patches with a 
corpse in them. In colonies #10, 11, 12, 16, and 20 the corpse was chopped into two pieces and deposited into 
two different toilet areas. In colony #7 the corpse was outside of toilet areas and it is marked with red circle 
at zero area. In the presentative false-colour image, the toilet areas are in red and a white arrow indicates the 
location of the corpse. (c) The presence of a corpse in a nest induces anal secretion. Total area of all the blue 
patches were calculated for each nest without (yellow, CTRL) and with a corpse (red, CORPSE). (d) Large blue 
patches (>0.001 stained/whole area) with a corpse (red, N = 22) were significantly larger than patches without a 
corpse (yellow, N = 33). In the box plots, the black line represents median value, values inside the box cover first 
and third quartile (interquartile) range, the whisker show values up to 1.5 times the interquartile range, and grey 
circles are individual values beyond the whisker range (outliers).
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Figure 2.  The Argentine ant anal secretion inhibits mould growth. (a) Worker ants were plated on plaster-
bottom petri dishes (N = 40 plates) and were given sugar solution for food. The next day two of the ants were 
killed and the first corpse was put on an empty plaster-bottom petri dish and the second back to the nest plate. 
After six days, ants were removed from the nest plate (red arrow) and the appearance of visible fungal growth 
was recorded for six more days. The blot shows the percentage of corpses visibly growing fungi for lone corpses 
(black, Alone) and corpses in the nests (yellow, Nest). (b) F. solani, A. nomius, and A. fumigatus were identified 
from the corpses. The bars show how many corpses were visibly growing each fungus in lone (black, at six days) 
or nest (yellow, at 12 days) conditions. Effect of the isolated Argentine ant gaster-liquid on spore germination 
was measured for (c) F. solani, (d) A. nomius, and (e) A. fumigatus. Gaster-liguid was collected from ants that 
had two corpses (red) or none (yellow) in a nest. Spores were plated on nutrient agar plates and 1 µl of gaster-
liquid, 10% sugar solution (green), or fungicide Amphotericin B (black) was added to three spots on a plate and 
percentages of germinated spores were recorded every hour for 12 hours. Grey dashed lines indicate the time 
points for statistical analysis. The experiment was repeated three times (N = 9, variation is ± SE). (f) Gaster-
liquid prevented germination of A. fumigatus spores and after 24 hours no-growth zones (mm of diameter) 
were measured for the gaster-liguid (corpse: red bar, no-corpse: yellow bar), 10 % sugar, and Amphotericin B 
(black bar) treated spots (N = 9, variation is ± SE). (g) Pygidial gland but not gut-derived secretion inhibited 
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Since the collected gaster-liquid consist mainly of the content of rectum and the pygidial gland, we decided 
to collect the two secretions separately and test them against A. fumigatus spores using a growth inhibition test 
(Fig. 2g). We used the same controls as above: sugar and Amphotericin B. Gut liquids did not inhibit fungal spore 
germination at all (no-growth zone of 0 mm) whereas pygidial gland content produced similar effect with original 
gaster-liquid (no-growth zone of 3.1 mm).

Since pygidial gland secretion, not gut liquids (i.e., faeces), inhibited the fungal germination, we examined 
the distribution of food-derived fluorescence dye into gut and pygidial gland in order to see whether increase 
in application of pygidial gland secretion could contribute to plaster staining in the behavioral experiment 
(Fig. 1c,d). Although significantly more fluorescein was in the gut secretion than in pygidial gland (student’s 
t-test p-value = 0.0137), the amount was only 2.5 times higher and thus also the pygidial gland secretion would be 
visible in dye feeding experiments and would contribute  to the size of the stained areas.

A. nomius kills Argentine ants.  We tested by trial experiments the sensitivity of the ants to the three fungi we 
identified (see Supplementary Fig. 4). Because the preliminary results suggested that A. nomius was the most effec-
tive in killing the ants, we tested its effect on the ant survival by topical application of A. nomius spores (Fig. 3d). 
We used 0.1% tween as a control treatment. We followed survival of the ants in individual plates for 14 days. A. 
nomius treatment increased mortality significantly in comparison to control treatment (lowered survival probabil-
ity shown with Cox’s proportional hazard model, N = 60, HR = 3.541, 95% Cl for HR 1.618–7.747, z = 3.165, and 
p = 0.00155). We surface sterilised the corpses on the day of their death and over half of the control corpses did not 
grow fungus during the seven day observation period (Fig. 3e). However, all the A. nomius infected corpses showed 
A. nomius growth, on average, in 1.36 days suggesting that their death was due to A. nomius infection.

Discussion
Argentine ants start carrying dead nestmates to refuse piles when cuticular “life-associated” chemicals, 
dolichodial and iridomyrmecin, have disappeared22. These volatiles are secreted from pygidial gland and 
Argentine ants use them also as defensive compounds23 and trail pheromones24. Argentine ants have four dis-
tinct anal endocrine glands: Pavan’s, Dufour’s, venom, and pygidial gland25, from which the pygidial gland is the 
largest25. Iridomyrmecin is major product of pygidial gland23 and it has been shown to be weakly antibacterial26. 
Beetle pygidial gland secretion has been described to inhibit fungal growth27–29. However, fungicidal properties 
of ant pygidial gland chemicals have not been reported before.

Ants generally inhibit fungal and bacterial growth on their surface by self- and allo-grooming30,31, metapleu-
ral32 and poison gland secretion33, and symbiotic bacteria34,35. Interestingly, Argentine ants, unlike many other 
ant species, were found to lack antibacterial substances on their surfaces36. Moreover, Linephitema melleum, a 
congener of Argentine ant, has been shown to spread antibiotic metapleural secretion only on themselves and 
not on nestmates, brood, or queens as some other ant species do37. Thus, if Argentine ants have to rely on groom-
ing to keep bacteria and fungal spores away, then contamination risk from corpses is high. Furthermore, since 
Argentine ants are predators38,39 they bring other insect species into the nest, which is an additional source of 
pathogenic fungi. Hence, as the Argentine ant pygidial gland secretion has anti-fungal properties, combining the 
refuse pile and toilet area provides simultaneous sanitation of food waste, corpses, and faeces. Other corpse and 
waste management associated processes, such as, chopping up the corpses, eating them, and collecting other nest 
materials on the refuse piles will also inhibit fungal growth3,40,41.

In nature ants have refuse piles inside or/and outside the nest and some species have dedicated workers to man-
age the waste42–44. Eurhopalothrix heliscata (Myrmicinae) builds a waste chamber inside the nest, yet in an artificial 
nest they deposit waste on a corner of a foraging area45 like Argentine ants22. The red ants (Myrmica rubra) dispose 
corpses outside the nest but when they are placed into confined artificial nest they scatter corpses around the area2. 
Thus, although our experimental set-up was artificial, the results will likely reflect ants’ natural behaviour.

We identified three fungi growing from the dead Argentine ants: F. solani belongs to a species complex best 
known as plant pathogens46, A. nomius is an aflatoxin-producing entomopathogen47–50, and A. fumigatus is one of 
the most common pathogenic fungus in immune compromised humans51. All these opportunistic fungi are wide-
spread in nature and especially Aspergillus spp. are commonly associated with social insects and their nests52–55.  
According to our results, A. fumigatus was the most sensitive to the effects of Argentine ant pygidial gland secre-
tion as the gland secretion prevented the spore germination and the fungus never grew on the bodies at the 
refuse piles. The inhibitory effect of the pygidial gland secretion on Argentine ant pathogen A. nomius and plant 
pathogen F. solani was transient both in vivo and in vitro assays. Hence, inhibiting the growth of A. nomius and 
F. solani requires constant application of pygidial gland secretion on the corpses. Consistently, the presence of 
a corpse increased stained areas especially at the toilet/refuse piles where the corpse was, suggesting that corpse 
may have induced pygidial gland secretion behaviour. We cannot separate in our experiments faeces and pygidial 
gland-derived staining, since the food-derived dye was able to cross to pygidial gland content as well. However, as 
pygidial gland secretion has been shown to attract nestmates as a trail pheromone24 and defence substance23, its 
application on corpses could create virtuous cycle, whereby more ants gather to the site, which leads to increased 
pygidial gland secretion and thus more efficient fungal growth inhibition.

A. fumigatus growth. Gut and pygidial gland content were collected separately and used in A. fumigatus spore 
germination test. No-growth zone was measured 24 hours after the application of the samples. The experiment 
was repeated three times using two different isolations (N = 6, variation is ± SE). (h) Gut secretion liquid had 
twice as much of food-derived fluorescein than pygidial gland secretion. Three separate isolations from 10 ants 
were measured (N = 3, variation is ± SE).
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Argentine ants are notoriously difficult to eradicate due to their non-territoriality, large colony sizes, and 
existence of several queens per nest56. Our results suggest that Argentine ants secrete pygidial gland chemicals on 
toilet/refuse piles to inhibit growth of pathogenic fungi on corpses and other waste. If this behaviour is crucial 
for nest hygiene, it might open a mechanism to lower the population fitness of this destructive invasive pest by 
neutralising the anti-fungal component(s) of the pygidial gland secretion.
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Figure 3.  A. nomius is an Argentine ant pathogen. Presentative photographs of Argentine ant corpses growing 
(a) A. nomius, (b) A. fumigatus, and (c) F. solani. Effect of A. nomius spores on ant survival was tested by 
applying spores onto the ant thorax. (d) Survival of infected (A. nomius, N = 30) and control (CTRL, N = 30) 
ants were recorded for 14 days. Difference in survival between the treatments was calculated using the Cox’s 
proportional hazard model. The corpses were surface sterilized the day they died and visible appearance of 
fungal growth on corpses was recorded for at least 7 days. (e) All A. nomius infected (N = 22) corpses grew  
A. nomius whereas over half of the control corpses (N = 9) grew no fungus at all.

F. solani Estimate SE t p

Intercept 103.79 3.71 27.96 <0.001

Gaster-liquid −67.00 2.46 −27.22 <0.001

Plate −6.25 1.53 −4.08 <0.001

A. nomius Estimate SE t p

Intercept 95.69 4.98 19.21 <0.001

Gaster-liquid −54.28 3.41 −15.89 <0.001

Plate −3.71 2.11 −1.76 0.088

Table 1.  GLM results showing the effect of gaster-liquid treatment (in comparison to control samples) on the 
spore germination of F. solani and A. nomius.
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Methods
Ants.  The Argentine ants were collected in April 2011 from the European Main supercolony in Catalonia, 
Spain57. The ants were kept in artificial nest in Sanyo climate chambers set to 14 hours of light in 27 °C and 
10 hours of dark in 20 °C, and air moisture between 40–60%. Ants had water all the time and were fed two times 
per week with honey and cockroaches. For experiments ants were removed from the artificial nest to wetted 
plaster-bottom 9 cm diameter petri dishes and they were given (50 µl) 10% sucrose solution or 2.5% blue food 
colouring (Brilliant Blue FCF, Dr. Oetker) in 10% sucrose solution.

Behavioural experiments.  For toilet localisation experiment, ants were removed after four days of plating 
and plates were photographed. For corpse management experiment, one of the ants was killed by squeezing 
with forceps one day after plating and placed immediately back to the middle of the nest plate. Three days after 
the plate was photographed. The Fisher exact test compared the observed (19 bodies in large toilets, 0 in small 
patches, and 1 outside toilets) and expected values based on probabilities of corpse being randomly either in or 
outside of a toilet area. The experiment was repeated 20 times.

For fungus growing experiment 22 ants were plated and a day after plating two ants were tweezed to death, 
one was placed directly to a new wetted plaster-bottom petri dish, and the other corpse was placed back to middle 
of the nest plate. After six days, ants were removed from the nest plate. Fungal growth on bodies was inspected 
for 12 days (time until fungal growth was used in the survival analysis testing for the inhibitory effect of ant 
gaster-liquids, see Fig. 3 in Supplemental material). The experiment was repeated 40 times.

Fungi.  Fungi were isolated from ant corpses and subcultured on potato dextrose agarose (PDA) plates. Axenic 
cultures of each species were used for the experiments and species-level identification. Fungal cultures were main-
tained at the same conditions as the ants. Spores were collected by submerging fungus growing on a PDA plate 
into 10 ml of sterile distilled water containing 0.1% Tween-20 (v/v) to release the spores. The spore suspensions 
were filtered through one layer of Miracloth (EMD Millipore, cat. no. 475855, pore size of 22–25 µm). For the 
experiments, freshly-collected spore suspensions were counted and adjusted for specific spore concentration 
(1 × 106–2 × 107 spores/ml). Suspensions were stored at 4 °C and used in the experiments during the same day.

Identification of ant associated fungi.  Fungal samples were collected into 15 µl of sterile water, boiled for 
5 min, and then used as a template for PCR. To identify the fungi, region of the fungal rRNA gene repeat, Internal 
Transcribed Spacer (ITS2), was amplified using fungal specific primers fITS758 and ITS459. PCR was performed 
in 20 µl final volume, containing 1X Phusion HF Buffer, 200 µM of dNTPs, 0.5 µM of both primers, and 0.02U/
µl of Phusion high-fidelity DNA polymerase (ThermoFisher). The following PCR protocol was used: 98 °C for 
3 min, followed by 35 cycles of 98 °C for 10 s, 57 °C for 15 s, and 72 °C for 30 s, with a final elongation of 72 °C for 
7 min. For each of the three fungal species, two representative samples were sequenced: one collected directly 
from a dead ant’s surface, and another from an axenic subculture from PDA plates. PCR products were sequenced 
with fITS7 and ITS4 primers at Eurofins. The fungi were identified by Blastn search of the National Center for 
Biotechnology Information database.

Spore germination assay.  Spores were counted and diluted into 1 × 107/ml for F. solani, 2 × 107/ml for 
A. nomius, and 3.5 × 107/ml for A. fumigatus. Spore solutions (100 µl) were plated on nutrient broth agar plates 
(Scienova) and incubated at 30 °C for either two or four hours before test solutions were added (due to different 
germination speeds of the fungi). On each fungal spore plate, 1 µl of the gaster-dilutions, Amphotericin B (250 µg/
ml), or 10% sucrose solution was applied to three separate spots (i.e., three replicates). Spore germination, i.e., 
existence of visible germ tube, was recorded every hour for the next 8 hours, each time examining 100 spores 
under light microscope. 24 hours from the plating the diameter of no-growth zone was measured for A. fumigatus 
plates. Experiments were repeated three times.

The effect of the treatment (gaster-liquid or positive control) on the spore germination percentage was tested using 
Generalized Linear Model (GLM, with Gaussian distribution) using R, controlling for the variation among plates with 
using the plate information as a factor in the analysis. The gaster-liquid treatment comprised of samples from ants of 
nest plates with or without a corpse present, and positive controls were combined samples of sucrose treatment and 
control without any treatment. Spore germination was compared at the time point when the positive control samples 
had reached a plateau, i.e. 7 and 9 hours after the plating the spores for F. solani and A. nomius, respectively.

Anal-liquid collection.  A day before the collection 50 ants were plated per plaster plate with 10% sucrose 
solution for feed. In half of the nests two ants were killed and placed to the nest two to six hours before the liquid 
collection. Liquid was collected from ants by squeezing their gaster into drop (2 µl) of sterile water. Gaster-liquid 
from about 200 ants (in total about 2 µl) was collected into a 20 µl of water and frozen at −20 °C until use. We stand-
ardised the amount of gaster-liquid collected at separate times by measuring absorbance at wavelength of 275 nm.

To collect gut and pygidial gland contents separately, ant gaster was squeezed and when gut (ventral opening) 
and/or pygidial gland (dorsal opening) secretion droplets were visibly separable under microscope they were 
collected to separate drops (1 µl) of sterile water by touching the surface of the water drop with the secretion 
droplet. Argentine ant gaster has been shown to contain several gland openings ventrally (i.e., Pavan’s, Dufour’s, 
and venom)25 and thus we cannot rule out contents from these glands in the gut fraction.

Fluorescein distribution measurements.  Ants were plated on plaster-bottom petri dishes and given 
10 µg/ml fluorescein (Fluka) in 10% sucrose solution to feed. After two days gut and pygidial gland secretions were 
squeezed from 10 ants and diluted into 50 µl of water. Isolation was repeated three times. Fluorescein concentra-
tion in the samples were measured with plate reader (485 nm excitation/520 nm emission, Victor PerkinElmer) 
and the amount of fluorescein was calculated from linear standard curve.
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Ant survival experiments.  Effect of exposure to A. nomius spores on ant survival by surface application 
was studied by pipetting a 1 µl drop of either 1.6 × 107/ml A. nomius spores or 0.1% Tween-20 onto the ant thorax. 
A day before the experiment, 60 ants were plated onto their own plaster-bottom petri dishes with 50 µl of 10% 
sucrose solution. 30 ants were treated with the spore solution and 30 ants with the control solution. Survival of the 
ants were recorded for 14 days and each day the dead were removed from the nest plate, surface sterilized60, and 
fungal growth from the corpses was recorded until the end of the experiment or at least 7 days.

Differences in the survival of ants (days until death) treated with A. nomius spore solution and control solution 
was analyzed using survival analysis (the Cox’s proportional hazard model: surviving individuals were included 
in the analysis, but scored as separate from the dead ants), with the R package Survival61 (treatment was coded as 
1 = ctrl and 2 = A. nomius spores).

Pictures and videos.  Pictures were taken with Nikon D3300 camera with AF-P Nikkor 18–55 mm objective or 
with Olympus OMD EM1 camera with M. Zuiko Digital ED 60 mm f2.8 macro objective. Picture and video analysis 
and processing were done with Olympus viewer software, iMovie, ImageJ (Fiji), and Corel PaintShopt Pro X9.

Statistical analysis.  Statistical analysis was done with R v.3.5.0 and IBM SPSS Statistics 24.

Data Availability
The datasets generated during the current study are available from the corresponding author on reasonable request.
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