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Iterative and discrete 
reconstruction in the evaluation of 
the rabbit model of osteoarthritis
Juuso H. Ketola1, Sakari S. Karhula1,2, Mikko A. J. Finnilä   1,3,4, Rami K. Korhonen4, 
Walter Herzog5,6, Samuli Siltanen7, Miika T. Nieminen1,3,8 & Simo Saarakkala1,3,8

Micro-computed tomography (µCT) is a standard method for bone morphometric evaluation. 
However, the scan time can be long and the radiation dose during the scan may have adverse effects 
on test subjects, therefore both of them should be minimized. This could be achieved by applying 
iterative reconstruction (IR) on sparse projection data, as IR is capable of producing reconstructions 
of sufficient image quality with less projection data than the traditional algorithm requires. In this 
work, the performance of three IR algorithms was assessed for quantitative bone imaging from 
low-resolution data in the evaluation of the rabbit model of osteoarthritis. Subchondral bone 
images were reconstructed with a conjugate gradient least squares algorithm, a total variation 
regularization scheme, and a discrete algebraic reconstruction technique to obtain quantitative bone 
morphometry, and the results obtained in this manner were compared with those obtained from 
the reference reconstruction. Our approaches were sufficient to identify changes in bone structure in 
early osteoarthritis, and these changes were preserved even when minimal data were provided for 
the reconstruction. Thus, our results suggest that IR algorithms give reliable performance with sparse 
projection data, thereby recommending them for use in µCT studies where time and radiation exposure 
are preferably minimized.

Micro-computed tomography (µCT) has long been considered as the ‘gold standard’ method for structural bone 
analysis due to its ability of retrieving high-resolution volumetric data in a non-invasive manner, and provid-
ing optimal contrast between bone and soft tissue1. Other applications of µCT include small animal imaging 
for phenotyping of disease models, evaluating pre-clinical study outcomes, and developing of drug and treat-
ment interventions2,3. The imaging times in µCT vary from a few minutes for in vivo scans to several hours 
for high-resolution (<2 µm) in vitro scans. Long scan times are associated with high radiation exposure and 
movement induced imaging artifacts4,5. In extreme cases, the radiation dose is so high that it affects tissue metab-
olism and produces unwanted tissue changes. Such changes are of special concern in longitudal in vitro studies6, 
for example in digital volume correlations used for in situ mechanical testing7. Furthermore, harmful radiation 
effects, such as burns, radiation sickness, or cancer, are of scientific and ethical concern2,3,6.

In µCT, a cone-beam X-ray geometry and a radiation detector are used to gather projected images from differ-
ent angles around the test object2,3,8. These images are reconstructed mathematically to obtain the 3-dimensional 
structure within the object. Traditionally, reconstructions are made using methods that are based on filtered 
back-projection (FBP), such as the three-dimensional cone-beam reconstruction algorithm developed by 
Feldkamp, Davis and Kress in 1984 (FDK)9. FBP- or FDK-based methods are robust and computationally effi-
cient but are limited in that they require vast amounts of X-ray projection data, otherwise image reconstructions 
are plagued by imaging artefacts, such as streaking, stretching, blurring, partial volume effects, low resolution, 
or noise4,10.
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CT reconstruction is an inverse problem. Projection data measured with a known X-ray setup (forward prob-
lem) are used to retrieve the attenuation information from within the imaged object (inverse problem). With the 
help of inversion mathematics, images of sufficiently good quality (minimal artefacts and noise) can be computed 
iteratively from a limited amount of attenuation data10–12, reducing the imaging time and radiation dose12,13. 
Simple iterative reconstruction (IR) algorithms, such as the simultaneous algebraic reconstruction technique 
(SART)14, or simultaneous iterative reconstruction technique (SIRT)15, use an algebraic solver to minimize the 
Euclidean norm, L2, of the residual of the reconstruction. By using iterative techniques, the radiation dose can be 
reduced up to 76% while still obtaining image quality comparable to FBP-based methods11. Accordingly, a better 
image quality can be achieved by using IR instead of FBP with the same amount of radiation dosage13. The inverse 
problems associated with sparse X-ray tomography data reconstructions often do not have stable and unique 
solutions and require a priori knowledge about the object to converge to a reliable solution16,17. This so-called reg-
ularization consists of iterative algorithms aimed at solving an optimization problem (e.g. the minimization of the 
L2 norm) with a penalty term containing prior information. Some well-known examples are the Tikhonov regu-
larization and the total variation (TV) regularization, which take advantage of information about the smoothness 
and edges within the target object17. In the context of µCT imaging, IR or regularizing methods could enable the 
acquisition of a large number of high-resolution scans, thereby increasing reliability of many biologically rele-
vant µCT studies while simultaneously reducing movement artefacts and harmful radiation exposure. However, 
due to their iterative nature, these algorithms are associated with high computational demands. However, the 
computational power of commercially available workstations has increased to a level where IR is a viable option, 
and the major clinical CT vendors have already implemented IR algorithms into their imaging systems10,13. In 
clinical applications, IR techniques are usually applied with a certain amount of FBP to reduce blotchy image 
appearance obtained with full IR11,13. Further reasons why IR is not more widely used in clinical CT include the 
limited accessibility to corrected raw data, the problems with intellectual property rights, and the communication 
barrier between mathematicians and engineers18. With high-performance GPUs, IR can be performed even for 
high-resolution µCT datasets that are considerably larger than those obtained in clinical CT.

Since µCT achieves high spatial resolution and contrast between bone and soft tissues, it has become an 
important tool for various musculoskeletal diseases, such as osteoarthritis (OA). OA is a progressive joint disease 
causing pain and stiffness in synovial joints, and may cause disability in middle aged and old people. Risk factors 
for OA include age, excessive weight, joint instability, mechanical impacts, large torsional loads, and injury19. 
Because OA is a progressive disease with little or no symptoms in its early stage, only severe and symptomatic 
cases are usually studied in human patients. Different animal models have been studied alongside the human dis-
ease to obtain a better understanding of OA20–23. OA is associated with degradation of the extracellular matrix and 
changed chondrocyte function, causing degeneration and disturbed repair of articular cartilage19,24,25. OA-related 
damage is not only present in the articular cartilage, but also the subchondral bone which also undergoes struc-
tural changes with increasing OA severity26. Osteoarthritic trabecular bone often has coarser and discontinuous 
microstructure, resulting in decreased stiffness, which can be quantified by changes in structural parameters such 
as trabecular bone volume fraction, and the thickness and separation of trabeculae27–29.

The standard method of obtaining quantitative information on bone structure is via quantitative bone mor-
phometry, in which bone data acquired with µCT is analyzed mathematically30,31. First, the data are segmented 
into bone and other tissues, after which morphometric parameter analyses are performed to obtain information 
about the size and shape of specific bone compartments. The minimal set of variables to be reported in such 
analyses are bone volume fraction (BV/TV), trabecular number (Tb.N), trabecular thickness (Tb.Th) and tra-
becular separation (Tb.S)32. Along with these parameters, structural model index (SMI) has also been calculated 
to quantify as a degree of anisotropy in trabecular structure. However, it is known that SMI has limitations, such 
as not accounting for concave bone surfaces33, and recently the ellipsoid factor (EF) has been introduced in its 
place with convincing results34. In the light of these findings, EF is used instead of SMI in this study to assess the 
geometric composition of our bone samples. Furthermore, the thickness of the subchondral bone plate (Pl.Th) 
is also quantified. This set of parameters provides a quantitative overview of the structure of the bone and how it 
changes with the progression of OA.

The aim of this study was to test the performance of different image reconstruction algorithms in a µCT set-
ting. The algorithms are tested using quantitative parameter analysis related to the biomedical imaging studies of 
OA, and the results are compared against those given by FDK reconstruction.

Materials and Methods
Sample acquisition.  Six female New Zealand white rabbits (Oryctolagus cuniculus, age 14 months at the 
end of the experiments, weight 4.5 ± 0.3 kg) underwent unilateral anterior cruciate ligament transection (ACLT) 
surgery to a randomized knee to induce the onset of OA. A control group (n = 4, age 14 months at the end of the 
experiments, weight 4.8 ± 0.3 kg) was left unoperated. After 8 weeks, the animals were euthanized and the femoral 
condyles (both medial and lateral) were harvested from the operated knees of the ACLT group and both knees of 
the control group. All procedures were approved by the Committee on Animal Ethics at the University of Calgary 
and were carried out according to the guidelines of the Canadian Council on Animal Care (certificate of animal 
use protocol approval #AC11-0035). Femoral condyles were wrapped in moisturized tissue paper and placed in 
a plastic container to prevent drying and movement, respectively. From these samples (N = 12 and N = 16 for 
ACLT and control groups, respectively), subchondral bone properties were analyzed quantitatively using different 
image reconstruction algorithms. The medial and lateral condyles were pooled for statistical power because of the 
small number of samples.

Micro-computed tomography.  Projection data were acquired using a SkyScan 1272 high-resolution 
cone-beam µCT scanner (Bruker micro-CT, Kontich, Belgium) with 50 kV source voltage, 200 µA source current, 



www.nature.com/scientificreports/

3SCIEnTIFIC REPOrTS |  (2018) 8:12051  | DOI:10.1038/s41598-018-30334-8

focal spot size of <5 µm at 4 W power, and additional 0.5 mm aluminum filtering. Each projection image was 
taken with 2016 ms exposure time, 4 × 4 binning, and 2 frames (rays) per projection averaging. Datasets of 260 
projection images were measured from 181.3° angle of view with 0.7° angular step size and isotropic 9 µm camera 
pixel size. The image size of projections was 1008 × 672.

Image reconstruction.  The tomographic datasets were reconstructed into a 500 × 500 × 600 volume of 
interest (VOI) with isotropic 25 µm voxel side length in several ways. First, an FDK reconstruction (Hamming 
filter, α = 0.54) of the full (260 projections) dataset was obtained. Then, the projection data was reduced to half, 
one-fourth and approximately one-sixth of the original amount of the projection images (130, 65 and 44 projec-
tions, respectively). All projection data were pre-processed in the NRecon software (Bruker micro-CT, Kontich, 
Belgium) to correct for beam hardening, post-alignment and ring artifacts for improved image quality. The 
reduced datasets were then reconstructed with three different iterative reconstruction methods; the least squares 
implementation of the conjugate gradient method (CGLS)35, the total variation regularization method (TV)36, 
and the discrete algebraic reconstruction method (DART)37. The CGLS algorithm was chosen for its computa-
tional efficiency and applicability in solving large-scale linear systems38. TV regularization was chosen because 
of its edge-preserving properties that can be useful in X-ray tomography36,39, and the Barzilai-Borwein minimi-
zation40 was used for large scale TV regularization. The regularization parameter was chosen with the L-curve 
method41, which was supported by visual evaluation of image quality. The DART algorithm was chosen because 
it incorporates a priori information about the grayscale values of the data in the reconstruction. As bone samples 
have highly distinguishable values for different materials, such knowledge can be powerful when working with 
severely limited amount of projection data37,42. The a priori grayscale and thresholds values for bone, soft tissue 
and background classification were chosen manually from the histograms of the corresponding CGLS recon-
structions. In each DART iteration, a pre-set amount of iterations of a chosen algebraic reconstruction method 
(ARM) is run, after which the algorithm performs segmentation and fixation steps to restrict the boundaries of 
the next update37. We chose the ARM to be CGLS with 10 iterations, and 25 CGLS iterations were used to obtain 
the initial reconstruction. All reconstruction methods were run with 25 base iterations.

All reconstructions were calculated in the MATLAB 2016b programming environment (MathWorks, Natick, 
MA, USA) with the help of the ASTRA toolbox (iMinds-Vision Lab, University of Antwerp, Belgium)43–45, and 
the Spot toolbox46. ASTRA provides a programming and simulation environment for various CT geometries, 
as well as some popular image reconstruction functions and algorithms. Furthermore, the Spot toolbox and the 
opTomo operator of ASTRA wrap linear operators (such as forward- and back-projection in computed tomogra-
phy) to MATLAB objects, resulting in fast and efficient computation with GPU memory47. Image reconstruction 
in the aforementioned frameworks was implemented as follows: (1) generation of projection and volume geom-
etries, (2) computation of the system matrix as per the previously generated geometry objects, (3) running the 
chosen optimization algorithm on the given projection data, and (4) retrieval of reconstructed image data for 
further analysis.

Algorithm runtimes were measured in MATLAB as the time it takes for each reconstruction function to 
perform its computation, omitting the time needed for loading data and preprocessing. As a measure of absolute 
image quality, contrast-to-noise ratio (CNR) was calculated from the middle slice of the datasets by subtracting 
the mean value of a background region of interest (ROI) from a homogeneous bone ROI and dividing the result 
with the standard deviation of the background ROI.

Segmentation and image processing.  The reconstructed µCT data were analyzed in the CT Analyzer 
(CTAn, v.1.16) software (Bruker micro-CT, Kontich, Belgium). From the data, 2 × 2 × 4 mm3 (80 × 80 × 160 vox-
els) VOIs were chosen from the weight-bearing regions of the femoral condyles, similarly to what has been done 
previously in the rabbit ACLT model22. Trabecular bone and subchondral bone plate regions were manually 
segmented to obtain masks for parameter analyses. Bone tissue was segmented from other tissues in the µCT data 
using an automated Otsu thresholding algorithm in 3D48. Prior to the thresholding, the images were processed 
with median (radius = 1) and unsharping (radius = 1, amount = 50%) filters, and after thresholding a despeckling 
filter (sweep in 3D) was applied to the images to include only the largest object in the volume. Furthermore, for 
subchondral bone plate thickness analyses, another despeckling filter was run to remove the pores within the 
plate, and the pores in the edges of the plate were removed with morphological closing.

Quantitative bone morphometry.  After the pre-processing, the structural parameters (Table 1) were cal-
culated from the processed images. All computations were performed with direct 3D methods in CT Analyzer, 
except for the ellipsoid factor (EF), which was calculated from the binarized image stacks with the BoneJ 
plugin (v.1.4.2)49 for the ImageJ software (v. 1.51n, National Institutes of Health, Bethesda, Maryland, USA)50. 
Furthermore, all of the calculated bone parameter values were statistically tested using Mann-Whitney testing 
for two independent datasets to see whether there were statistically significant differences between the ACLT and 
control groups. Mann-Whitney non-parametric testing was chosen because of the small sample sizes, and as it 
does not require assumption of normally distributed data. In addition, the relative errors (%) of the parameters 
calculated from IR data to the parameters calculated from the reference FDK reconstruction were calculated and 
averaged for each algorithm and sparsity level. All statistical analyses were performed using SPSS software (v.24, 
IBM Analytics, New York, USA).

Results
In the reference FDK reconstruction, BV/TV, Tb.Th, Tb.N and EF were lower in the ACLT group compared to the 
control group, and Pl.Th and Tb.S were higher in the ACLT group compared to the control group (Table 2). Three 
of these parameters (BV/TV, Tb.Th and EF) were significantly different.
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Results obtained for CGLS, TV and DART are presented in Table 3. Out of the iterative algorithms, DART 
performed best when compared to the results of the full data FDK reconstruction for all reduced datasets. CGLS 
and TV performed well with half of the original projections, but further reduction resulted in great differences 
from the reference bone parameter values. DART was the only iterative algorithm that preserved the statistical 
significance in BV/TV, Tb.Th and EF across all reduced datasets. Example reconstructions of all algorithms are 
presented in Fig. 1, and the segmented binary images of those reconstructions (used for parameter analyses) are 
presented in Fig. 2.

Mean relative errors per algorithm and parameter are presented in Fig. 3. Out of the three algorithms, 
DART performed best with little errors (2–8%) across all reduced data. Although CGLS and TV gave slightly 
better results for some parameters with half of the projection data, DART was far superior with reductions to 
one-quarter or one-sixth of the original data.

Mean CNR values and their standard deviations are presented in Fig. 4. Across all reduced datasets, TV had 
the highest value of CNR. For CGLS, CNR was slightly better than the reference (FDK) value, and for DART, it 
was slightly worse.

Finally, the algorithm runtimes are presented in Table 4. DART and TV had longer runtimes than CGLS. 
Furthermore, reduction of projection data did not reduce the reconstruction times of TV as efficiently as it did 
for DART and CGLS.

Discussion
ACLT in rabbits resulted in statistically significant alterations of the subchondral bone structure, indicative of OA, 
after 8 weeks of surgery. Reduction of bone volume, thinning of trabeculae, and a shifting of trabecular alignment 
to more oblate configuration were statistically significant. Furthermore, thickening of the subchondral bone plate, 
increase of trabecular separation, and a reduction in trabecular number were observed, although these changes 
were not statistically significant. In Florea et al.22 similar changes in bone volume, trabecular thickness, and tra-
becular separation were seen in rabbits after 4 weeks of ACLT surgery. However, unlike in our study, the subchon-
dral bone plate was thinned significantly in the medial side and SMI was analyzed instead of EF. Apart from that, 
our findings on changes to the trabecular bone agree with previous observations in the rabbit model of OA22,51.

Out of the three algorithms tested in this study, DART performed best when compared to the reference data, 
as it gave good results even with severely reduced projection dataset. DART incorporates a priori information 
about the grayscale distribution of the data by strong enforcement of a pre-specified finite set of attenuation 
values that are the only possible ones in the target of imaging. Actually, very few optimization algorithms for 
tomographic reconstruction implement this, although other optimization algorithms exist as well in the field 
of discrete tomography. In our case, the grayscale values in bone datasets can be pre-classified into three values: 

Parameter Unit Definition

Subchondral bone plate

Plate thickness (Pl.Th) µm Average thickness of the subchondral bone plate

Trabecular bone

Bone volume fraction (BV/TV) % Number of pixels classified as bone divided by total amount of pixels

Trabecular thickness (Tb.Th) µm Mean thickness of trabeculae

Trabecular separation (Tb.S) µm Mean thickness of the spaces between trabeculae

Trabecular number (Tb.N) mm−1 Linear density of trabeculae, i.e. amount of trabeculae per unit length

Ellipsoid factor (EF) (a.u.)
Measures the anisotropy in the data by determining how prolate (rod-like) 
or oblate (plate-like) the trabeculae are in the sample. Negative EF values 
correspond to prolate and positive values to oblate dominancy in the geometry.

Table 1.  Structural bone parameters calculated from µCT data, with abbreviations, base units and definitions.

Parameter ACLT Control p-values

Subchondral bone plate

Pl.Th (µm) 531.8 ± 90.7 485.0 ± 99.7 0.268 (0.537)

Trabecular bone

BV/TV (%) 47.7 ± 4.4** 51.9 ± 3.4 0.010 (0.020)

Tb.Th (µm) 202.9 ± 18.2* 214.7 ± 16.1 0.045 (0.090)

Tb.S (µm) 311.6 ± 45.0 285.6 ± 25.9 0.080 (0.159)

Tb.N (mm−1) 2.36 ± 0.19 2.42 ± 0.12 0.254 (0.507)

EF (a.u.) −0.189 ± 0.04** −0.266 ± 0.04 0.001 (0.002)

Table 2.  Descriptive statistics (mean ± standard deviation) of calculated parameters in the ACLT (N = 12) and 
Control (N = 16) groups (data reconstructed with FDK and all projections), and the statistical differences within 
them. Statistical difference was tested with non-parametric Mann-Whitney testing (exact), p-values listed as 
one-tailed (two-tailed). *Values significantly different from the Control group (one-tailed p < 0.05). **Values 
significantly different from the Control group (two-tailed p < 0.05).
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background, soft tissue (or water), and bone, by just looking at the dataset’s histogram. Therefore, it is possible to 
estimate the a priori values for the aforementioned materials from a test reconstruction, although an automated 
procedure for estimation exists as well52. The easiest of the methods to implement, CGLS, does not use any a 
priori information but only minimizes the L2-norm of the residual with a gradient-based optimization algorithm. 
Therefore, one would not expect it to give good results with highly reduced datasets, even though it showed good 
performance with only half of the projection data, and is expected to perform really well with a complete projec-
tion dataset. The third algorithm, TV regularization, assumes that the total variation of the grayscale values in 
the final reconstruction is small, and the contribution of this assumption is controlled via the magnitude of the 
regularization parameter. Even though TV regularization is known to be robust in noise removal while preserving 
edge information in sparse data reconstructions, it causes the resulting image to appear blurred because of the 
way it performs its computation. This blurring affects the performance of the segmentation algorithm, especially 
for greatly reduced data with lots of noise to regularize. This is likely the reason why parameters obtained with 
TV regularization were not as close to the reference data as those obtained with DART. As such, the a priori 
knowledge used by TV regularization may not be ideal for µCT imaging of bone, where a lot of small details need 
to be preserved. Due to the ill-posed nature of tomographic reconstruction, some a priori knowledge is needed 
in very sparse cases, as can be seen from the poor performance of CGLS for extreme cases. The discrete a priori 
knowledge incorporated by DART seems to be strongly preferable in this application, in which the data itself is 
nearly discretely distributed to several classes.

DART was the only algorithm capable of preserving the statistically significant differences in BV/TV, Tb.Th 
and EF across all data reduction levels, and it did not give rise to extra parameters becoming significantly differ-
ent. However, the Tb.Th values with one-fourth and one-sixth of the original data became significant also with 
the two-tailed test, while they were only significant with the one-tailed test in the original data. With CGLS and 
TV, significant differences were only preserved for BV/TV and EF when the original dataset was reduced to half. 
Reduction to one-quarter of the data preserved the statistically significant differences in BV/TV and EF with 
CGLS, and only in EF with TV. Additionally, TV generated unwanted statistically significant results for Tb.N. For 
a reduction to one-sixth of the original projection data, CGLS and TV both preserved the significant difference 

Parameter ACLT Control p-values ACLT Control p-values ACLT Control p-values

1/2 of full data CGLS TV DART

Subchondral bone plate

Pl.Th (%) 531.5 ± 92.6 483.3 ± 99.6 0.254 (0.508) 533.2 ± 93.3 486.2 ± 97.9 0.254 (0.508) 527.6 ± 90.9 484.6 ± 99.4 0.316 (0.631)

Trabecular bone

BV/TV (%) 47.9 ± 4.3** 51.7 ± 3.4 0.019 (0.037) 49.8 ± 4.3* 53.2 ± 3.2 0.026 (0.053) 47.6 ± 4.8** 51.9 ± 3.7 0.015 (0.029)

Tb.Th (µm) 202.8 ± 16.4 213.7 ± 16.4 0.061 (0.121) 220.5 ± 16.8 228.4 ± 17.2 0.140 (0.280) 199.2 ± 18.5* 213.1 ± 17.6 0.033 (0.066)

Tb.S (µm) 308.2 ± 45.8 283.8 ± 25.7 0.111 (0.223) 311.7 ± 45.2 287.9 ± 24.0 0.087 (0.174) 305.8 ± 41.5 281.7 ± 25.9 0.095 (0.189)

Tb.N (mm−1) 2.37 ± 0.18 2.42 ± 0.12 0.265 (0.529) 2.26 ± 0.17 2.34 ± 0.12 0.148 (0.296) 2.40 ± 0.18 2.44 ± 0.11 0.353 (0.706)

EF (a.u.) −0.201 ± 0.06** −0.268 ± 0.05 0.002 (0.004) −0.203 ± 0.05** −0.277 ± 0.05 0.002 (0.004) −0.189 ± 0.05** −0.263 ± 0.05 0.001 (0.002)

1/4 of full data CGLS TV DART

Subchondral bone plate

Pl.Th (%) 540.2 ± 93.6 490.2 ± 98.1 0.211 (0.423) 543.3 ± 93.9 495.2 ± 96.5 0.186 (0.371) 524.6 ± 94.8 486.86 ± 97.9 0.332 (0.664)

Trabecular bone

BV/TV (%) 52.0 ± 4.3** 55.4 ± 3.3 0.024 (0.047) 53.8 ± 4.8 57.1 ± 3.5 0.055 (0.110) 47.4 ± 4.2** 52.6 ± 4.2 0.002 (0.004)

Tb.Th (µm) 236.7 ± 16.0 243.1 ± 17.4 0.186 (0.371) 255.4 ± 19.9 260.2 ± 18.5 0.316 (0.631) 202.8 ± 18.3** 219.3 ± 17.9 0.021 (0.042)

Tb.S (µm) 306.4 ± 45.9 281.6 ± 24.6 0.073 (0.146) 314.9 ± 46.0 289.1 ± 25.2 0.103 (0.205) 304.5 ± 46.1 276.4 ± 27.4 0.061 (0.121)

Tb.N (mm−1) 2.20 ± 0.14 2.28 ± 0.11 0.080 (0.159) 2.11 ± 0.14* 2.20 ± 0.12 0.045 (0.090) 2.34 ± 0.19 2.40 ± 0.11 0.198 (0.397)

EF (a.u.) −0.205 ± 0.04** −0.280 ± 0.04 0.001 (0.002) −0.190 ± 0.05** −0.280 ± 0.04 0.001 (0.002) −0.187 ± 0.04** −0.253 ± 0.04 0.001 (0.002)

1/6 of full data CGLS TV DART

Subchondral bone plate

Pl.Th (%) 548.4 ± 96.3 498.3 ± 93.7 0.130 (0.260) 551.9 ± 96.8 501.4 ± 92.9 0.130 (0.260) 524.2 ± 95.7 488.9 ± 97.1 0.349 (0.698)

Trabecular bone

BV/TV (%) 54.4 ± 5.8 58.5 ± 5.0 0.055 (0.110) 55.6 ± 6.4 59.9 ± 5.5 0.061 (0.121) 47.5 ± 4.0** 52.6 ± 4.2 0.002 (0.004)

Tb.Th (µm) 270.3 ± 24.4 276.5 ± 47.1 0.332 (0.664) 285.6 ± 28.2 291.5 ± 27.5 0.437 (0.873) 202.1 ± 15.4** 219.2 ± 18.3 0.010 (0.020)

Tb.S (µm) 321.0 ± 47.1 294.1 ± 27.9 0.130 (0.260) 328.1 ± 48.4 299.8 ± 29.9 0.120 (0.241) 301.8 ± 43.6 277.9 ± 28.2 0.095 (0.189)

Tb.N (mm−1) 2.02 ± 0.15* 2.12 ± 0.13 0.041 (0.082) 1.95 ± 0.15** 2.05 ± 0.12 0.021 (0.042) 2.35 ± 0.18 2.40 ± 0.12 0.268 (0.537)

EF (a.u.) −0.179 ± 0.04** −0.234 ± 0.05 0.001 (0.002) −0.180 ± 0.05** −0.252 ± 0.04 0.001 (0.002) −0.182 ± 0.04** −0.240 ± 0.05 0.002 (0.004)

Table 3.  Descriptive statistics (mean ± standard deviation) of calculated parameters in the ACLT (N = 12) 
and Control (N = 16) groups, and the statistical differences within them. Used algorithm and fraction of 
full projection data used to reconstruct different datasets denoted in the headers. Statistical difference was 
tested with non-parametric Mann-Whitney testing (exact), p-values listed as one-tailed (two-tailed). *Values 
significantly different from the Control group (one-tailed p < 0.05). **Values significantly different from the 
Control group (two-tailed p < 0.05).



www.nature.com/scientificreports/

6SCIEnTIFIC REPOrTS |  (2018) 8:12051  | DOI:10.1038/s41598-018-30334-8

Figure 1.  Example images of reconstructed data, shown as one 80 × 160 pixel image from the 80 × 80 × 160 
voxel volume of interest. FDK = Feldkamp, David and Kress algorithm, CGLS = conjugate gradient least squares 
algorithm, TV = total variation regularization and DART = discrete algebraic reconstruction technique. The 
number of projection images used in reconstruction is denoted by n.

Figure 2.  The binarized slice images corresponding to the data in Fig. 1. FDK = Feldkamp, David and Kress 
algorithm, CGLS = conjugate gradient least squares algorithm, TV = total variation regularization and 
DART = discrete algebraic reconstruction technique. The number of projection images used in reconstruction 
is denoted by n.
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in EF, but generated incorrect significant differences in Tb.N. These results support the notion that DART was the 
most reliable of the three IR algorithms analyzed in this study.

The IR algorithms take more computing time than the FDK algorithm. For CGLS, the computational times 
were almost two times the computing times of FDK when handling half of the projection data, but remained in 
an acceptable range because they were still in the order of tens of seconds with our workstation. However, when 

Figure 3.  The mean relative error of the used iterative algorithms with regards to reference data in quantitative 
bone morphometry analysis. The number below each bar trio corresponds to the number of used projection 
images. The bar height indicates the mean and the error bars indicate the standard deviation of the data. 
The analyzed morphometric parameters were BV/TV = bone volume fraction, Pl.Th = plate thickness, 
EF = ellipsoid factor, Tb.S = trabecular separation, Tb.Th = trabecular thickness and Tb.N = trabecular number. 
FDK = Feldkamp, David and Kress algorithm, CGLS = conjugate gradient least squares algorithm, TV = total 
variation regularization and DART = discrete algebraic reconstruction technique.

Figure 4.  Contrast-to-noise ratio (CNR) as a function of used projection images. For iterative algorithms, 
the bar height indicates the mean and the error bars indicate the standard deviation in the data. For FDK, the 
continuous line refers to the mean (reference level) and the dashed lines indicate the standard deviation in 
the data. FDK = Feldkamp, David and Kress algorithm, CGLS = conjugate gradient least squares algorithm, 
TV = total variation regularization and DART = discrete algebraic reconstruction technique.
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using TV and DART, the computations took considerably longer. Time inefficiency may be tolerated, though, 
since TV and DART require much less input data for successful reconstruction of bone geometry, resulting in 
reductions of imaging time and radiation dose. Furthermore, less data storage is required, which may be of value 
for some situations. For these reasons, IR methods facilitate the imaging of large sample series, as more scientifi-
cally relevant data can be acquired per unit of time and computer memory.

Regarding CNR, TV expressed the highest values across all reduced datasets. The texture in TV reconstructed 
images is typically smooth and contains little noise, so it is expected to have better values in basic metrics of image 
quality compared to CGLS and DART. CGLS and DART performed similarly to FDK, with DART having slightly 
lower CNR values. The lower CNR values are likely caused by the appearance of small speckles in the background 
sometimes seen in DART reconstructions. This artifact did not occur in the segmentation results. It should be 
noted that achieving high absolute image quality was not the primary aim of this research, therefore traditional 
image quality metrics may not be the best way in drawing conclusions from our data. Instead, we wanted to obtain 
reconstructions of sufficient quality so that reliable segmentations of bone and other tissues are possible, and 
quantitative bone analyses can be performed reliably from reduced datasets.

While the results suggest that collection of less projection data in µCT is feasible when the reconstruction 
is done iteratively, the study had the following limitations. While we chose data reconstructed with FDK as the 
reference method in our study, it should be noted that it does not output exact ‘ground truth’ data due to approx-
imation errors caused by the cone-beam imaging geometry. It is, however, the most commonly used reconstruc-
tion algorithm in µCT studies as commercial scanners routinely output FDK data. Since we studied limited-data 
solutions to µCT imaging, using FDK as the reference is a rational and practical choice. Furthermore, the recon-
struction framework we used assumed a point source in computing the system matrix for reconstruction. The 
scanner we used, however, has a nonzero focal spot size, thus the assumption may have produced minor error in 
the computations. Finally, although we used an analytical method and three distinct iterative algorithms in this 
study, there remain many different algorithms that could have been used. In the future, additional methods could 
be tested that are not discussed here, including but not limited to entropy methods53, multiplicative algebraic 
methods54, statistical inversion55, and deep-learning based approaches56.

In conclusion, we demonstrated that iterative and regularizing image reconstruction algorithms applied to 
reduced projection data are sufficiently reliable when used for morphological bone analysis involving segmenta-
tion. Furthermore, we were able to quantify changes in bone structure in early OA using sparse projection data. 
Thus, there is the potential for iterative reconstruction algorithms to replace the algorithms presently considered 
the gold-standard in micro-structural analyses of bone. In particular, discrete methods, such as DART, seem 
promising in quantitative parameter analyses requiring segmented data. By reconstructing data with iterative 
methods, the amount of projection data needed can be drastically lowered, thereby reducing imaging times and 
radiation doses associated with µCT imaging. This would allow for a larger number for imaged samples in in vitro 
studies, and prevent harmful radiation effects in in vivo studies.
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