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Direct quantitative material 
decomposition employing grating-
based X-ray phase-contrast CT
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Korbinian Mechlem1,2, Sebastian Allner1, Thorsten Sellerer1, Klaus Achterhold   1, 
Bernhard Gleich1, Peter Noël   2, Daniela Pfeiffer2, Ernst Rummeny2, Julia Herzen   1 & 
Franz Pfeiffer1,2

Dual-energy CT has opened up a new level of quantitative X-ray imaging for many diagnostic 
applications. The energy dependence of the X-ray attenuation is the key to quantitative material 
decomposition of the volume under investigation. This material decomposition allows the calculation 
of virtual native images in contrast enhanced angiography, virtual monoenergetic images for beam-
hardening artifact reduction and quantitative material maps, among others. These visualizations have 
been proven beneficial for various diagnostic questions. Here, we demonstrate a new method of ‘virtual 
dual-energy CT’ employing grating-based phase-contrast for quantitative material decomposition. 
Analogue to the measurement at two different energies, the applied phase-contrast measurement 
approach yields dual information in form of a phase-shift and an attenuation image. Based on these 
two image channels, all known dual-energy applications can be demonstrated with our technique. 
While still in a preclinical state, the method features the important advantages of direct access to the 
electron density via the phase image, simultaneous availability of the conventional attenuation image 
at the full energy spectrum and therefore inherently registered image channels. The transfer of this 
signal extraction approach to phase-contrast data multiplies the diagnostic information gained within 
a single CT acquisition. The method is demonstrated with a phantom consisting of exemplary solid 
and fluid materials as well as a chicken heart with an iodine filled tube simulating a vessel. For this first 
demonstration all measurements have been conducted at a compact laser-undulator synchrotron X-ray 
source with a tunable X-ray energy and a narrow spectral bandwidth, to validate the quantitativeness of 
the processing approach.

The idea to use the energy dependence of X-ray attenuation for the differentiation of materials with similar 
Hounsfield units (HU) dates back to the end of the 1970s1. Although, technical difficulties like resolution, move-
ment artifacts and instabilities prevented the immediate clinical implementation2,3, the diagnostic potential has 
already been predicted in early studies on electron density and effective atomic number of lesions, cysts or tis-
sue degradations in comparison to healthy tissue4–6. The unambiguous differentiation of two specific materials 
is a common issue in medical imaging. Calcium, contrast agent, coagulated blood or kidney stones are just a 
few examples for materials with similar HUs but different atomic numbers or electron densities. During the 
last decade, the dual-energy technology has successfully been implemented into commercial CT systems and 
many studies show the benefit for related clinical challenges in stroke diagnosis, pulmonary perfusion imaging or 
bone mineral density determination, among others7–10. Depending on the technical realization, these machines 
use dual-source or dual-(detector-) layer techniques or rapid kVp-switching11. With the latest progress in X-ray 
detector fabrication, the current research focus lies on the implementation of multi-threshold photon counting 
detectors to realize spectral CT12. Independently of the image acquisition method, the techniques utilize the 
dual information to transform the image data into different frames of reference. This opens up a whole range of 
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visualization methods optimized for specific diagnostic tasks, namely virtual monoenergetic images, effective 
atomic number maps, quantitative iodine content or virtual non-contrast images.

Parallel to this development, a novel X-ray imaging technique has been established in preclinical research 
- grating-based X-ray phase-contrast. Additionally to the conventional attenuation image, it provides access to 
the phase shift and an additional small-angle scattering signal, by using a three-grating interferometer also at 
conventional X-ray tubes as implemented in clinical X-ray scanners13–15. Thereby, the phase signal is proportional 
to the electron density and in combination with the attenuation coefficient from the conventional image com-
prises the same duality as achieved by dual-energy measurements but in a more direct way. The simultaneous 
acquisition ensuring the inherent image registration as well as the direct access to the electron density indicate 
potential advantages of this approach. It has been shown previously, that quantitative phase-contrast CT allows 
the determination of the effective atomic number of materials by relating it to the ratio of the total attenuation 
coefficient and the measured phase shift either by fitting a power function16 or by interpolation of the tabulated 
interaction cross sections for the relevant atomic numbers17. Here we use a simple model for the parametrization 
of the underlying photon interactions which was originally proposed by Alvarez et al.1 to calculate the effective 
atomic numbers and virtual monoenergetic images. Subsequently, we change the basis system mathematically to 
a system spanned by two different basis materials for the purpose of quantitative material decomposition. Such 
material decompositions are currently used to discriminate specific materials in clinical imaging7–10. The aim of 
this study is to demonstrate that the duality of the phase and attenuation images allows to obtain the same diag-
nostic information as the dual-energy technique and to highlight potential advantages of this approach.

Results
Attenuation and phase-contrast information.  The image results of the measurement of the material 
phantom are presented in Fig. 1. Via comparison of the measured linear attenuation coefficient (μ) and refrac-
tive index decrement (δ) of a calibration PMMA cylinder with the tabulated literature values from the NIST 
data base18 (see Table 1), an effective energy has been assigned to the whole measurement. The energy calibra-
tion yields an effective energy of Eeff = 24.6 ± 0.2 keV for the attenuation image and Eeff = 23.8 ± 0.2 keV for the 
phase-contrast image. The different results for the calibration energies are due to the different underlying interac-
tion mechanisms but still in the expected range for a measured mean energy of Eeff = 24.3 keV at the position of 
the sample with the given energy bandwidth of about 3% of the compact light source. In the conventional atten-
uation image, ethanol, PMMA and nylon appear darker than water - blood, POM and the iodine solution appear 
brighter. This is in accordance with the different linear attenuation coefficients of these materials. In the refractive 
index decrement image ethanol appears darker than water, PMMA, POM, nylon and blood appear brighter and 
iodine has the same gray level as water in accordance with the different phase shifting properties of the respective 
materials. This demonstrates the complementarity of phase-contrast and conventional attenuation imaging.

The measured values of linear attenuation coefficient and refractive index decrement have been compared to 
theoretical values18–20 (Table 1). The measured values in regions of interest of 20 × 20 pixel for the well-defined 
materials (i.e. all materials but blood and the iodine solution) show a high quantitative accuracy of less than 0.9% 
deviation from the literature for μ and less than 0.6% for δ. Systematic errors on μ and δ originating from inac-
curacies of the interferometer geometry have been evaluated with Gaussian error analysis and were found to be 
smaller than the standard deviation of the respective measured values. The given error margins in Table 1 include 
the systematic error resulting from the inaccuracy of the effective energy determination and the statistical error in 
the respective image region. The literature values for blood refer to physiological uncoagulated blood and there-
fore show slightly larger differences from the measured values, which were obtained for coagulated blood. The 
deviations of the values for iodine are attributed to an inaccuracy of the NaI concentration. In an in-depth analy-
sis of the NaI-solution preparation accuracy, it has been seen, that the measured concentrations are systematically 
7–14% lower than the nominally prepared concentrations. This could be caused by the hygroscopic behavior of 
sodium iodide which can lead to an overestimation of the absolute NaI weight during the preparation. The meas-
ured attenuation value of the shown NaI solution corresponds to an actual concentration of [NaI] ≈ 5.1 mg/ml 
(nominally prepared concentration was [NaI] = 5.9 mg/ml).

Transformation to Zeff and ρe.  With the parametrization of the photon interactions described in the mate-
rials and methods section, an effective atomic number can be calculated from the reconstructed μ and ρe data sets 
for every image point. According to the common presentation for clinical dual-energy CT, the effective atomic 
number is displayed in a pseudo color map (Fig. 1D). At the boarders of the tubes, the effective atomic number 
values show an overshoot like artifact. This can be related to partial volume effects occurring in regions of the 
original reconstruction of μ and δ where a strong contrast is present within one pixel or - due to imperfect align-
ment - several pixels. As these values are quantitatively not correct they do not follow the relation given by equa-
tion 5. Thus, the effective atomic number can not be displayed correctly at the image voxels concerned by partial 
volume effects resulting in a visual edge enhancement. Table 2 compares the averaged effective atomic numbers 
for the seven measured materials with literature values. For compounds and mixtures, the effective atomic num-
ber is only an auxiliary quantity and there are slightly different definitions for its calculation. Thus, two literature 
values are given for each material, if available. The measured values are systematically larger (<2% deviation) 
than the values from both literature sources. For a detailed comparison of the different methods for effective 
number determination we refer to21. The phase signal provides direct access to the electron density via Eq. 1 and 
thus direct access to this energy independent variable which can be used for further image transformations and 
material decomposition.

Virtual non-contrast image.  Starting from an image base which is mathematically spanned by the effective 
atomic number and the electron density, a vector basis transformation has been performed. Such a transformation 
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enables the visualization of the image in means of a new basis, e.g. the contribution of two different materials to 
the image formation. For Fig. 1E the iodine and the blood content have been chosen as basis materials to address 
the specific clinical case of iodine and blood separation. By that, a quantitative iodine map can be obtained which 
provides the iodine content in mg/ml. The vector transformation is based on the assumption that every material 
in the phantom can be represented as a combination of iodine and water. Therefore it leads to negative values in 
the iodine map for most of the phantom materials. Via this iodine map, the image regions with positive iodine 
content can be identified and are replaced by the attenuation values of water in the conventional attenuation 
image. This leads to a very simple so called virtual non-contrast (VNC) image which is a specific feature of 
dual-energy CT scanners to provide a virtual native image before contrast agent injection22. The image in 1 F 

Figure 1.  Measurements and results of virtual dual-energy processing for a material phantom. (A) Photography 
of the sample consisting of 6 different solid or liquid materials. From the reconstructed attenuation (B) and 
phase-contrast (C) data an effective interaction energy of = . .µ δE 24 6, 23 8 keVeff

,  was assigned via the literature 
value for the linear attenuation coefficient and the refractive index decrement of PMMA. The effective atomic 
number map (D) shows the distribution of Zeff ≈ 6.25 for Nylon to Zeff ≈ 7.99 for iodine. The quantitative iodine 
map (E) shows positive values of [I] ≈ 4.6 mg/ml only for the iodine solution. The virtual non-contrast image 
(F) is the conventional attenuation image where the identified iodine containing pixels are replaced with the 
attenuation value of water. The virtual monoenergetic image at =E 25 keV1

VMI  (G) looks very similar to the 
conventional attenuation image. For the higher energies (H,I), the contribution of the electron density increases 
and the virtual monoenergetic image at =E 120 keV3

VMI  looks very similar to the electron density image 
(which is simply proportional to the refractive index decrement image).
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looks exactly like the conventional attenuation image but the regions where iodine has been identified are substi-
tuted by the value of the surroundings (which is the gray value of water in our case and could be the Hounsfield 
unit of non enhanced blood vessels at a clinical scanner). The underlying iodine map has been analyzed with 
a separate measurement of different iodine concentrations and the accuracy for four different concentrations 
between 1–5.3 mg/ml NaI was better than 0.7 mg/ml for decomposition into water and sodium iodide.

Virtual monoenergetic images.  With the parametrization given in Eq. 2 and the knowledge of the effec-
tive photon energy, the effective atomic number and the electron density, the attenuation coefficients can be cal-
culated for any energy with Eq. 6. This has been done exemplary for virtual energies of =E 25, 70, 120 keV1,2,3

VMI . 
For 25 keV the image looks very similar to the original measurement with an effective energy Eeff = 24.6 keV. The 
determined attenuation coefficients agree very well with the calculated theory values for 25 keV with an error 
smaller than 1.3%.

Also for the virtual energy of 70 keV, deviations from the theoretical values are smaller than 0.8% and the 
contrast between the different materials has decreased as expected for higher photon energies. Please note that the 
applied model does not consider K-edge discontinuities and thus no increase in iodine contrast can be expected 
in the virtual monoenergetic images above the K-edge of iodine.

At 120 keV the virtual monoenergetic image looks very similar to the phase-contrast image and matches the 
literature values with an error less than 0.6%. While the photo effect is the dominating interaction mechanism at 
low photon energies, the Compton effect contribution is increasing towards higher energies. Just like the phase 
image, the Compton effect is proportional to the electron density resulting in the similar appearance of these two 
image signals.

Demonstration with a chicken heart.  The grating-based phase-contrast CT of a chicken heart demon-
strates gain on image information in the case of soft-tissue X-ray imaging. In Fig. 2, the conventional attenuation 
image shows only some image contrast between the very low attenuation coefficients of fat and the plastic tube 
which appear dark in the image. All other tissues and water appear with a very similar gray value and can not be 
further distinguished. The small tube filled with contrast agent has the highest attenuation coefficient and appears 
white in the chosen gray value range. The phase-contrast image shows detailed contrast for different anatomic 
structures of the heart tissue due to the different electron densities of muscle, fat and the surrounding water. The 
effective atomic number map shows an increased value for the iodine contrast agent and quite similar effective 
atomic numbers for all other materials in accordance with the result of the attenuation image. In the iodine map, 
only the contrast agent filled tube appears with a positive value such that the virtual non-contrast image is just the 
conventional attenuation image with those pixels replaced by the attenuation coefficients of water. For the virtual 

μm [cm−1] μ1 [cm−1] δm [10−7] δ1 [10−7]

NaI (5.9) mg/ml 0.597 ± 0.006 0.609 4.08 ± 0.07 4.07

Blood 0.568 ± 0.006 0.574 4.31 ± 0.07 4.27

Ethanol 0.323 ± 0.006 0.325 3.23 ± 0.06 3.27

PMMA 0.470 ± 0.006 0.470 4.70 ± 0.06 4.70

POM 0.628 ± 0.006 0.628 5.55 ± 0.06 5.55

Nylon 0.423 ± 0.006 0.419 4.61 ± 0.06 4.58

Water 0.523 ± 0.006 0.523 4.07 ± 0.06 4.07

Table 1.  Comparison of measured linear attenuation coefficients μ, and refractive index decrements δ 
with literature values for the material phantom at an effective energy of Eeff = 24.6 keV for the conventional 
attenuation image and Eeff = 23.8 keV for the phase-contrast image. The subscripts m and l indicate measured 
and literature values. The literature values are calculated from tabulated values from the NIST database25, from26 
for blood and from20 for the NaI solution. The given uncertainty includes the standard deviation of the image 
region and the systematic error.

Zeff,m Zeff,l1 Zeff,l2 ρe,m [1029 m−3] ρe,l

NaI (5.9 mg/ml) 7.97 ± 0.06 — — 3.34 ± 0.07 —

Blood 7.60 ± 0.06 — 7.74 3.54 ± 0.08 —

Ethanol 6.52 ± 0.07 6.35 — 2.69 ± 0.07 2.68

PMMA 6.58 ± 0.03 6.47 6.56 3.86 ± 0.06 3.86

POM 7.05 ± 0.05 6.95 7.03 4.56 ± 0.06 4.56

Nylon 6.24 ± 0.06 6.12 6.21 3.79 ± 0.06 3.76

Water 7.51 ± 0.05 7.42 7.51 3.34 ± 0.06 3.34

Table 2.  Quantitative results for the effective atomic numbers Zeff and the electron density ρe for the material 
phantom in comparison to different literature values. The subscript m indicates measured values. For the 
effective atomic number two different literature sources are given, denoted with l1 for values from Qi et al.16 and 
l2 for values from the XmuDat library25,26. The given uncertainty includes the standard deviation of the image 
region and the systematic error.
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monoenergetic images it is apparent that the Compton effect dominates the image formation process already at 
the intermediate energy of =E 70 keV2

VMI  for the low atomic number materials of this sample, such that the 
image looks very similar to the electron-density image (=refractive index decrement image).

Figure 2.  Measurements and results of virtual dual-energy processing for a biological soft tissue sample 
(chicken heart). (A) Photography of a fresh chicken heart next to the measurement container. The conventional 
attenuation image (B) shows very limited contrast only between the fatty tissue and the experimentally 
simulated iodine filled vessel. The phase-contrast image (C) reveals good contrast for the different anatomical 
structures like muscle, fat and blood vessels (most likely the aorta and two vessels of the low pressure system) 
but no contrast between contrast agent and the surrounding water. The effective atomic number map (D) 
reflects the situation of the conventional attenuation image with very low variations between the different 
structures besides fat and contrast agent. The quantitative iodine map (E) shows positive iodine concentrations 
of [I] ≈ 43 mg/ml only for the region of the contrast agent filled tube. The virtual non-contrast image (F) is the 
conventional attenuation image with the iodine containing pixels replaced with the attenuation value of water. 
At =E 25 keV1

VMI , the virtual monoenergetic image (G) looks very similar to the conventional attenuation 
image. For the low atomic number soft tissue materials the Compton effect dominates the image formation 
already at =E 70 keV2

VMI  (H) and a difference to the virtual monoenergetic image at =E 120 keV3
VMI  (I) and 

the phase-contrast image is only visible for the iodine filled tube.
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Discussion
The approach of grating-based phase-contrast CT provides simultaneous access to precise quantitative values 
for the linear attenuation coefficient and the refractive index decrement or the electron density with less than 1% 
deviation from literature values. The different material dependencies of the underlying photon-matter interac-
tions lead to complementary information in the two images. This is demonstrated by the different visual impres-
sion as well as the comparison of measured material quantities. Based on this complementary information, the 
well-known dual-energy material decomposition approaches have been applied to grating-based phase-contrast 
imaging. With the applied interaction parametrization1, the effective atomic numbers have been calculated 
from the original attenuation and electron density data in good agreement with two different literature sources. 
Starting from the photo effect and Compton effect contributions as the reference coordinate system, the transfor-
mation into material specific coordinate systems has been demonstrated. By that the standard dual-energy image 
representations of iodine content images, virtual non-contrast and virtual mono energy images can be calculated, 
as shown in this study.

The quantitative calculation of the iodine content by material decomposition is with an uncertainty of 0.7 mg/
ml slightly less accurate than reported for commercially available dual-energy scanners (0.2 mg/ml in23, 0.5 mg/
ml in24). This can mostly be attributed to the rather simple model for the photon interactions. The applied model 
for the photon interactions has two major drawbacks. First, the parametrization of photo and Compton effect 
under the assumption of the separability of material and energy dependencies is an empiric approximation opti-
mized for a range of specific materials and energies that does not describe the actual combined dependency of the 
X-ray attenuation on both material and energy on a physically validated basis. Additionally, the model neglects 
the contribution of the coherent scattering which accounts for about 10% of the total attenuation coefficient of 
water at 25 keV25,26. Thus, the model must be further optimized to reach the current state of the art of quantita-
tive material decomposition. Further, the effective interaction energy determined from the PMMA rod is well 
suited for materials with similar attenuation properties but fails for materials with significantly deviating atomic 
composition and electron configuration. Especially for iodine which has a K-edge discontinuity at 33.17 keV, this 
deviation should be accounted for by prior calibration measurements or an additional energy calibration with a 
well-defined iodine sample.

However, these limitations do not arise from the grating-based phase-contrast imaging approach, but from 
the straightforwardness of the applied model. On the contrary, the method brings some specific advantages for 
image based material decomposition. Independent of the detector type, the images are perfectly registered due to 
the simultaneous acquisition. In contrast to dual-energy imaging, grating-based phase-contrast imaging provides 
the total attenuation coefficient at one energy spectrum and simultaneously the refractive index decrement. With 
the latter being proportional to the electron density, this important material quantity can directly be extracted 
from the measurement without further image processing and the errors this may introduce. In clinical X-ray 
imaging many questions are related to the differentiation of materials with different atomic numbers (e.g. contrast 
agents, calcifications, kidney stones) or tissues with different electron density (e.g. brain parenchyma, breast tis-
sue, coagulated blood). Thus, the simultaneous and direct access to the linear attenuation coefficient, which varies 
strongly for materials with high atomic numbers, as well as the electron density, which can – so far – not directly 
be extracted from conventional CT, would be a great benefit in a diagnostic context. Especially in case of stroke 
diagnosis, the differentiation of the extravasation of contrast agent via the damaged blood brain barrier into the 
brain tissue after an interventional treatment versus a remaining blood clot is difficult in conventional CT27. 
While the Hounsfield numbers of the relevant iodine concentrations and coagulated blood can be very similar28, 
the strongly different electron density enables a clear differentiation in phase-contrast CT.

A further advantage in comparison to standard dual-energy techniques is the existence of the conventional 
attenuation image from the full energy spectrum to which the radiologists are trained.

Altogether, the method provides improved soft-tissue contrast via the phase-shift, structural information via 
the small angle scattering signal (which was not described in this study), as well as the conventional attenua-
tion image. With the additional extraction of the quantitative material decomposition information - as clinically 
provided by dual-energy scanners - this sums up to a significant gain of information density in a single CT 
acquisition.

In this study the general feasibility of virtual dual-energy imaging based on phase-contrast CT data and the 
translation to a biomedical application has been demonstrated. The quasi monochromatic X-ray source with an 
X-ray energy below the absorption K-edge of iodine has been chosen to enable a quantitative verification of the 
presented results. For clinical imaging, the performance of the method at higher energies and for polychromatic 
spectra of conventional X-ray sources will have to be further investigated as a next step. The feasibility of the 
accurate determination of the effective atomic number and the electron density with polychromatic grating-based 
phase-contrast CT has previously been demonstrated16,29. The limiting parameter for the decomposition approach 
is the complementarity of the two signals which scales with the contribution of the photo-electric effect (see 
equation 4). Especially in the case of clinical material decomposition, where higher atomic number materials like 
calcium or iodine are of interest, the crucial complementarity of the attenuation and phase-contrast information 
are expected at relevant X-ray energies. Further, the noise behavior in comparison to state of the art dual-energy 
CT should be analyzed in future studies.

The technical realization of a Talbot-Lau interferometer makes the interferometric technique accessible at 
conventional X-ray sources without specific requirements for the beam coherence which was not possible with 
earlier attempts of image segmentation from phase-contrast data30,31. Thus, its biggest advantage is the compat-
ibility with commercial X-ray scanners as demonstrated in32,33. And with the latest technical improvements in 
grating fabrication, also translation to a large field of view at clinically relevant energies is possible34. We therefore 
believe that the clinical relevance of grating-based X-ray phase-contrast imaging with its simultaneous access to 
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three complementary imaging modalities and the technical compatibility with existing clinical X-ray machines 
will profit from the additional access to the novel image visualization methods as known from dual-energy CT.

Materials and Methods
Sample preparation.  For the purpose of a quantitative benchmark measurement, a specific material 
phantom has been designed. It consists of four different well-known solid (s) and fluid (f) materials which 
are namely ethanol (f), polymethylmethacrylat (PMMA) (s), polyoxymethylen (POM) (s) and nylon (type 6) 
(s). Additionally, a tube with coagulated blood (f) and a sodium iodide solution (f) with a concentration of 
[NaI] = 5.9 mg/ml (corresponds to a pure iodine concentration of [I] ≈ 5.0 mg/ml) in water have been inserted 
in the circular sample holder disc (see Fig. 1A). For the second measurement, a fresh chicken heart was put into 
a cylindric plastic container together with an intravenous injection line filled with contrast agent. The chicken 
heart was obtained from a local butchery. The used contrast agent was IMERON 300 (Bracco Imaging Deutschland 
GmbH, Konstanz, Germany) which was diluted in water to an approximate iodine concentration of 40 mg/ml. 
The tube containing the heart was filled up with water and both measurements were performed with the samples 
immersed in a rectangular water container. The surrounding water prevents artifacts due to big changes in the 
electron density and thereby phase-shifts larger than 2π, known as phase wrapping. The water container stays 
in place for the reference measurements and guarantees the same spectral contributions as in the sample scan. 
However, this only of minor importance in the case of the quasi monochromatic source used here.

Munich Compact Light Source.  All measurements were performed at the Munich Compact Light Source 
(MuCLS) which is a recent type of a brillant laboratory X-ray source. It is based on the combination of a small 
electron storage ring and a resonantly driven high-finesse laser cavity (λLaser = 1064 nm). X-ray photons are pro-
duced by inverse Compton-scattering at a defined collision point of laser photons and electrons with a repetition 
rate of about 65 MHz. The X-ray energy can be selectively changed from 15–35 keV by tuning the electron energy 
from 25–45 MeV. The average photon flux during the tomographic measurements was 1.4⋅1010 photons/s and the 
X-ray energy was tuned to 25 keV with an intrinsic energy bandwidth of ΔE/E ≈ 3%. A more detailed description 
of the working principle and the performance characteristics of the Munich Compact Light Source can be found 
in35. The purpose of using this compact source with synchrotron-like beam properties was the validation of the 
performance of the presented quantitative material decomposition approach. The spectrum at the position of the 
sample was measured with an energy-dispersive Amptek X-123 detector (Amptek Inc., Bedford, Massachusetts) 
with an 500 m Si sensor and from that a mean energy of Emean = 24.3 keV was calculated. The uncertainty of the 
calibration energies arises from the uncertainty of the measurement of the density of the PMMA calibration rod 
(ρPMMA = 1.189 ± 0.005 g/cm3).

Grating Interferometer.  The grating interferometer is situated at a distance of about 15 m from the X-ray 
source point (size: 45 × 45 m2 r.m.s., divergence angle: 4 mrad). The elliptic field-of-view is 62 × 74 mm. The 
Talbot interferometer is realized with a phase grating (G1) with a period of 4.92 m, duty cycle of 0.5 and a nickel 
filling height of 4.39 m providing a phase shift of π/2 for the design energy of 25 keV. Period, duty cycle and gold 
filling for the absorption grating are p2 = 5 m, 0.5 and 70 m. The inter-grating distance for the first fractional 
Talbot order is d = 248 mm. All tomographic images were acquired with a single photon counting Pilatus-200 K 
detector (DECTRIS ltd., Baden, Switzerland) with a 1 mm thick silicon sensor and an effective pixel size of 
peff = 160 m. The quantum efficiency at 25 keV for 1 mm Silicon is 42.4%. The phase-shift and attenuation data 
was acquired by moving the absorption grating in 7 discrete steps over one grating period and comparison of the 
resulting sinusoidal stepping curve with a reference curve without sample. A detailed description of the method 
can be found in13. The exposure time per step was 3s for both measurements. To fulfill the angular sampling 
requirements, depending on the sample size 350–380 projections were taken over 360°, resulting in a total meas-
urement time of 4–6 h.

Image processing.  From the raw projection phase-stepping images, attenuation, dark field and differential 
phase-contrast projections were extracted with an expectation maximization algorithm as reported in36. The 
reconstruction was done independently by filtered backprojection with a Ram-Lak filter for the attenuation data 
and a Hilbert filter for the phase data15. All of the reported image analysis, namely the material decomposition, 
the calculation of the effective atomic number and the calculation of virtual monochromatic images was per-
formed on the reconstructed attenuation and phase-contrast volume data sets. The dark-field information was 
not used in this study.

For the cylindrical material phantom a mean of 50 slices has been taken to improve the photon statistics. In 
the case of the chicken heart measurement, the raw images (attenuation image and phase-contrast image) have 
been post-processed with a dictionary-based denoising algorithm as proposed in37,38 to achieve a similar noise 
level as in the cylindrical phantom.

The described image processing chain yields two reconstructed data sets which are the three dimensional 
attenuation coefficient and refractive index decrement maps.

Parametrization of photon interactions.  The measured and reconstructed quantities μ and δ can be 
related to the electron density and an effective atomic number as described in the following. The phase shift intro-
duced by a material is related to the refractive index decrement
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∑δ
π π

ρ= =
r h c

E
N f r h c

E2
(0)

2 (1)i i
0

2 2

2
0 0

2 2

2 e

with the classical electron radius r0, the Planck constant h, the speed of light c and Ni the atomic density of the 
element with index i. The right side of equation 1 holds true above absorption edges, where the electrons of an 
atom can be considered to be quasi-free and the real part of the atomic scattering factor f (0)i

0  in forward direc-
tion can be replaced by the atomic number Zi and thus ρ∑ =N f (0)i i

0
e

39. By that phase-contrast tomography 
provides direct access to the spacial distribution of the electron density of the whole specimen.

Simultaneously, the stepping procedure extracts the total attenuation coefficient as known from conventional 
X-ray imaging. For the diagnostic energy range, it has been proposed in1 to model the total attenuation μ(E) by 
two basic photon interactions, namely Compton and photo effect. The parametrization of energy and material 
dependence can be expressed by

μ = +E a f E a f E( ) ( ) ( ), (2)c c p p

where fp,c are the energy and ap,c the material dependencies of Compton and photo effect, respectively. Klein and 
Nishina40 proposed a parametrization for the scattering of photons at quasi-free electrons such that

ρσ=a f E E( ) ( ), (3)c c e KN

with the so called Klein-Nishina coefficient σKN(E) which is tabulated for the relevant energies. The photo effect 
has in this approach been parametrized by

ρ= .a f E C Z
E

( )
(4)

C

Cp p e P
Z

E

The empirical parameters CP, CZ and CE were adapted from1 for the used X-ray energy in a prior parameter fit 
such that CP = 13.03⋅10−24, CZ = 3.42 and CE = 2.97. By that we have a model which relates the measured attenu-
ation coefficient and the electron with the atomic number

μ
ρ

σ=





−





⋅ ⋅ .Z

C
E1

(5)

C
eff

e
KN

P

C EZ

By that the measured and reconstructed quantities μ and δ can be expressed as the atomic number or the 
effective atomic number for mixtures and composites alongside with the electron density. Thus, the interaction 
parametrization model in Eq. 2 provides access to an energy independent description. Inversely, the attenuation 
coefficients for any arbitrary energy can be calculated

μ ρσ ρ= + .E E C Z
E

( ) ( )
(6)

C

Ce KN e P
Z

E

which is known as virtual monoenergetic imaging in the clinical application of dual-energy CT.

Volume-space based change of basis.  If we interpret the two dimensional space of Zeff and ρe as a vector 
space spanned by the effective atomic number and the electron density we can change to any new vector basis 
with an algebraic transformation matrix. By choosing two materials as a new image basis, one can express the old 
images in means of material contribution from the respective material. In the above demonstrated case, the 
images were decomposed into the contribution of iodine (vi) and a second basis material (vx). Here we used water 
or blood, depending on the relevant decomposition task. The effective atomic number and the electron density of 
20 mg/mlNaI ( ρiZ ,eff e

) as the first basis material and a second basis material ( ρxZ ,eff e
) have been calculated with the 

aforementioned equations based on literature values19,20. It has been shown that an actually diluted salt as a basis 
material yields more precise decomposition results as the density of 20 mg/mlNaI represents the density of the 
clinically relevant iodine solutions more precisely than a mixture of solid NaI and water41.

The transformation matrix from the photo/Compton coordinate system to water/iodine or blood/iodine 
images is

=
−






−

−





.

ρ ρ

ρ

ρ

−

i x x i

x x

i iN 1

(7)

1

Z Z

Z

Z
eff e eff e

e eff

e eff

The resulting images are multiplied by the material’s mass density in [mg/ml] for quantitative information. For 
more detailed description of vector basis transformation we refer to common linear algebra textbooks.

Virtual non-contrast image.  The iodine has been identified via threshold segmentation in the quantitative 
“iodine-only” image (i.e. the pixels with positive iodine content) and the corresponding pixels have been replaced 
by a suitable background value - in this case water - with adapted standard deviation in the conventional image. 
This simple approach is applicable to a material combination as used in the presented samples. For application in 
clinical imaging the image segmentation can be supported by probability estimation algorithms and geometric 
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considerations on the vector space as proposed in41–43 to extract a three material decomposition from only two 
measured data sets.

Data Availability
The data that support the findings of this study are available from the corresponding author upon reasonable 
request.
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