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Machine learning identifies 
interacting genetic variants 
contributing to breast cancer risk: 
A case study in Finnish cases and 
controls
Hamid Behravan1, Jaana M. Hartikainen1, Maria Tengström2,3, Katri Pylkäs   4, 
Robert Winqvist4, Veli–Matti Kosma1,5 & Arto Mannermaa1,5

We propose an effective machine learning approach to identify group of interacting single nucleotide 
polymorphisms (SNPs), which contribute most to the breast cancer (BC) risk by assuming dependencies 
among BCAC iCOGS SNPs. We adopt a gradient tree boosting method followed by an adaptive iterative 
SNP search to capture complex non-linear SNP-SNP interactions and consequently, obtain group of 
interacting SNPs with high BC risk-predictive potential. We also propose a support vector machine 
formed by the identified SNPs to classify BC cases and controls. Our approach achieves mean average 
precision (mAP) of 72.66, 67.24 and 69.25 in discriminating BC cases and controls in KBCP, OBCS 
and merged KBCP-OBCS sample sets, respectively. These results are better than the mAP of 70.08, 
63.61 and 66.41 obtained by using a polygenic risk score model derived from 51 known BC-associated 
SNPs, respectively, in KBCP, OBCS and merged KBCP-OBCS sample sets. BC subtype analysis further 
reveals that the 200 identified KBCP SNPs from the proposed method performs favorably in classifying 
estrogen receptor positive (ER+) and negative (ER−) BC cases both in KBCP and OBCS data. Further, 
a biological analysis of the identified SNPs reveals genes related to important BC-related mechanisms, 
estrogen metabolism and apoptosis.

Breast cancer is the second leading cause of cancer death in women with nearly 1.7 million new cases diagnosed 
in 2014. In Finland, BC accounted for 30.6% of all cancers in women resulting in 815 deaths out of 5008 BC 
patients (the Finnish Cancer Registry). The rapid growth in diversity and volume of genotyped genome-wide data 
collected from BC patients is opening unprecedented opportunities to adopt machine learning predictive mode-
ling to identify risk factors, predict patient risk, and assist developing effective treatments to improve personalized 
clinical decision-making. Measuring an individual’s susceptibility to BC (or other complex diseases) prior to the 
diagnosis may determine who will eventually come down with the disease from those who will not. Identifying 
the BC-associated SNPs that reliably distinguish disease cases from healthy controls may be particularly useful in 
improving BC risk prediction1 and developing individual treatment strategies2.

Genome-wide association studies (GWAS) have successfully identified genetic variants with significant 
association with complex diseases spanning from BC3 to Alzheimer’s disease4. In GWAS, the idea is to iden-
tify genomic variants (SNPs) on the DNA, which explains the genetic component of the observed phenotype 
in genotyped people. In a typical GWAS study, we have in order of 105–107 SNPs and 102–104 samples, which 
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indicate high dimensional features with possible correlation and a low sample size problem. Conventionally, 
standard hypothesis testing methods are adopted to measure the association between a single SNP with a disease 
by assigning the difference between frequencies of the alleles/genotypes between cases and controls, and meas-
uring a p-value for each measured SNP individually. The p-values are then adjusted for multiple testing using, 
for example, the Bonferroni5 or Benjamini-Hochberg correction6 tests, and then the SNPs with p-values smaller 
than a pre-defined threshold are marked to have a high association7. This has several limitations as single SNPs 
have small effect size on observed phenotypes, while the explanatory power can be increased by the joint effect 
of (phenotype-associated) SNPs8. It also ignores the possible correlation/interaction among SNPs by analyzing 
one SNP at a time8.

Joint modeling of SNPs is challenging due to high dimensionality and small sample size. To date, 
population-based GWAS studies often use polygenic risk scoring (PRS)9 in which the disease risk for an individ-
ual is defined as the sum of the number of risk alleles across m disease-associated SNPs weighted by the effect size 
of each variant in forms of β β= + +g gPRSi i m mi1 1 , where gsi is the number of effect alleles (0, 1 or 2) of SNP 
s for individual i, and βs denotes the per-allele risk effect (odds ratio [OR] or hazard ratio (HR)) associated with 
the risk allele of SNP s. PRS assumes that the selected disease-associated SNPs are independent of each other and 
the risk effects are linear and additive9.

A significant body of works has recently devoted to penalized regression approaches to capture joint effects 
of SNPs10–12. These methods model a phenotype as a linear weighted sum of the genetic variants by applying a 
regularization penalty to constraint the magnitude of regression coefficients. This leads to a sparse set of SNPs 
that are predictive of the disease. The two most widely used penalized regression methods are lasso (least absolute 
shrinkage and selection operator)13 and ridge regression14. Both methods constraint the estimates of the regres-
sion coefficients towards zero relative to the maximum likelihood estimates. The lasso constraints sum of the 
absolute values of regression coefficients to be less than a fixed value (L1 penalty) encouraging sparse solutions. 
The ridge regression constraints sum of the squared regression coefficients (L2 penalty) resulting in small but 
non-zero regression coefficients.

Several studies have adopted penalized regression methods for GWAS assuming that each phenotype is an 
additive combination of latent SNPs. The performance of lasso was evaluated in a case-control study of coeliac dis-
ease with a large number of SNPs15. A ridge regression was used for differentiating causative from non-causative 
SNPs in linkage disequilibrium (LD)16. Other relevant studies are lasso for screening12, ridge regression for herit-
ability estimation11 or lasso under stability selection for genotype-phenotype association study10. Although these 
approaches help to reduce overfitting and identify a number of disease-associated SNPs, they only capture linear 
dependencies between SNPs, and between SNPs and traits, and cannot capture non-linear SNP dependencies. 
As outlined by Moore et al.17, one of the significant challenges that must be overcome to successfully identify 
disease-associated SNPs in GWAS is the ability to model complex interactions, such as high-order non-linear 
interactions, between SNPs and disease susceptibility.

Among the multitude of choices for non-linear feature selection algorithms, extreme gradient tree boosting 
approach (XGBoost)18 has proven successful in several fields19,20, particularly in achieving state-of-the-art results 
in many Kaggle (https://www.kaggle.com/) machine learning challenges. XGBoost is rooted in the gradient 
boosted decision trees, which in contrast to lasso and ridge regression methods, incorporates complex non-linear 
feature interactions into prediction models in a non-additive form18. For example, in cancer research, integrating 
stochastic gradient boosting and cancer hallmark concepts has been found useful in determining cancer types 
based on copy number variants in the tumor founding clone21.

In this study, we propose a novel machine learning approach to identify group of interacting SNPs, which 
contribute most to the BC risk. Our proposed method is realized with an XGBoost model followed by an adaptive 
iterative SNP selection to capture multiple-way SNP-SNP interactions and identify group of interacting SNPs, 
which achieve high BC risk prediction accuracy. In contrast to PRS, the proposed method incorporates complex 
non-linear SNP interactions into the BC risk prediction model in a non-additive form assuming dependencies 
among the SNPs and between the SNPs and the trait. The resulting method is simple yet very effective to capture 
the optimal ways of combining candidate BC risk-predictive SNPs to achieve high BC risk prediction accuracy 
for different populations (here, Kuopio and Oulu).

We have demonstrated our approach on the Kuopio Breast Cancer Project (KBCP)22 and the Oulu Breast 
Cancer Study (OBCS) (University of Oulu/Oulu University Hospital, 2004)23 sample sets. We compared the pro-
posed approach with a system trained on 51 known BC-associated SNPs24,25, a PRS-derived model and a number 
of conventional machine learning methods already used in GWAS to identify disease-associated SNPs. We then 
investigated the predictive potential of the identified SNPs in classifying ER status. Finally, we carried out a gene 
interaction analysis to gain biological insight into the identified SNPs.

Proposed Approach
Figure 1 illustrates a general overview of the SNP selection process for the BC risk prediction used in the present 
study. The front-end is a SNP selection process using an XGBoost model followed by an adaptive iterative SNP 
search to capture an optimal group of interacting SNPs with high BC risk-predictive potential. The SNPs identi-
fied in the front-end are then used to predict the BC risk using a support vector machine (SVM) classifier in the 
back-end. In the following, we describe the individual components of the proposed approach, in detail.

Gradient tree boosting.  Boosting is an effective ensemble learning algorithm in which weak classifiers are 
added sequentially to correct the errors made by existing classifiers towards building a strong classifier. XGBoost 
technique is a fast and an efficient implementation of the gradient tree boosting method described in detail in 
Supplementary file Section ‘Gradient tree boosting’, whose parameters are fully tunable. The implementation is 
available as a library at https://xgboost.readthedocs.io/. In this study, XGBoost is used to evaluate the importance 
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of SNPs on a BC risk prediction task by providing an initial list of candidate BC risk-predictive SNPs. We call this 
process the first module of our proposed approach. We used the average of feature importances (a.k.a. “gain”) pro-
vided by the gradient tree boosting method (see Supplementary equation (S12)), as the contribution of each SNP 
to the BC risk. More details on the XGBoost hyperparameter tuning will be provided in the experimental section.

An adaptive iterative SNP selection algorithm.  Based on the XGBoost initial candidates of the BC 
risk-predictive SNPs (first module), the second module of our proposed approach uses the candidate SNPs for an 
adaptive iterative search (see Algorithm 1) to capture the optimal ways of combining candidate SNPs to achieve 
high BC risk prediction accuracy on a validation data. First, candidate SNPs are sorted in descending order based 
on their importance scores generated from an XGBoost model trained using the whole available SNPs. The SNPs 
with the highest importances are regarded as top SNP list and the SNPs with the lowest importances are regarded 
as bottom SNP list. After selecting the top and the bottom SNP lists, we then re-rank the two SNP lists using two 
XGBoost models independently trained on the SNPs of the top and the bottom SNP lists. We then substitute the 
highest-/lowest-ranked SNP from the bottom/top list with the lowest-/highest-ranked SNP from the top/bottom 
list and gradually increase the number of SNPs from these two lists before list overlap is observed. We call this 
process the second module of our proposed approach. This process of re-ranking has the effect of capturing a 
wide range of SNP-SNP interaction patterns, and consequently, identifies group of interacting SNPs, which con-
tribute most to the BC risk, and places them on the top of the SNP list.

Support vector machine.  Support vector machine is a discriminative supervised classifier initially intro-
duced by Cortes and Vapnik26. Given labeled training data, an SVM finds the maximum margin separation hyper-
plane (decision boundary) to classify training examples such that it generalizes well to the unseen data. In this 
study, SVM was trained to distinguish the BC cases (positive samples) and healthy controls (negative samples) 
using the S top-ranked SNPs as feature vectors and a linear kernel defined as26:

κ =(x , x ) x x , (1)i j i j

where, xi and xj are two SNP feature vectors, and  denotes the transpose operation.
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Figure 1.  An overall representation of the proposed BC risk prediction approach using identified risk-
predictive interacting SNPs. We propose an effective machine learning approach to identify group of interacting 
SNPs, which contribute most to the BC risk. The identified SNPs are then used to predict the BC risk for an 
unknown individual in the back-end.

Algorithm 1.  An adaptive iterative SNP selection process to capture a wide range of SNP-SNP interaction 
patterns.
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Experimental Set-Ups
Sample sets.  To perform the BC risk prediction task, we used the KBCP and the OBCS sample sets. 
Genotyping was done using a custom Illumina array iCOGS with 211,155 SNPs. Genotyping, allele calling, 
and quality control for the Breast Cancer Association Consortium and iCOGS study are described in detail in 
Michailidou et al.25. Patient samples were obtained with informed written consent. The KBCP sample set includ-
ing all methods have been approved by the ethical committee of the University of Eastern Finland and Kuopio 
University Hospital. The OBCS sample set including all methods have been approved by the Finnish Ministry of 
Social Affairs and Health, and the ethical committee of Oulu University Hospital.

The KBCP controls were carefully selected from healthy individuals of the Savo region in Eastern Finland 
matching individually to each BC case by age and long-term place of living, thus originating from the same 
genetic background as the KBCP cases. The OBCS controls were collected from blood donors for the Finnish Red 
Cross without taking into consideration the demographic and the genetic background of donors.

Table 1 shows the distribution of the BC cases and controls as well as the ER+ and ER− subtypes in the KBCP 
and the OBCS sample sets used in this study. We excluded missing genotype values from the SNP data. The final 
dataset consisted of 125,041 SNPs in both the KBCP and the OBCS sample sets. SNPs are encoded using an 

Sample sets #Cases #Controls #Individuals #ER+ #ER−

KBCP 445 251 696 316 101

OBCS 508 415 923 407 100

Table 1.  Distribution of the BC cases and controls, the ER+ and ER− subtypes in the KBCP and the OBCS 
sample sets.
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Figure 2.  Visual representation of the proposed SNP selection approach in a BC risk prediction task. (A) 
Partitioning the genotyped data into training fold and test data with 4:1 proportion. The training fold data is 
further partitioned using a 5-fold stratified CV: one fold (validation data) is used for evaluating the set of identified 
SNPs produced by the module 2 and the remaining 4 folds are merged into a training set data for XGBoost 
model training and finding initial candidate BC risk-predictive SNPs (module 1). (B) Using training fold data 
for XGBoost hyperparameter optimization. (C) Module 1: using training set data to learn an XGBoost model 
and produce initial list of candidate BC risk-predictive SNPs. (D) Module 2: An adaptive iterative SNP selection 
process using the initial list of candidate SNPs obtained from C and the validation data. In this process, SNPs are 
re-ranked (see Algorithm 1) and the top interacting SNPs yielding the best BC risk prediction accuracy on the 
validation data are selected. (E) The top identified interacting SNPs from (D) are adopted to predict the BC risk on 
the test data using an SVM classifier. (F) Performances are averaged to obtain the final BC risk prediction accuracy 
across the test data. Same individuals are not used in the training, validation and test sets.
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additive encoding scheme27. The additive encoding represents each SNP through the minor allele count in which 
homozygous major, heterozygous and homozygous minor are encoded as 0, 1, and 2, respectively.

Evaluation strategy.  To overcome the lack of suboptimal amount of genotyped BC data to train 
high-performance BC risk prediction model, we have evaluated our proposed method in 10 repetitions of 5-fold 
cross-validation (CV). We used the KBCP genotyped data to optimize the XGBoost hyperparameters. Figure 2 
shows a visual overview of our proposed SNP selection process and the BC risk prediction task. At each repetition 
round, the genotyped data is randomly split into non-overlapping training fold and test data with 4:1 ratio, keep-
ing class frequencies balanced. The test data is used only to evaluate the final prediction accuracy and is not used 
in the SNP selection process. The training fold data is used to optimize the XGBoost hyperparameters. The train-
ing fold data is further partitioned into 5 folds using stratified CV: one part (validation data) is used for evaluating 
the group of interacting SNPs identified from the second module of the proposed approach and the remaining 
4 parts are merged into a training set data for XGBoost model training and finding initial candidates of BC 
risk-predictive SNPs (first module). The identified group of interacting SNPs are then used to predict the BC risk 
on the test data. Individual accuracies are finally averaged across all iterations to get the final prediction accuracy.

It is worth noting that following the above iterative process, various groups of interacting SNPs will be com-
puted (10 (iterations) × 5 (cv) = 50 groups). SNPs may overlap among groups. This iterative partitioning allows 
placing BC patients in various training, validation, and test folds accounting for possible heterogeneity among BC 
cases and consequently, identifying corresponding BC risk-predictive SNPs for each partition.

We chose to optimize the following XGBoost hyperparameters (i) number of decision trees — the boosted 
trees are constructed sequentially by adding new trees (weak learners) to the model while each new tree attempts 
to correct the errors made by the previous sequence of trees. The model often reaches a point, where the addition 
of new trees does not improve the model performance, (ii) size of decision trees (tree depth) — is used to control 
over-fitting as trees with higher depth generally learn too many details from the training samples, (iii) learning 
rate (shrinkage factor) — slows down the learning in the gradient tree boosting model by reducing the impact 
of each individual tree in the estimates and leaving space for future trees to improve the model, and finally, (iv) 
subsampling rate — the fraction of samples to be selected from the training data to create each tree. The selection 
is performed by random sampling without replacement. This simple technique (a.k.a. “stability selection”) adds 
variance to the ensembled estimation by allowing slightly different trees to be constructed from the random sub-
set of the training data.

A grid search over the triple of the number of decision trees, the size of decision trees and the learning rate is 
first performed within each iteration using the training fold data, then, the subsampling rate is optimized follow-
ing the previously found optimal hyperparameters.

Evaluation metrics.  We use the precision-recall curve and AP, widely-used evaluation metrics, to compare 
the performances of the different methods in discriminating the BC cases and controls on the test data. The 
precision-recall curve illustrates the trade-off between precision and recall at different cut-off points28. Precision 
and recall are defined as28:

=
+

TP
TP FP

Precision
(2)

=
+
TP

TP FN
Recall ,

(3)

where, TP = number of true positives, TN = number of true negatives, FP = number of false positives and 
FN = number of false negatives.

Average precision is a single number summarizing the precision-recall curve by computing the weighted 
mean of the precisions achieved at each cut-off points, using the increase in recall from the previous cut-off point 
as the weight29:

∑= − ×−AP (recall recall ) precision
(4)i

i i i1

where, recalli and precisioni are the precision and recall at the i-th threshold. Average precision denotes the aver-
age area under the precision-recall curve between 0 (worst) and 1 (best)28. Mean average precision evaluates the 
prediction model performance by averaging AP across multiple test subsets.

Baseline models for performance comparison.  For comparison, we derived PRSs from 51 previously 
reported BC-associated SNPs24 and their published iCOGS OR25. From the 92 published BC-associated SNPs 
in24, only 51 SNPs existed in our SNP discovery set in both KBCP and OBCS sample sets. Recently, Michailidou 
et al.30 has published more than 100 BC-risk associated SNPs, which we will consider in our next study. A list of 
SNPs and ORs used in the PRS models can be found in Supplementary Table S1. To evaluate the ability of the PRS 
to discriminate between the BC cases and controls, we computed the recall and precision at every possible PRS 
cut-off points. We then estimated the AP from the precision-recall curve, integrating over all the possible cut-off 
points. We also treated the 51 BC-associated SNPs as feature vectors and fed them into the SVM classifier for the 
BC risk prediction. This system is denoted as ‘Literature SNPs’ in the result section.

Additionally, we compared our proposed SNP selection approach with three classical feature selection meth-
ods, i.e. L1, L2 and elastic net (L1 ratio = 0.4) regularized logistic regressions, with arbitrary inverse of regulariza-
tion strength C = 0.7, following the same data partitioning and the back-end illustrated in Fig. 2.
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Implementation details.  We implemented the proposed approach with XGBoost 0.6a2 and Python 
Scikit-Learn 0.18.2 using a Linux machine equipped with 42 CPUs and 400 GB memory. The implementation 
source codes are freely available at https://github.com/hambeh/breast-cancer-risk-prediction.

For the variant analysis, we used Ensembl release 9131 to characterize the variants. Overlapping genes were 
identified within 5,000 bp upstream and downstream of each variant. To search for biological evidence of the 
important combination and interactions of SNPs identified in this study, we created a network using a list of 
genes associated with the variants and esyN32 (www.esyN.org). esyN is an open source bioinformatics web-tool 
for visualizing interaction data, in which nodes represent biological entities (e.g. gene, protein, molecule) and the 
interactions between them are represented by edges connecting the nodes. esyN is primarily written in the javas-
cript language, using the following libraries: cytoscape.js33, intermine34, jQuery35, angularJS36, underscore.js37.

Results and Discussion
Optimizing XGBoost hyperparameters.  We first optimized the XGBoost hyperparameters in the con-
text of BC risk prediction task. For this purpose, we used the negative log-loss of the model accuracy computed 
by Supplementary equation (S3) and the KBCP genotyped data following the procedure illustrated in Fig. 2. The 
results are summarized in Supplementary Table S2 and detailed in Supplementary Fig. S1 for each iteration. As 
expected, fewer boosted trees are required with the increase in the tree depth. Deeper individual trees resulted in 
overfitting of the training data, which would be aggravated with more boosted trees as outlined by Friedman38. 
The optimal tree depth was found to be 2 for all except the fifth iteration, although there was practically little dif-
ference between using tree depth = 2 or tree depth = 4 for this iteration. We also found that increasing the learn-
ing rate degrades the model accuracy. The optimal value of learning rate was found to be 0.01 for all iterations. 
Regarding the stochastic gradient boosting, the best results are achieved with the aggressive subsampling of the 
training data, such as 40% to 60%, which is in line with the findings by Friedman38.

Breast cancer risk prediction via adaptive iterative search.  Figure 3 displays the BC risk prediction 
accuracy in terms of mAP, as a function of XGBoost top-ranked SNPs on the KBCP and the OBCS validation 
data, respectively. Even if no considerable change is observed by changing the number of XGBoost top-ranked 
SNPs, each individual selected SNP contributes to the BC risk prediction model. It is the second module of the 
proposed approach, i.e. the adaptive iterative SNP search, which captures the optimal interacting SNPs (from the 
XGBoost provided list of important SNPs), that contribute most to the BC risk prediction.

Next, Fig. 4 shows the BC risk prediction accuracy on a validation data via the increase of the number of 
top-ranked SNPs for arbitrary SNP window sizes. We can see that the proposed adaptive iterative SNP search 
algorithm, which is intended to capture the optimal SNP-SNP interaction patterns, tends to group and sort the 
SNPs with the highest BC risk-predictive potential. For example, the top 4 SNPs together yielded the best BC risk 
prediction accuracy with AP of 74.96 for window size = 2. Similarly, the first-ranked SNP resulted in the highest 
prediction accuracy with AP of 79.00 for window size = 8.

We have similarly applied this adaptive search over the initial candidate BC risk-predictive SNPs provided by 
the XGBoost model (see module 1 in Fig. 2) and found the corresponding top-ranked SNPs for each validation 
data. In fact, the final group of interacting top-ranked SNPs for each validation data is determined by evaluating 
several window sizes (M = 2, 4, 6, 8, 20, 30) with adaptive window size increases (W = 1, 2, 3, 4, 5). A summary of 
the obtained values for the optimal window sizes and adaptive window size increases is given in Supplementary 
Table S3 for each round of data partitioning. We can see that smaller SNP window sizes are often marked as opti-
mal values. As an example, SNP window size = 2 is found optimal in 17 out of 50 splits. Similarly, the adaptive 
window size increase = 1 is found optimal in 15 out of 50 splits.

Breast cancer risk prediction in the KBCP and the OBCS sample sets.  Figure 5 illustrates the 
precision-recall curve comparison between the proposed SNP selection approach and the five baseline methods 
on the KBCP test data when the models are trained from the KBCP data. The results indicate that using the KBCP 
identified SNPs, the proposed SNP selection approach outperforms the baselines in discriminating the KBCP 
cases and controls in terms of mAP. The proposed approach achieves mAP of 72.66 in discriminating the BC 
cases and controls on the KBCP test data. From the baselines, the system based on the PRS obtains the highest 
performance with mAP of 70.08. From the penalized logistic regression methods, the system based on L1 penalty 
attains the highest prediction accuracy with mAP of 67.24.

To measure the contribution of the adaptive iterative SNP search to capture the optimal group of interacting 
SNPs, we excluded the adaptive iterative search and used all the candidate KBCP SNPs produced by the XGBoost 
model to perform the BC risk prediction on the KBCP test data. The prediction accuracy degrades to 65.04, that 
is a 10% relative reduction in mAP, highlighting the importance of capturing the optimal SNP-SNP interactions 
by the adaptive iterative SNP search in discriminating the KBCP cases and controls.

It is instructive to recall the order of computations: XGBoost model training → Obtaining initial candidates 
of BC risk-predictive SNPs → Performing adaptive iterative search over the candidate SNPs → Capturing group 
of interacting SNPs with the highest BC risk-predictive potential → Predicting BC risk using the identified inter-
acting SNPs and an SVM classifier.

Up to this point, we have focused on the KBCP data to optimize the XGBoost model hyperparameters and 
find the optimal group of interacting SNPs, which best discriminate the KBCP cases and controls. We now use the 
optimal hyperparameter values and the SNPs identified from the KBCP data to predict the OBCS cases and con-
trols as a validation study in 10 repetitions of 5-fold CV. The results are illustrated in Fig. 6. Using the KBCP iden-
tified SNPs, the proposed method marginally outperforms the systems based on the penalized regression methods 
(SNPs identified from the OBCS data for the penalized regression systems) and the literature SNPs, however, 
it underperforms the PRS-derived model by 3% mAP relative reduction, which is understandable considering 
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that the important SNPs were identified and hyperparameters were optimized both on the KBCP training fold 
data. Interestingly, by using the OBCS data to train the BC risk prediction model and obtain OBCS-specific BC 
risk-predictive SNPs, the mAP increases to 67.24, indicating 5% and 8% relative mAP improvements, respectively, 
over the PRS-derived model and the system, which uses the identified KBCP SNPs in discriminating the OBCS 
cases and controls. Similar to the KBCP task, excluding the adaptive iterative SNP search degrades the BC risk 
prediction accuracy to 58.28, that is a 13% relative reduction in mAP, which further highlights the contribution 
of the adaptive iterative SNP search in the proposed BC risk prediction task.

To evaluate robustness and overfitting of the proposed method, Table 2 summarizes the prediction perfor-
mance on the training, validation and test sets for both KBCP and OBCS sample sets using the proposed KBCP 
and OBCS SNPs, respectively. The results show that the proposed method does not overfit the training data and 
performs favorably in both validation and test sets in the two datasets.

A principal component analysis (PCA)39 of the BC cases over all 125,041 available SNPs further indicates the 
population-specific variation between the KBCP (Kuopio population) and the OBCS (Oulu population) geno-
typed data (see Supplementary Fig. S2). As outlined by Kerminen et al.40, Finland represents a highly geographi-
cally clustered genetic structure with little overlap between the populations due to specific population history of 
the Western and the Eastern Finland.

We further selected the OBCS cases and controls that overlap with the KBCP samples in terms of genetic 
structure following the PCA plots shown in Supplementary Figs. S4 and S5 respectively for the OBCS cases and 
controls. This accounts for 142 OBCS cases and 87 controls, which are closely related to the KBCP cases and 
controls, respectively. Using the proposed identified KBCP SNPs, the BC risk prediction accuracy increases to 
70.06 in terms of mAP in the OBCS samples overlapping with the KBCP genotyped data, which is in line with the 
72.66 mAP achieved on the KBCP test data using the same set of SNPs (Fig. 5, second plot). This indicates that the 
reduced predictive power of the proposed identified KBCP SNPs when applied to OBCS data is likely due to the 
differences in the underlying genetic structure of these two populations.

Figure 3.  BC risk prediction as a function of number of XGBoost top-ranked SNPs. No improvement is 
observed by increasing the number of XGBoost top-ranked SNPs.

Figure 4.  BC risk prediction as a function of the number of the top-ranked SNPs for arbitrary SNP window 
sizes on a validation subset. SNPs are sorted based on their BC risk-predictive importance score from the 
highest to the lowest on the x-axis. The adaptive iterative search algorithm with arbitrary SNP window sizes 
tend to group and sort the SNPs with the highest BC risk-predictive potential.
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We also investigated the effect of merging the KBCP and the OBCS sample sets into a single sample set to 
identify the BC risk-predictive SNPs denoted as KBCP-OBCS SNPs in Figs. 5 and 6. This resulted in identifying 
136 interacting BC risk-predictive SNPs, which is considerably lower than 407 and 563 interacting SNPs iden-
tified from the KBCP and the OBCS sample sets, respectively. As shown in Supplementary Fig. S2, the merged 
KBCP and OBCS genotyped data shows together a more dense cloud structure in the PCA 2D projection space 
than individually. Furthermore, the subtypes of the cancer cases could be more homogeneous in the combined 
analysis than in the individual sample sets. These would indicate less variance among the cases in the merged 
sample set, which might result in the lower number of optimal interacting SNPs. Results in Figs. 5 and 6 further 
show that regardless of which genotyped data to be used, the proposed approach compares favorably with the 
PRS-derived model in discriminating the BC cases and controls in all cases except, when the identified KBCP 
SNPs are used in the OBCS BC risk prediction task and vice versa. When the two sample sets are merged, the 
proposed approach and the PRS-derived model obtain mAP of 69.25 and 66.41, respectively, in discriminating 
the BC cases and controls on the merged data.

The predictive potential of the identified SNPs in classifying estrogen receptor status.  Breast 
cancer is a heterogeneous disease consisting of many subtypes of which the ER+ and ER− subtypes are the key 
ones41. Now, we turn our attention to evaluating the predictive power of the identified SNPs to classify ER+ and 
ER− status in the BC cases. For this purpose, we concatenated the identified BC risk-predictive SNPs individually 
for each method to classify ER+ and ER− status of the cases, using a 10-fold CV. Results are shown in Figs. 7 
and 8, respectively for the KBCP and the OBCS data. As illustrated, increasing the number of top-ranked SNPs 
improves the ER+ and ER− classification accuracy both for the KBCP and the OBCS data. This improvement 
is prominent for the risk-predictive SNPs identified by the proposed method with the maximum mAP of 84.15 
and 91.20 respectively, for the KBCP and the OBCS data, highlighting their predictive potential in discriminating 
ER+ and ER− cases compared to other baseline identified SNPs. From the 200 identified KBCP SNPs by the 
proposed method, 10 were found in the ER gene (ESR1) interaction network illustrated in Fig. 9.

Analysis of the identified interacting SNPs and associated genes.  Besides outperforming the clas-
sical SNP selection approaches as well as the PRS-derived model, the proposed technique provides a framework 
for tools to study biological insight of the identified SNPs. A total of 300, 587 and 118 genes could be associated 
with the identified 407 KBCP, 563 OBCS and 136 KBCP-OBCS SNPs, respectively. Details of the genes associated 
with the identified interacting SNPs from each of the sample sets as well as the literature SNPs can be found in 
Supplementary Tables S4–S7.

Dataset Training set Validation set Test set

KBCP 76.78 ± 7.01 74.54 ± 6.57 72.66 ± 7.21

OBCS 73.96 ± 9.33 69.49 ± 7.21 67.24 ± 8.32

Table 2.  BC risk prediction accuracy in terms of mAP in the training, validation and test sets for both KBCP 
and OBCS sample sets using the proposed KBCP and OBCS SNPs, respectively. The results indicate the 
robustness of the proposed method in discriminating BC cases and controls in both sample sets.

Figure 5.  Average precision-recall curve of the KBCP BC risk prediction task. Each plot corresponds to the 
prediction results obtained by the SNPs identified from one of the methods. The prediction accuracy of the 
proposed method on the KBCP data is separately reported for the SNPs identified from the KBCP, the OBCS 
and the merged KBCP-OBCS sample sets. The penalized logistic regression methods are trained using the 
KBCP sample set. Using the identified SNPs from the merged KBCP-OBCS genotyped data, the proposed 
method achieves the best BC risk prediction results compared to the baseline systems. The number after 
± denotes standard deviation. High standard deviations are due to multiple subset selections.
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Figure 6.  Average precision-recall curve of the OBCS BC risk prediction task. The prediction accuracy of the 
proposed method on the OBCS data is separately reported for the SNPs identified from the KBCP, the OBCS 
and the merged KBCP-OBCS sample sets. The penalized logistic regression methods are trained using the 
OBCS data. The proposed method attains the best BC risk prediction results, when the SNPs are identified from 
the OBCS data.

Figure 7.  KBCP ER+ and ER− classification using the BC risk-predictive SNPs identified by the proposed and 
the baseline methods. SNPs are sorted on the x-axis based on their importance score from the highest to the 
lowest provided by an XGBoost model in discriminating ER+ and ER− BC cases for all the methods. XGBoost 
ranking discards SNPs, which do not contribute to the ER subtype classification. Increasing the number of 
top-ranked SNPs improves the ER+ and ER− classification accuracy. The improvement is more prominent for 
the SNPs identified from the proposed method. Overall accuracy denotes the percentage of correctly classified 
instances. L1, L2 and elastic net SNPs relate to the identified SNPs from the penalized logistic regression 
respectively with L1, L2 and elastic net penalties.

Figure 8.  OBCS ER+ and ER− classification using the BC risk-predictive SNPs identified by the proposed and 
the baseline methods. Similar to the KBCP ER experiment, increasing the number of top-ranked SNPs improves 
the ER+ and ER− classification accuracy. The improvement is more prominent for the SNPs identified from the 
proposed method.
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The total number of SNPs overlap between the identified KBCP and the OBCS SNPs is 3 (rs1520148, rs6570423 
and rs9365352). Also, we found that for the SNPs locating on the same chromosomes, 141 out of 407 identified 
KBCP SNPs and 148 out of 563 identified OBCS SNPs are within 1 Mb chromosomal region respectively from the 
identified OBCS and KBCP SNPs, which may indicate possible association among the identified SNPs from these 
two sample sets. The gene interaction maps of the identified KBCP (Fig. 9) and OBCS (Supplementary Fig. S7) 
SNPs further show that the KBCP and OBCS SNPs point to a number of identical networks, such as PARK2 and 
ESR1. Note that the proposed approach is trained to find the group of interacting SNPs that contribute most to 
the BC risk rather than find the maximum number of shared SNPs between the two sample sets. Moreover, this 
experimental evidence has been drawn from the low-sample size datasets, which indeed can affect the frequency 
of rare alleles within each sample set as well as the BC risk prediction performance, and together with the sample 
set genotyped differences (see Supplementary Figs. S2 and S3 respectively for the PCA of the cases and healthy 
controls), might partially explain the variation observed between the identified interacting SNPs for the individ-
ual as well as the merged sample sets.

From the KBCP associated gene interaction map (Fig. 9), we also found several separate networks of which 
ESR1–linked and PARK2- and BCL2–linked networks were the most prominent. PARK2 has recently been linked 
with BCL-XL-dependent control of apoptosis42. As apoptosis and estrogen-related entities are constitutional fac-
tors in tumorigenesis, we believe this result shows evidence that our approach can identify truly biologically 
relevant group of interacting genetic variants. Note that the identified interacting SNPs might also link to the 
biological networks with no (known) effect on BC risk-related mechanisms.

A number of strategies of “predictive genomic” have been published to predict personalized drug targets, 
drug resistance, and metastasis for cancer patients, as well as cancer risks. Gao et al.43 used gene signature sets to 
successfully predict prognosis of stage II colorectal cancer patients. Li et al.44 developed an algorithm that iden-
tified prognostic markers focusing on metastasis-driving gene expression signals. Application of the algorithm 
to BC samples identified prognostic gene signature sets for both ER+ and ER− subtypes. Use of cancer hall-
marks as framework in cancer biomarker identification have been reviewed by Wang et al.45. Strategies of using 
this framework in conjunction with genome, transcriptome and epigenome data to predict outcome of cancer 
patients, as well as cancer risks for healthy individuals could have substantial impact on diagnosis, personalized 
treatment and personalized prevention of cancer. Indeed, the proposed approach in this study, which is free from 
pre-selection of important cancer-related entities, can be integrated into hallmark-based strategies to further 
select true biologically-relevant interacting factors (e.g. SNPs) contributing to cancer risk.

The gene interaction network of 51 literature SNPs (Supplementary Fig. S6) shows that the literature SNPs 
form individual entities with no genetic interactions. In addition to the ESR1 and the PARK2 networks, a number 
of important cancer-related entities, such as EGFR and MAPK1, were also found prominent in the OBCS gene 

Figure 9.  Gene interaction map of the identified KBCP SNPs reveals that the proposed approach can identify 
interacting genetic variants truly biologically relevant to the BC risk.
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interaction map illustrated in Supplementary Fig. S7. EGFR pathway has an impact on metabolic pathways in 
cancer cells46. In BC, EGFR promotes breast tumor growth and metastasis47. Regarding MAPK1, Si et al.48 have 
recently shown that silencing of MAPK1 can impair the proliferation of BC cells and reduce their drug resistance. 
The gene interaction analysis of the identified KBCP-OBCS SNPs further points to HDAC3- and ESR1- linked 
networks (see Supplementary Fig. S8). HDAC3 is essential for maintaining genome stability and efficient DNA 
repair and replication49. Genomic instability is regarded as a key characteristic of most cancers.

Finally, while it is correct that the differences between the KBCP and the OBCS controls might also affect 
the identified interacting SNPs (see Supplementary Fig. S3 for PCA of the healthy controls), we still observe 
SNPs which truly relate to the important BC relevant pathways as shown in the gene interaction maps (Fig. 9, 
Figs. S7 and S8). Moreover, the identified interacting SNPs perform favorably against the widely-used additive and 
PRS-derived models to predict the BC risk. Incidentally, the developed method in this study could also be useful in 
detecting interacting SNPs (or other types of data, such as protein interactions and microRNAs) for other diseases.

Conclusion
In this study, we have developed a simple yet effective machine learning based approach to identify group of 
interacting SNPs, which contribute most to the BC risk.

The leading idea is to take advantage of non-linear feature selection algorithms by assuming dependencies among 
the SNPs and between the SNPs and the BC risk. To this end, we adopted a gradient tree boosting method followed 
by an adaptive iterative SNP search to capture complex SNP-SNP interaction patterns and consequently, obtained 
group of interacting SNPs, which yielded high BC risk prediction accuracy within the SVM-based framework.

Experimental results on two BC cohorts, namely the KBCP and the OBCS, have demonstrated the effective-
ness of the proposed approach, which compares favorably with the classical linear penalized logistic regression 
methods and a PRS model derived from the 51 known BC-associated SNPs, in a small sample set problem. The 
proposed approach achieves mAP of 72.66, 67.24 and 69.25 in discriminating BC cases and controls in the KBCP, 
the OBCS and the merged KBCP-OBCS sample sets, respectively. These results are better than the mAP of 70.08, 
63.61 and 66.41 obtained by using the PRS-derived model, respectively, in the KBCP, the OBCS and the merged 
KBCP-OBCS sample sets. It was also noticed that the identified BC risk-predictive SNPs from the proposed 
method perform favorably in classifying ER+ and ER− BC cases both in the KBCP and the OBCS sample sets.

One of the challenges of the present study is the lack of suboptimal amount of genotyped BC data to train 
high-performance BC risk prediction models. To compensate this, we evaluated our proposed as well as the 
baseline methods in 10 repetitions of 5-fold CV. This iterative partitioning placed the genotyped data of the BC 
patients and controls in various non-overlapping training, validation and test folds, and consequently resulted in 
identification of the corresponding BC risk-predictive SNPs, which accounted for possible heterogeneity among 
BC cases. Further, our biological gene interaction analysis revealed and validated the role of the identified inter-
acting SNPs in important BC related mechanisms, such as estrogen metabolism and apoptosis.

The generalization capability of the proposed method is limited as the prediction performance is lower when 
the OBCS data is tested with the KBCP identified SNPs and vice versa. However, this might be partly explained 
by the population-specific variation between the KBCP (Kuopio population) and the OBCS (Oulu population) 
data and the low-sample size datasets. Note that to get a reasonable predictive generalizability, usually massive 
amounts of genotyped data from different populations are needed to identify a set of interacting SNPs that gener-
alize well for risk prediction in other populations.

Future work is necessary to improve the generalization capability of the proposed method. We plan to investi-
gate the effectiveness of the proposed method and validate our results with an extended dataset. In this study, we 
have not included any other data than genomic variants. In the future, we will test the model with other datasets, 
such as microRNAs, protein interaction, DNA-sequencing and histopathological data. In specific, we will inves-
tigate integrating demographic and epidemiological information to the genotyped data in a BC risk prediction 
task using deep learning frameworks.

To summarize, the novelties of the present study are as follows (i) identifying group of interacting SNPs, which 
contribute most to the BC risk by means of machine learning, (ii) taking advantage of non-linear feature selection 
algorithms by assuming dependencies among the SNPs and between the SNPs and the BC risk, (iii) capturing 
wide range of SNP-SNP interaction patterns in a BC risk prediction model, (iv) evaluating the BC risk prediction 
model in an iterative process to compensate the lack of suboptimal amount of genotyped BC data and account for 
possible heterogeneity among BC cases, and (v) evaluating the biological interaction of the identified combina-
tion of SNPs and also their relevance to BC subtypes.

Data Availability
The datasets generated during and/or analyzed during the current study are available from the corresponding 
author on reasonable request.

References
	 1.	 Mavaddat, N. et al. Prediction of breast cancer risk based on profiling with common genetic variants. Journal of the National Cancer 

Institute 107, djv036 (2015).
	 2.	 Giacomini, K. M. et al. Genome-wide association studies of drug response and toxicity: an opportunity for genome medicine. Nature 

Reviews Drug Discovery 16, 70 (2017).
	 3.	 Kar, S. P. et al. Genome-wide meta-analyses of breast, ovarian, and prostate cancer association studies identify multiple new 

susceptibility loci shared by at least two cancer types. Cancer Discovery 6, 1052–1067 (2016).
	 4.	 Lambert, J.-C. et al. Meta-analysis of 74,046 individuals identifies 11 new susceptibility loci for Alzheimer’s disease. Nature Genetics 

45, 1452–1458 (2013).
	 5.	 Hendricks, A. E., Dupuis, J., Logue, M. W., Myers, R. H. & Lunetta, K. L. Correction for multiple testing in a gene region. European 

Journal of Human Genetics 22, 414–418 (2014).



www.nature.com/scientificreports/

1 2SCIeNTIFIC RePorTs |  (2018) 8:13149  | DOI:10.1038/s41598-018-31573-5

	 6.	 Benjamini, Y. & Hochberg, Y. Controlling the false discovery rate: A practical and powerful approach to multiple testing. Journal of 
the Royal Statistical Society Series B (Methodological) 57, 289–300 (1995).

	 7.	 Manolio, T. A. Genomewide association studies and assessment of the risk of disease. New England Journal of Medicine 363, 166–176 (2010).
	 8.	 Rakitsch, B., Lippert, C., Stegle, O. & Borgwardt, K. A lasso multi-marker mixed model for association mapping with population 

structure correction. Bioinformatics 29, 206–214 (2013).
	 9.	 Kuchenbaecker, K. B. et al. Evaluation of polygenic risk scores for breast and ovarian cancer risk prediction in BRCA1 and BRCA2 

mutation carriers. Journal of the National Cancer Institute 109, djw302 (2017).
	10.	 Lee, S., Kong, S. & Xing, E. P. A network-driven approach for genome-wide association mapping. Bioinformatics 32, i164–i173 (2016).
	11.	 Gorfine, M. et al. Heritability estimation using a regularized regression approach (herra): Applicable to continuous, dichotomous or 

age-at-onset outcome. Plos One 12, 1–19 (2017).
	12.	 Wu, J., Devlin, B., Ringquist, S., Trucco, M. & Roeder, K. Screen and clean: a tool for identifying interactions in genome-wide 

association studies. Genetic Epidemiology 34, 275–285 (2010).
	13.	 Tibshirani, R. Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B (Methodological) 58, 

267–288 (1996).
	14.	 Hoerl, A. E. & Kennard, R. W. Ridge regression: Biased estimation for nonorthogonal problems. Technometrics 12, 55–67 (1970).
	15.	 Wu, T. T., Chen, Y. F., Hastie, T., Sobel, E. & Lange, K. Genome-wide association analysis by lasso penalized logistic regression. 

Bioinformatics 25, 714–721 (2009).
	16.	 Malo, N., Libiger, O. & Schork, N. J. Accommodating Linkage Disequilibrium in genetic-association analyses via ridge regression. 

The American Journal of Human Genetics 82, 375–385 (2008).
	17.	 Moore, J. H. & Ritchie, M. D. The challenges of whole-genome approaches to common diseases. JAMA 291, 1642–1643 (2004).
	18.	  Chen, T. & Guestrin, C. XGBoost: A scalable tree boosting system. In Proc. of KDD, 785–794 (2016).
	19.	 Zheng, H., Yuan, J. & Chen, L. Short-term load forecasting using EMD-LSTM neural networks with a Xgboost algorithm for feature 

importance evaluation. Energies 10, 1168 (2017).
	20.	  Ren, X., Guo, H., Li, S., Wang, S. & Li, J. A novel image classification method with CNN-XGBoost model. In Proc. of IWDW, 

378–390 (2017).
	21.	 Zou, J. & Wang, E. eTumorType, An algorithm of discriminating cancer types for circulating tumor cells or cell-free DNAs in blood. 

Genomics, Proteomics & Bioinformatics 15, 130–140 (2017).
	22.	 Hartikainen, J. M. et al. Refinement of the 22q12-q13 breast cancer-associated region: Evidence of TMPRSS6 as a candidate gene in 

an Eastern Finnish population. Clinical Cancer Research 12, 1454–1462 (2006).
	23.	 Mantere, T. et al. Case-control analysis of truncating mutations in DNA damage response genes connects TEX15 and FANCD2 with 

hereditary breast cancer susceptibility. Scientific Reports 7, 681 (2017).
	24.	 Siddhartha, P. K. et al. Genome-wide meta-analyses of breast, ovarian, and prostate cancer association studies identify multiple new 

susceptibility loci shared by at least two cancer types. Cancer Discovery 6, 1052–1067 (2016).
	25.	 Michailidou, K. et al. Genome-wide association analysis of more than 120,000 individuals identifies 15 new susceptibility loci for 

breast cancer. Nature Genetics 47, 373–380 (2015).
	26.	 Cortes, C. & Vapnik, V. Support-vector networks. Machine Learning 20, 273–297 (1995).
	27.	 Mittag, F., Römer, M. & Zell, A. Influence of feature encoding and choice of classifier on disease risk prediction in genome-wide 

association studies. Plos One 10, 1–18 (2015).
	28.	  Davis, J. & Goadrich, M. The relationship between precision-recall and ROC curves. In Proc. of ICML, 233–240 (2006).
	29.	 Salton, G. & McGill, M. J. Introduction to modern information retrieval (McGraw-Hill, Inc., 1986).
	30.	 Michailidou, K. et al. Association analysis identifies 65 new breast cancer risk loci. Nature 551, 92–94 (2017).
	31.	 Zerbino, D. R. et al. Ensembl 2018. Nucleic Acids Research 46, D754–D761 (2018).
	32.	 Bean, D. M. et al. esyN: Network building, sharing and publishing. Plos One 9, 1–5 (2014).
	33.	 Cytoscape.js website. http://cytoscape.github.io/cytoscape.js/, (Accessed July 15, 2014).
	34.	 Contrino, S. et al. modMine: flexible access to modENCODE data. Nucleic Acids Research 40, D1082–D1088 (2012).
	35.	 jquery website. http://jquery.com/, (Accessed July 15, 2014).
	36.	 Angularjs website. https://angularjs.org/, (Accessed July 15, 2014).
	37.	 Underscore.js website. http://underscorejs.org/, (Accessed July 15, 2014).
	38.	 Friedman, J. H. Greedy function approximation: A gradient boosting machine. The Annals of Statistics 29, 1189–1232 (2001).
	39.	 Hotelling, H. Analysis of a complex of statistical variables into principal components. Journal of Educational Psychology 24, 417–441 (1933).
	40.	 Kerminen, S. et al. Fine-scale genetic structure in Finland. G3: Genes, Genomes, Genetics 7, 3459–3468 (2017).
	41.	 Gruvberger, S. et al. Estrogen receptor status in breast cancer is associated with remarkably distinct gene expression patterns. Cancer 

Research 61, 5979–5984 (2001).
	42.	 Gong, Y. et al. Pan-cancer analysis links PARK2 to BCL-XL-dependent control of apoptosis. Neoplasia 19, 75–83 (2017).
	43.	 Gao, S. et al. Identification and construction of combinatory cancer hallmark-based gene signature sets to predict recurrence and 

chemotherapy benefit in stage II colorectal cancer. JAMA Oncology 2, 37–45 (2016).
	44.	  Li, J. et al. Identification of high-quality cancer prognostic markers and metastasis network modules. Nature Communications 1 (2010).
	45.	 Wang, E. et al. Predictive genomics: a cancer hallmark network framework for predicting tumor clinical phenotypes using genome 

sequencing data. Seminars in Cancer Biology 30, 4–12 (2015).
	46.	 Lane, A., Segura-Cabrera, A. & Komurov, K. A comparative survey of functional footprints of EGFR pathway mutations in human 

cancers. Oncogene 33, 5078–5089 (2014).
	47.	 Liang, Y. et al. The EGFR/miR-338-3p/EYA2 axis controls breast tumor growth and lung metastasis. Cell Death & Disease 8, e2928 (2017).
	48.	 Si, W. et al. A miR-20a/MAPK1/c-Myc regulatory feedback loop regulates breast carcinogenesis and chemoresistance. Cell Death 

And Differentiation 25, 406–420 (2017).
	49.	 Bhaskara, S. et al. HDAC3 is essential for the maintenance of chromatin structure and genome stability. Cancer cell 18, 436–447 (2010).

Acknowledgements
This study was financially supported by the special Government Funding (EVO) of Kuopio University Hospital 
grants, Cancer Fund of North Savo, the Finnish Cancer Organizations, and by the strategic funding of the 
University of Eastern Finland. We are grateful to the patients who contributed to this study. We thank Jouni 
Kujala and Eija Myöhänen for their valuable contribution. The iCOGS study would not have been possible 
without the contributions of the following: Andrew Berchuck (OCAC), Rosalind A. Eeles, Ali Amin Al Olama, 
Zsofia Kote-Jarai, Sara Benlloch (PRACTICAL), Antonis Antoniou, Lesley McGuffog and Ken Offit (CIMBA), 
Andrew Lee, and Ed Dicks, Craig Luccarini, and the staff of the Centre for Genetic Epidemiology Laboratory, 
the staff of the CNIO genotyping unit, Daniel C. Tessier, Francois Bacot, Daniel Vincent, Sylvie LaBoissière and 
Frederic Robidoux and the staff of the McGill University and Génome Québec Innovation Centre, Sune F. Nielsen, 
Borge G. Nordestgaard, and the staff of the Copenhagen DNA laboratory, and Julie M. Cunningham, Sharon A. 
Windebank, Christopher A. Hilker, Jeffrey Meyer and the staff of Mayo Clinic Genotyping Core Facility.

http://cytoscape.github.io/cytoscape.js/
http://jquery.com/
https://angularjs.org/
http://underscorejs.org/


www.nature.com/scientificreports/

13SCIeNTIFIC RePorTs |  (2018) 8:13149  | DOI:10.1038/s41598-018-31573-5

Author Contributions
A.M., V.-M.K. and H.B. created the concept and hypothesis of the manuscript. H.B. wrote the manuscript and 
performed all of the experiments, except the biological analysis of the identified SNPs that was contributed by 
A.M.; J.M.H. and A.M. provided the KBCP material; M.T. provided data related to the KBCP ER analysis; K.P. 
and R.W. contributed by providing the OBCS genotyped data and its ER related information; all authors reviewed 
the manuscript.

Additional Information
Supplementary information accompanies this paper at https://doi.org/10.1038/s41598-018-31573-5.
Competing Interests: The authors declare no competing interests.
Publisher's note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Cre-
ative Commons license, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons license and your intended use is not per-
mitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the 
copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
 
© The Author(s) 2018

http://dx.doi.org/10.1038/s41598-018-31573-5
http://creativecommons.org/licenses/by/4.0/

	Machine learning identifies interacting genetic variants contributing to breast cancer risk: A case study in Finnish cases  ...
	Proposed Approach

	Gradient tree boosting. 
	An adaptive iterative SNP selection algorithm. 
	Support vector machine. 

	Experimental Set-Ups

	Sample sets. 
	Evaluation strategy. 
	Evaluation metrics. 
	Baseline models for performance comparison. 
	Implementation details. 

	Results and Discussion

	Optimizing XGBoost hyperparameters. 
	Breast cancer risk prediction via adaptive iterative search. 
	Breast cancer risk prediction in the KBCP and the OBCS sample sets. 
	The predictive potential of the identified SNPs in classifying estrogen receptor status. 
	Analysis of the identified interacting SNPs and associated genes. 

	Conclusion

	Acknowledgements

	﻿Figure 1 An overall representation of the proposed BC risk prediction approach using identified risk-predictive interacting SNPs.
	﻿Algorithm 1 An adaptive iterative SNP selection process to capture a wide range of SNP-SNP interaction patterns.
	Figure 2 Visual representation of the proposed SNP selection approach in a BC risk prediction task.
	﻿Figure 3 BC risk prediction as a function of number of XGBoost top-ranked SNPs.
	F﻿igure 4 BC risk prediction as a function of the number of the top-ranked SNPs for arbitrary SNP window sizes on a validation subset.
	Figure 5 Average precision-recall curve of the KBCP BC risk prediction task.
	Figure 6 Average precision-recall curve of the OBCS BC risk prediction task.
	Figure 7 KBCP ER+ and ER− classification using the BC risk-predictive SNPs identified by the proposed and the baseline methods.
	Figure 8 OBCS ER+ and ER− classification using the BC risk-predictive SNPs identified by the proposed and the baseline methods.
	F﻿igure 9 Gene interaction map of the identified KBCP SNPs reveals that the proposed approach can identify interacting genetic variants truly biologically relevant to the BC risk.
	Table 1 Distribution of the BC cases and controls, the ER+ and ER− subtypes in the KBCP and the OBCS sample sets.
	Table 2 BC risk prediction accuracy in terms of mAP in the training, validation and test sets for both KBCP and OBCS sample sets using the proposed KBCP and OBCS SNPs, respectively.




